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ABSTRACT 

To meet the growing requirements for resource management 
schemes in the context of mobile and wireless computing, 
path prediction algorithms are gaining more attention and are 
being extensively examined. Path prediction allows the 
network to enhance the user quality of service. A parametric 
dimensioning of a path prediction algorithm based on learning 
automata is presented. The algorithmic parameter values are 
optimised for maximum prediction accuracy. Furthermore, 
two add-on mechanisms of the path prediction algorithm are 
introduced, and their performance is evaluated through 
simulations.  

I. INTRODUCTION 

The occurrence of handovers in cellular mobile networks is a 
very important issue, and constitutes the main research drive 
for the design of resource management mechanisms for such 
systems. Network and service engineers are mostly concerned 
with the elimination of the problems induced by the 
disruptions in physical connectivity & service provision. 
During the recent past, the pro-active method, involving 
movement (path) prediction, has been adopted for 
overcoming such problems in many diverse aspects of mobile 
computing. Pro-active management of network resources, 
driven by a properly structured movement estimator, enables 
the network designer to bypass (instead of correcting) the 
negative side effects of handovers. Network resources that 
could be managed through this scheme include (but are not 
limited to) bandwidth, MAC frames, files and packets. The 
network mechanisms, acting prior to the occurrence of the 
handover, may reserve bandwidth or MAC frames, relocate 
files or packets to the most likely to be visited neighboring 
cell. After the occurrence of the handover, the mobile 
terminal does not compete for such finite network resources 
(i.e., the bandwidth capacity in the new base station is 
limited; the same applies to the file storage area or the buffer 
capacity) but enjoys a pre-arranged configuration. Hence, due 
to the pro-active management of network resources, the 
nomadic user does not experience service discontinuity 
(increased drop probability) or performance degradation. 
Such a proactive resource management scheme is mostly 
meaningful in wireless-mobile networking infrastructures 
(and services) with relatively small cell residence times and 
multiple handover occurrences during typical user sessions. 
Wireless LANs are indicative examples of such 
infrastructures. 

In this paper, we present a parametric dimensioning of a 
path prediction algorithm (PPA) initially discussed in [11] 

and [15]. The considered algorithm is based on a technique 
from Artificial Intelligence (AI), namely a Learning 
Automaton (LA) [12]. The LA, based on a properly structured 
knowledge base, assigns probability values to the 
neighbourhood of the currently visited cell. The highest 
probability denotes the most likely to be visited cell. In this 
paper, two add-on mechanisms are also introduced for 
enhancing the performance of the above scheme. The 
performance assessment of the above procedures has been 
based on a fully controllable mobility pattern generator 
platform called RMPG (Realistic Mobility Platform 
Generator) [16].  

The rest of the paper is structured as follows. In Section 2, 
we discuss relevant prior work. In Section 3, we briefly 
discuss the details of a LA-based prediction scheme. In 
Section 4, a parametric dimensioning is presented. Two 
modifications of the prediction scheme are presented in 
Section 5. Finally, conclusions and results are included in 
Section 6. 

II. PRIOR WORK 

In this section, we briefly present other research efforts on the 
issue of predicting the movement of a nomadic user and pro-
actively performing resource management.  

In [6], the authors use the history of handovers to predict 
the next cell. The information of handovers is stored in a 
profile server, which translates historical data into mobility 
profiles. Such profiles represent the mobility pattern of each 
user. At each base station, and for every user, a next-cell 
prediction algorithm is executed. The algorithm informs the 
predicted neighbour cell and triggers advance resource 
reservation. When a user performs a handover from cell c′ to 
cell c, the user’s profile is used to predict the next cell. 
Algorithm’s decisions are based on previous history of user 
handovers from cell c′ to cell c′′ through cell c. If such 
information is not available, the cell’s profile, built on the 
cached information for the most recent handovers of all users, 
is used to predict the next cell for the specific user. 

A probabilistic model of the history of handover behaviour 
is proposed in [7]. The model is based on the aggregate 
history of all handovers that occurred in a given cell. Two 
stages are foreseen, namely, the handoff estimation and the 
predictive-adaptive bandwidth reservation. In the first stage, 
that falls in the scope of this paper, each BS, involved in 
handovers, caches quadruplets in the form (Tevent, prev, 
next, Tsoj) for a roaming terminal. Such entries are called 
“hand-off event quadruplets”. Tevent is the time when the 
terminal departed from the current cell, prev is the index of 
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the previous visited cell, next is the index of the next cell, 
Tsoj is the cell sojourn (residence) time of the terminal. From 
the cached quadruplets, the BS builds a handoff estimation 
function (HOE), which describes the estimated distribution of 
the next cell and sojourn time of a mobile, depending on the 
cell the mobile came from. 

In [8], the mobility tracking problem in a cellular network 
has been considered in the information theoretic framework. 
Comparison of user mobility models has been based upon the 
concept of entropy.  A dictionary of user’s path updates is 
built and maintained by the proposed scheme. Such dictionary 
supports an adaptive online algorithm that learns the profiles 
of subscribers. This technique is based on ideas and concepts 
coming from the area of lossless compression, and the 
Lempel-Ziv algorithm in particular. The algorithm is called 
“LeZi-update” and is exploited to reduce the location update 
related costs while its predictive power is used to reduce 
paging cost. In [9], the LeZi-Update scheme is applied in an 
intelligent home-environment in order to track down an 
inhabitant, both inside and within surroundings, so as to 
satisfy connectivity requirements. 

The algorithm discussed in [10] is based on Mobile Motion 
Prediction (MMP) scheme for the prediction of the future 
location of a roaming user according to his movement history 
patterns. The scheme consists of Regularity-Pattern Detection 
(RPD) algorithms and Motion Prediction Algorithm (MPA). 
Regularity Detection is used to detect specific patterns of user 
movement from a properly structured database (IPB: Itinerary 
Pattern Base). Three classes of matching schemes are used for 
the detection of patterns namely the state matching, the 
velocity or time-matching and the frequency matching. The 
Prediction Algorithm (MPA) is invoked for combining 
regularity information with stochastic information (and 
constitutional constraints) and thus, reach a decision - 
prediction for the future location (or locations) of the 
terminal. 

The work presented in [1] uses pattern matching techniques 
and Extended, Self Learning, Kalman filters to estimate the 
future location of mobile terminals and, thus, perform 
advance resource reservation and optimal route establishment 
in ATM based architectures. User Mobility Patterns (UMB) 
are stored in a database and fed to an approximate pattern 
matching algorithm to allow estimation (Global Prediction, 
GP) of a terminal’s inter-cell movement direction 
(deterministic model). The Kalman estimator deals with the 
randomness in user movement by tracking intra-cell trajectory 
(stochastic model - Local Prediction, LP). The two models are 
combined together (Hierarchical Location Prediction) for the 
derivation of a semi-random movement trajectory. Simulation 
of the algorithm has shown that it accomplishes a high degree 
of prediction accuracy as soon as the Kalman filter becomes 
stable. 

In [14], two mobility tracking algorithms, MT-1 and MT-2, 
are proposed based on RSSI measurements. The overall 
structure of the proposed MT-1 mobility estimator is 
consisting of a pre-filter, a modified Kalman filter, and an 
extended Kalman filter. The pre-filter consists of an 
averaging filter and a coarse position estimator. The pre-filter 
outputs a vector of position estimates that are used as the 

observation data for the modified Kalman filter. However, the 
accuracy of the mobility state estimates is largely dependent 
on the performance of the pre-filter. In order to avoid any 
inaccuracy and error in the pre-filter, a second (extended) 
Kalman filter is introduced to produce the mobility state 
estimates. The extended Kalman filter takes the averaged 
pilot signal strengths as observations and the estimated 
discrete command states from the modified Kalman filter to 
generate the estimates for the mobility states. If it is not 
possible to collect the observation data then the pre-filter 
cannot be used. In such a case MT-2 algorithm is used, where 
the raw observation data are passing through the extended 
Kalman filter.  

In [13], a real-time mobility estimation scheme based on a 
first-order autoregressive model is presented, referred to as 
the AR-1 model. Based on that model an autoregressive 
position estimator is introduced. AR-1 position estimator 
consists of a mobility state estimator and a model parameter 
estimator. The estimation of mobility state is succeeded 
through the use of signal measurements typically available in 
wireless networks, i.e., received signal strength indicators 
(RSSI) or time of arrival (TOA) of a signal. Three 
independent signal measurements of either kind can be 
applied as observations to an extended Kalman filter in order 
to estimate the mobility state of a user. 

Further work in the area has been reported in [3], [4] and 
[5]. In [3] and [4], direction information and departure history 
are used to predict the future cell/location of a mobile unit. In 
the absence of history, a supporting mechanism, termed 
Correlation Criterion, is invoked by monitoring the 
movement patterns of the other users. In this way, a departure 
history is obtained for prediction purposes. In [5], the mobile 
unit executes a flexible prediction algorithm. The mobile 
keeps historic information of its trajectory and compares it 
with existing mobility patterns maintained in a database. For 
the matching process, Genetic Algorithms are used.  

III. PATH PREDICTION ALGORITHM 

Artificial intelligence has been used in [11] in order to predict 
the next cell for a terminal. Specifically, a learning automaton 
has been used. It is based on a state transition matrix, which 
comprises the one-step state transition probabilities and 
follows a Linear Reward-Penalty (LR-P) scheme. If the 
automaton’s decision is correct, a positive feedback is 
received from the environment and the probability of the 
respective state transition is increased (“rewarded”). The rest 
of the probabilities are evenly reduced, “penalized” in order 
to keep the probability sum equal to one. If the response is 
wrong the state transition is “penalized” and the rest of the 
transitions are “rewarded” accordingly. This behaviour is 
shown in equation (1). The path prediction algorithm is 
executed at the home registry of the terminal. There is an 
itinerary database for each user with entries holding spatial 
and temporal information. When prediction is requested a set 
of entries are examined and the one with the highest 
probability is chosen. If that response is correct or not then 
the procedures mentioned above are invoked. Should no 
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relevant entries be found in the database, new entries are 
introduced and a random decision is taken.  
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In (1), w denotes the rewarding step value while w΄denotes 
the penalizing step value. Those two values may be equal (a 
successful decision is equally important than an unsuccessful 
decision), or different (e.g., success is more important). In the 
simulation, w and w΄ assumed different, but constant, values. 
Generally, small step values for the reward/penalty 
procedures facilitate the automaton convergence to 
the correct actions [2], [12]. 

A variant of the above scheme proposed in [15] and 
operates as follows. Two learning automata, the Global (GA) 
and the Per-User (PUA), operate simultaneously on top of 
two itinerary databases for some specific users. Both GA and 
PUA are based on the reward/penalize procedure of (1). A 
scheme that combines the outcomes of both automata (PUA 
and GA) is referred to as Weighted Automaton (WA). When 
a prediction is requested, for a specific user, both the PUA 
and GA are consulted. The WA combines the per-cell 
probabilities (for all future cells) returned by the two 
automata using predefined weights, as defined in (2). 
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In (2), PWA(pc, cc, fc, ts, uid) and PPUA(pc, cc, fc, ts, uid) 
denote the transition probability from (previous cell pc, 
current cell cc) to future cell fc for a given user uid and time-
slot ts, for the WA and the PUA respectively. PGA(pc, cc, fc, 
ts) denotes the transition probability from (previous cell pc, 
current cell cc) to future cell fc for a given time-slot ts. The 
reward/penalty procedure is always governed by (1) and 
applied independently to the PUA and the GA. 

IV. PPA – PARAMETRIC DIMENTIONING 

In this section, we examine the various parameters that 
influence the effectiveness and performance of the path 
prediction algorithm presented in the previous section. 
Subsequently, we defined the parameters that play decisive 
role for the performance of the GA, PUA and WA. Finally, 
after extensive simulations and trials of various values in the 
critical parameters we mention our results. From equations 
(1) and (2) we lead to the conclusion that the parameters that 
need to be evaluated are w' and β. 

A. Weight w΄ 
In (1), the dependence between the reward and the penalty 
steps is given by equation (3): 

5,...,2,1, =⋅′= n  nww  (3) 
In (3), n is the indicator for the possible transactions form 

one CID to its neighboring cells apart from the one selected 
as a prediction output from the path prediction algorithm. The 
value of w, in the more general case (n = 5), is equal to 0.1 

([15]) while in the case where a one-step transition 
probability Pik has a value smaller than 0.02 then it is not 
taken into consideration in the automaton’s process of 
positive reward of Pij. The logic of equation (3) shows that 
the proportion of w and w' is maintained while the possibility 
of a one-step transition probability to recover is always 
possible. Learning Automaton algorithms [17] prevent the 
reduction of a probability’s value under a threshold value. 

B. Weight β 
β is the mixture factor of Global and Per User Automata in 
(2). We set the term (1-β) as B. B will be used for the 
dimensioning of weight β in the experiments that will follow. 

C. Values of  w' and B 
Simulations have been performed for a large number of (w', 
B) pairs. Several modifications took place in the platform to 
facilitate the simultaneous study of the joint behaviour of w' 
and B. 

Initially, the one-step transition probabilities are set to 1/6. 
We keep w' at values not greater than 0.1, to avoid 
exceptionally abrupt fluctuations of the probabilities, which 
may adversely affect the convergence of the automata. 
Therefore, w' is examined in the interval (0, 0.1] as follows: 
in interval (0, 0.0025] with step value 0.00025, in the interval 
(0.0025, 0.01] with a step value of 0.0005 and in the interval 
(0.01, 0.1] with step value 0.0025. Overall, 61 values have 
been studied. 

Respectively, for B we have examined the interval (0, 1) 
with step 0.1 ( the values 0 and 1 correspond to the exclusive 
use of PUA and GA, respectively [10]). The values 0.33 and 
0.66, which correspond to β=2/3 and β=1/3, respectively, 
have also been considered in the tests. We should note that 
the value B=0.66 has been selected in the initial presentation 
of WA [15]. 

Finally, after having performed several simulations of the 
path prediction algorithm, the values of the examined 
parameters have been narrowed for w' in the interval (0, 0.1] 
with step 0.0025, while for B in the values: 0.2, 0.3, 0.5, 0.75 
and 0.6667. All the possible combinations of the 
aforementioned sets of values have been tested to provide the 
best-fit values of the examined parameters. 

1) The parameter w΄ 
In Figure 1, we present the highest values of prediction 
accuracy that GA achieves for all (w', B) pair combinations. 
Only combinations that gave prediction success higher than 
62% (42 combinations) are presented. These combinations 
have values of w' in the interval [0.035, 0.04], while an 
important number of such combinations is also observed for 
values of w' higher than 0.07. A large number of ‘good’ 
values in the first interval is as expected. For example, for 
w'=0.035 we obtain w=0.17 (n = 5). Consequently, a 
successful prediction could more than double the 
corresponding probability, while the remaining five 
probabilities are decreased with a small step. In this particular 
case, one of the six state transition probabilities is 
strengthened after a a sufficient number of automaton calls 
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(automaton convergence) in the particular cell, and 
simultaneously the possibility of recovering for the rest 
probabilities is maintained. For small values of w' we get a 
quite smooth behaviour of the automaton without intense 
oscillations of the state transition probabilities values. In the 
case where w'=0.7 (w=3.5), the automaton will converge after 
two similar successes. Consequently, the results of the 
automaton are very unstable (rapid changes) for large values 
of w'. We consider that the value w'=0.02, selected initially in 
[15], provides very satisfactory results. 
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Figure 1: Prediction Accuracy for all (w', B)  

2) The parameter B 
In Figure 2 the distribution of combinations with percentage 
success higher than 63% (52 combinations) for values of B is 
presented. The higher values as well as the higher 
concentration of values are observed for the value 0.667 
(B=2/3, β=1/3). Hence, the value β=1/3, selected initially in 
[15], provides quite satisfactory results. 
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Figure 2: Percentage of Successful Predictions for B 

V. PPA – ADD ON MECHANISMS 

In this section, two add-on mechanisms for improving WA’s 
behaviour are proposed.  

A. Modified Mechanism(MM) 
In the initial scheme, apart from the first best first prediction 
of WA, a record and measurement of the best second and 
third predictions (more likely next place) are considered. 

More specifically, the second and third predictions are 
exploited in case the first prediction is not correct. Thus, if the 
first choice is erroneous, PPA is not being applied but the 
second best prediction is examined. The mechanism of 
reward/penalty is activated in the same way as for the first 
best prediction. In case the second best prediction is also not 
successful, PPA is not applied and the third best prediction is 
examined. By performing the previous controls, the 
automaton examines 50% or higher of the possible 
transactions from a cell. 

B. Self-adjusting Mechanism(SAM) 
WA has been adopted for smoothing out the effect of 
stochastic users. Depending on the behaviour of each user, 
WA performs better or worse than GA. Observing the results 
from [15] lead us to the following conclusions: 

a)  For users with high prediction accuracy the contribution 
of GA (small β) should be smaller than the contribution 
of PUA (large β). 

b)  For users with low prediction accuracy the contribution 
of GA (large β) should be bigger than the contribution of 
PUA (small β). 

Based on the previous conclusions and equation (2) a less 
stochastic user should help a quite stochastic user. A dynamic 
behaviour of the WA is adopted, referred to as self-adjusting 
mechanism, where for each user a different weight β is 
adopted. Although, it is not possible to know beforehand the 
stochastic character of a user, the self-adjusting mechanism is 
adopted dynamically during the simulation of the users. In 
practice, the automata results are kept in a database. 
Specifically, after the 5th week (e.g., after the 5th week the 
automata reach 80% of their final prediction output) and at 
the end of each subsequent week the percentages of 
prediction accuracy achieved for a particular user (PUA) are 
read and compared with the percentages of GA’s prediction 
accuracy (Equation (4):  

PUAGA APAPD −=  (4) 
In (4), APGA and APPUA denote the percentage of prediction 

accuracy of GA and PUA, respectively. When the difference, 
D, is greater than a specific value (e.g., greater than 0.1) then 
the value of β is increased. The mechanism of changing β 
follows: 
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In (5), α is a constant added to β for D >0.1 and βmax is the 
maximum value β could achieve. β is initially set at the value 
of 1/3. Clearly, equation (5) exhibits an asymptotic behaviour 
for β, as the target value is never reached. In practice, after 
the fifth subsequent increase of β’s value (β~0.6667) we set β 
equal to 0.6667. When the value of β becomes equal to 
0.6667, it is kept at that level till the end of simulation.  
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VI. CONCLUSIONS 

Figures 3, 4 and 5 present the WA results of the initial 
algorithm, the modified algorithm and the self-adjusting 
initial algorithm for the same three user profiles examined in 
[15], A, B and C, respectively. We observe that the modified 
and the self-adjusting mechanisms give an improvement of 
about 10% compared with the initial results of WA. We 
should note that although complexity has been increased 
compared with the initial algorithm, the simulation has not 
shown significant delay increase. 

Another important general observation is that the two add-
on mechanisms of the algorithm not only provide better 
output than the initial algorithm but they do so consistently. 
More specifically, even though the two proposed versions 
have been tested for fewer combinations of (w', b) than the 
initial algorithm (420 tests for the initial, 200 for the modified 
and 41 for the self-adjusting algorithm), they have given more 
combinations with high percentage of prediction accuracy 
(e.g., for success percentage equal to 64%, the initial 
algorithm has produced 9 combinations (2%), the modified 
163 combinations (81.5%), and the self-adjusting 34 
combinations (83%)). 
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Figure 3: Profile A – Comparison of WA – Variations 
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Figure 4: Profile B – Comparison of WA – Variations 
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