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Abstract—In the context of cognitive radio, system identifica- To overcome these limitations, methods that involve more
tion is a crucial step towards radio environment awareness. In particular signatures in OFDM systems are required. [12]
this paper, we present a new OFDM system identification method g,qqested approaches using specific preambles or dedicated
based on m-sequence (MS) specific characteristics. Thanks to b . ith lostati tt P bl .
their good random properties, m-sequences are commonly used su carn.ers W_' cyclosta |o.nary paterns. ream e;ng:pa
in existing standards (SUCh as Wifi or W|MAX) to modulate USUa.”y |nterm|ttent|y transm|tted and therefore dlfflCt.d In-
pilot tones for channel estimation and/or for synchronization tercept, the use of dedicated subcarriers is preferableeier,
purposes. We demonstrate that such sequences show extradedicating subcarriers to only embed signatures may have a
properties relevant to distinguish systems from each other and cost as it adds overhead and thus reduces systems capacity.

therefore advocate to generalize their use in a cognitive context o to add this i is 1o ioint] ilot t f
MS signatures are indeed of interest since they are able to dis- ne way 1o address this Issue IS 10 jointly use piiot tones for

criminate OFDM based systems that have the same modulation Synchronization and/or channel estimation (their initiabge)
parameters (intercarrier spacing, cyclic prefix duration, etc.). as well as for system identification.
In order to detect these signatures, we conduct a hypothesis |n this contribution, we develop a solution relying on the us
test based on the MS high order statistics. Detailed numerical 4 1, saquence (MS) modulated pilot tones to embed signatures
examples demonstrate the efficiency of the proposed identificatio . . oo . -
criterion and especially show its benefits compared to classical in OFDM signals. M,SS S,h,OW_SpeC'f'C h'gh order Sta_t',St'CS
correlation based methods. relevant for system identification and avoid any additional
overhead as they meet the requirements of usual training se-
|. INTRODUCTION quences (such-sequences are indeed already used in existing
The increasing demand of wireless services faced to thendards for synchronization and/or channel estimases,
limited spectrum resources constrains wireless systems WBMAX [2] and Wifi [3]). Thus, we here suggest to take
evolve towards more embedded intelligence. The Cognitieglvantage of signatures created as a side-effect of existin
Radio (CR) concept [1] appears as a key solution to makéS structures to identify standards such as [2] and [3] and
different systems coexist in the same frequency band. Giso advocate to generalize MSs use in a cognitive context.
terminals have the ability to reconfigure themselves (ice. t The paper is organised as follows: Section Il describes the
adapt the modulation parameters, carrier frequency, powktS useful properties. Section Ill introduces the OFDM iden-
etc.) with regards to the surrounding radio environment anification scheme and especially the associated cost fumcti
spectrum policy. Spectrum sensing and especially system idbased on MS signature characterization. In section IV the
tification is therefore a crucial step towards radio envinemt impact of synchronization impairments is analysed. Identi
awareness. In this paper we focus on OFDM based systegasion performance is assessed through simulations inoBect
as it becomes the physical layer for many wireless standaiMsFinally, conclusions are presented in Section VI.
[2]-[5]. Identification of such systems has mainly been igttid
using various OFDM cyclostationary properties inducedHsy t
Cyclic Prefix (CP) [6]-[9]. The performance of this approach A maximum length sequence, commonly called
fully depends on the cyclic prefix duration and on the lengtbequence, is a type of pseudorandom binary sequence gen-
of the multipath propagation channel. Note also that suchesated using maximal linear feedback shift registers and
method is totally inefficient in the presence of a zero-paddenodulo 2 addition. A necessary and sufficient condition that
OFDM system which may be relevant in a cognitive conte sequence be of maximal length (i.e. sequence of length
[10]. Moreover, considering the increasing interest in QFD 2P —1 for lengthy registers) is that its corresponding generator
by the wireless designers, cyclostationary propertiesuchs polynomial, denoted byP,,s, be primitive.
systems are likely to become closer and closer. For instancéAny binary MS w; generated by lengthy registers of
3GPP/LTE [5] and Mobile WIMAX [11] systems have alreadyolynomial Pryss = >°0_ a; X" verifies over Gi2)
an intercarrier spacing only different from 4% which may » »
prevent from getting an accurate system identification dase wy = Zaiwk—i PN Z awp_; = 0.
on the intercarrier spacing estimation principle. P i—o

II. MS PROPERTIES



Moreover, letw, =
sequence. Thanks to [13], one can see that

1, if B=A
MI_ITEOOH Z <H Wr— 1) - { 1/(1—27) otherwise
k=0 \ieB (1)

where B is any subset of0,---,2? — 2} and A = {i €

1 — 2w, be the BPSK associated The k-th received symbol on subcarrier is therefore

written as

Yi(n) k(N + D) + D 4 m]e 2"™%"

- e Tl

In the case of perfect synchronization (iee= 0, 7 = 0 and
8 = 0) and forn € I,, Y;(n) simplifies to

{07 e 7p}|ai = 1}
IIl. OFDM SYSTEM IDENTIFICATION ALGORITHM
A. System model

In order to facilitate the identification of OFDM systems, Wéecelved symbol.
suggest to generalize the use mfsequence modulated pilotB. Identification cost function
tones. Assuming that a transmitted OFDM symbol consists ofThanks to Eq. (1), systems described in Eq. (2) can be
N subcarriers ana@v,, comb-type pilot tones, the discrete-timeyiscriminated by using the following criterios

Yi(n) = Hy(n)ii(n)v/Es + M (n)

where Hi(n) and 91;(n) are respectively the channel fre-
guency response and the noise at subcanievf the k-th

baseband equivalent signal is given by vt 2
| M-
_|E; J = Z H We—i(n)

x(m) = ~ [za(m) + 2, (m)], 2 = AI—>+oo M = \icitn)
where where A(n) is the set of indexes associated with the non-

N—1 null components ofPy;s(n). For the sake of simplicity, we
zq(m) = Z Z ap(n)e¥ R Im=D=k(N+D)] gy k(N4 D)], consider that the same MS generator polynomial is used for

keZ nglo all pilot subcarriers. Consequentld(n) and Pys(n) are
n¢lp

independent of.. Moreover, we limitPy;s to trinomials of
the form1+ X' + X? (p > 1). 1
J can now be written as

7=
E, is the signal powergs(n) are the transmit data symbols nely k=0

assumed to be independent and identically distributediXi.i |n practice,./ cannot be computed and the sequeriggn)
D is the CP lengthm — g(m) is the pulse shaping filtet, s only accessible via the observatiorig(n). Thus, the cost

and

2Z7TNm D— k(N+D)] [m_k(N‘i‘D)]

=D ii(n)

keZnel,

denotes the set of pilot subcarrier indexes. For each Ip,

wg(n) is a BPSK pilot symbols sequence associated with one

mrsequence obtained by the generator polynomigls (n).

System signature is thus entirely characterized|bynd
~,—1- Notice that the number of primitive where Z(n) is defined as

{PMS(n)}nZO,M s
polynomials of degre@ over GK2) is given by¢(2? —1)/p,

function is based on the following estimate

J=Y 12, 4)

nel,

M—-1

where ¢(.) is Euler's Totient function [14]. As an example, !

: _ U Z Yie(n)Yy_y(n)Ye—p(n). ®)
for N, = 1 andp < 11, there are335 different possible p
S|gnatures which is much larger than the number of existing is the number of ava|lable OFDM symbols and the su-
OFDM systems! Consequently each existing or future syst%@gscnpt “* stands for complex conjugation which is added
may have its own system 5|gnature based on the knowleqgethe second term to mitigate the influence of the frequency
of I, and {Pars(n)}n=o, offsete on J (for more details, see Section 1V). Moreover, in
NOW we consider that the signal propagates through gider to get the criteriow independent of the received signal

multipath channel. Lefh(l)}i—o,... .. be the base-band equiv-gain, each ter;(n) in Eq. (5) is normalized so that
alent discrete-time channel |mpulse response of leigthhe Yi(n)
LT

received samples of the OFDM signal are thus given by Yi(n) = ——~t— (6)
o Var[y (n)]
y(m) = e~ TN Tl
=0

m —1—7)+n(m), (3) where Vaf] denotes the variance and
where ¢ is the carrier frequency offset (normalized by the Z [Yi(n)|”. @)
intercarrier spacing)f the initial arbitrary carrier phaser
the timing offset and)(m) a zero mean circularly-symmetric | N , ,
lex-valued white Gaussian noise of variane® per Limiting Pyss to trinomials reduces the number of possible signatures
compleéx-valued whni HSsl ! vari PET but does not call the validity of the concept into questionr. Fstance, there
complex dimension. are still 19 different possible signatures f, = 1 andp < 11.

Z(n) =

Var



C. Decision statistics wherep(n) is the signal power of subcarrier. If we consider
the multipath channel as static over the observation window
cgimpacts of channel variation are discussed in section ¥ th
v = |H(n)|? p(n) + 02/N and VafZ(n)|Hg] simplifies to

In this section we assume perfect synchronization §i.e.
0, 7 = 0 andf = 0). Synchronization impairments are studie
in Section 1V.

Our identification problem described in the previous subsec Var[Z(n)[H2] = 1
tion boils down to a standard detection problem for which we 0 M —
have to select the most likely hypothesis between the fatigw Therefore, the asymptotic probability density function.of
two hypotheses under™¢ is given by

Ho y(m). writes as in Eq(3) withou.t MS structure 2(M — p)J ~ Xng’
or with MS structure for tones ity, associated . o .
with P|, o =1+ X" + x¥ and ') % (1, p) where x% denotes a chi-square distribution withdegrees of
Hi : y(m) writes as in Eq(3) with MS structure for freedom. , N _ .
tones inl, described byPy;s = 1 + X! + X?. 2) Asymptotic probability density function dfunder +$:
P ®) According to Eq. (1),
To decide the most likely hypothesis, we propose a detection | M-l 1
test constrained by the asymptotic false alarm probability lim i Z Wg () Wg—(n)Wk—p(n) =
k=0

similar to what is suggested in [9]. The decision is made by M=oo 1=2
comparingJ to a positive threshold such that when H} holds. Following the same approach described in
Ha Sec. IlI-C1, we then have
JZ A N
. H(n)]?H(n)p(n)2
H E [Z(n)[H}] = |H (n)| (,)5( ) 7
with A defined as (1 =27y
M—p—1
Fin (A)=1-P 9) b — 1 -
T\ = fa: Var [Z(n)[Hg] = O —p)o? > [Cly-
no§j=0

}-on Is the cumulative distribution of \(v_henHo holds and [C], ; are the elements of the covariance matrix defined as
Py, is the tolerated false alarm probability. ©J

As implied in (8), Ho embodies two different sub- C=E[(YT-E{T})(YT-E{T}H"]
hypotheses respectively namef§ and 5. Hg represents the . .
case wherg/(m) does not have any MS structure that is to Sav)\//here the superscript stands for transpose conjugate and
thaty(m) is any signal such that, (n), Y;_,(n) andY,_,(n) T = [Ya(n)Y_(n)Yi—p(n), Yis1(n) Yy i1 (n)Yi—pia(n),
are mutually independent arid[Y(n)] = 0. As for Hg,. it o Y- p(0) Y5 gt () Vi ar—2p ().
corresponds to the case where the toneg(ef) belonging
to the setl, follow a MS structure with generator polynomia

Pl =1+ X" + X? (# Pyg) wherel’ # 1 andlorp’ # p.

IBy developing each product term of the covariance matrix and
assuming thaf\/ < 2P — 1, we get

Thanks to the random, independent and centered nature of the (|H (n)[2p(n) + 02/1\7)3 _ %, i=j
vast majority of digital modulated signals, we can make the 2 ()[4 p(n)? 6 (n)39p’
. e b Cl = CH®@Ipm)”  [H(®)p(n)"2 i —j| =
reasonable assumption thHiy = H§ U ;. i, N(1—2¢") (1-20)2 JI=Dr
In order to find a relevant thresholtl, we hereafter analyse _H®Ipm)?2”  ihenvise
. . . > (1—27")2 ’
the asymptotic statistical behavior gfunder both hypotheses
HE and HY. In a realistic scenario, the probability density functioh o

1) Asymptotic probability density function dfunderg: +/ under g cannot be easily estimated as it depends on
As shown in Eq.(6),Y;(n) is expressed as a ratio of twot (1), p(n), o and p’ which are unknown by the receiver.
random variables. The variance estimator introduced irf7q. However, in practice MS degrees can be chosen large enough
being consistent, it converges almost surely to a constant €9 » = 11 in [2] and [4]) to consider the covariance
notedv,, so that, thanks to the asymptotic theory developped fRatrix C' as diagonal. In tha’z case(n)|H; is asymptot-
[15], Yi(n) converges in distribution t& (n)//o,,. Moreover, ically normal and Vale(@)|H0} is well approximated by
Z(n) being a sum of i.i.d random variables whefg holds, 1/(M — p). Furthermore, if we assume that < 27 —1
we deduce thaZ (n)|Hg is asymptotically normal with then |E [Z(n)|Hg]| < Var [Z(n)|Hg].

Therefore, we can consider thdtfollows the same cumu-
lative distribution under both hypothesg& and#}, that is

E[Z(mIHE] = o, . Fo () = 20 (M = p)a)
(E [|Hx(m)] p(n) + 02/N) THo (N, —1)!
(M —p)vd ) where~v(a, z) is the incomplete gamma function.

Var(Z(n)[Hg] =




IV. EFFECT OF SYNCHRONIZATION IMPAIRMENTS

Timing missynchronization{# 0) and/or frequency offset
(e # 0) damage the observation§ (n) as inter-symbol (ISI)
and inter-carrier (ICl) interferences occur [16]. In adufit to
interference,c modifies the phase of}(n)Y;;(n)Yi_p(n)
and consequently maké&Z(n)|H,] decrease (note that the
complex conjugation in Eq.(5) mitigates the phase vanmtic
speed). Therefore, as illustrated in Figure 1, the ideatikc
algorithm performance decreases dramatically in the ca
wheree # 0 and/orr # 0.

when M increases. For the simulation, uniformly distributed
randome and 7 were generated with-0.5 < ¢ < 0.5 and
—0.5(N + D) <71 <0.5(N+ D). ¢ andr were estimated by
maximizing J over a grid with a step ofi.10~3 over ¢ and
0.1(N + D) overr.
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Fig. 2.

Effect of SNR,M

, € and 7 on the correct detection probability.

We hereafter consider a time-invariant discrete-time dean
{h(D)}i=0,....r With L = D and an exponential decay profile
for its non-null component (i.e.E[|h()]?] = Ge '/ for
1=0,---,LandG is chosen such thgL,"_, E[|h(1)[?] = 1).
Notice that3 approximately corresponds to the root mean
square (RMS) delay spread.

In Figure 3, we display the correct detection probability
versus SNR for various RMS delay spread. We observe
that the more frequency-selective the channel is, the bette
the performance is. This is due to the fact that [V&{)|?]
decreases as the RMS delay spread increases.

 U(N+D)

Fig. 1. Effect ofe andT on the correct detection probabilitg (VR = 0 dB,
M =50, Pys =14 X% + X1, N, =8, Py, = 0.01).

To overcome this issue, andr can be estimated as
(10)

¢, 7] = argmax J.
(e,7)
The direct use of the identification cost functidrto estimate
(e,7) implies to change the detection threshald In the
specific case where Eq. (10) is solved using a gri&gboints
and assuming that the differedt on this grid are mutually
independentA is given by

K
(Fip )" = 1= Pra.
V. SIMULATIONS

In the following, all the results are averaged ovEX00
Monte Carlo runs. The system to be recognized is the Fix
WIMAX described in [2]. WIMAX embeds MS structures of
polynomial Py;s = 1+ X2+ X!, We recall thatV = 256 and
N, = 8. Unless otherwise statedi/D = 32. The subcarriers
are equipowered. The asymptotic false alarm probabiHty
is fixed t00.01. The Signal-to-Noise Ratio (SNR) is definec.
as SNR(dB)= 10log,, (E,/0?).

In Figure 2, we plot the correct detection probability versu
SNR in the context of AWGN channel. Different synchroniza-
tion assumptions and variodd are considered. We show that In Figure 4, we compare the correct detection probability
the performance of the MS criterion is significantly imprdveversus SNR between the proposed MS criterion and the
when the observation window increases. Moreover, we obsestandard correlation based method fér= 0.5D and the
the impact of the synchronization method based on Eq. (10&rious CP lengths handled by the WIiMAX system.

We see that the loss due to missynchronization decrease3o compare both methods, we consider that the correlation

-4
SNR (dB)

Fig. 3. Effect of 3 on the correct detection probability{ = 50).



¢ Corr-N/D=4

—¥- Corr-N/D=8
: —p—Corr-N/D=16

o —e— Corr-N/D=32

O MS-N/D=4,8,16,32

-4
SNR (dB)

Fig. 4. Comparison between correlation based method and Mé&iori
(M =50, 8 =0.5D).

based detection is correct when

M’ —v—1

>

m=0

N-§/2 < argmax y(m)y*(m+v)| < N+4§/2

ve ['Umin 1U7naz]

whereM’ = M (N + D), vpin = 32 andv,,q, = 2048 which

corresponds to searching systems fré2rto 2048 subcarriers,
and where) is the tolerated error on the subcarrier spacing
We choosed to be conditioned by theé’;, under the white

gaussian noise hypothesis such that (viae — Ymin) Pra-

0.9

+fd:0Hz

0.8/| g ,=100Hz
0.7l <-f,=250Hz
—o-f,=500Hz

-4
SNR (dB)

Fig. 5. Effect of Doppler spread on the correct detectiorbphility (M =
50, 8 = 0.5D).

(1]

(2
(3]

[4]

We observe that the proposed algorithm is not dependent &
the CP length and outperforms the correlation based meth?@i T. Yucek and H. Arslan, “OFDM Signal Identification andafismission

as soon asV/D > 8. Moreover, for a fair comparison, it is
important to remind that as long as the MSs are different, o
method can discriminate systems with the same intercarr

spacing whereas the correlation algorithm cannot.

&

In Figure 5, we plot the correct detection probability versu g]
SNR when the frequency-selective channel becomes timla-

variant. Various values of maximum Doppler frequencfgs

have been inspected. We see that our algorithm is quite robu8l
to Doppler spread below 100Hz (at 3GHz, this corresponds

to a relative velocity of 36kph) whilst above this frequency10]

performance degrades significantly.

VI. CONCLUSION

In this paper, we developed a new method basedrmen
sequence properties to embed signatures in OFDM syst

(11]

et

without adding any overhead to standard pilot tones. We also

studied the MS identification cost function and showed th
this method exhibits excellent performance and is quiteisbb

to channel impairements. Moreover, simulation resultécizie

A

(14]

that in addition to stronger discriminating properties, MS

identification outperforms classical correlation basedhoe
in some relevant contexts.

(18]

(16]
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