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François-Xavier Socheleau∗, Sébastien Houcke∗, Abdeldjalil Aissa-El-Bey∗ and Philippe Ciblat∗∗
∗Institut TELECOM; TELECOM Bretagne,

Email: {fx.socheleau, sebastien.houcke, abdeldjalil.aissaelbey}@telecom-bretagne.eu
∗∗Institut TELECOM; TELECOM ParisTech,
Email: philippe.ciblat@telecom-paristech.fr

Abstract—In the context of cognitive radio, system identifica-
tion is a crucial step towards radio environment awareness. In
this paper, we present a new OFDM system identification method
based on m-sequence (MS) specific characteristics. Thanks to
their good random properties, m-sequences are commonly used
in existing standards (such as Wifi or WiMAX) to modulate
pilot tones for channel estimation and/or for synchronization
purposes. We demonstrate that such sequences show extra-
properties relevant to distinguish systems from each other and
therefore advocate to generalize their use in a cognitive context.
MS signatures are indeed of interest since they are able to dis-
criminate OFDM based systems that have the same modulation
parameters (intercarrier spacing, cyclic prefix duration, etc.).
In order to detect these signatures, we conduct a hypothesis
test based on the MS high order statistics. Detailed numerical
examples demonstrate the efficiency of the proposed identification
criterion and especially show its benefits compared to classical
correlation based methods.

I. I NTRODUCTION

The increasing demand of wireless services faced to the
limited spectrum resources constrains wireless systems to
evolve towards more embedded intelligence. The Cognitive
Radio (CR) concept [1] appears as a key solution to make
different systems coexist in the same frequency band. CR
terminals have the ability to reconfigure themselves (i.e. to
adapt the modulation parameters, carrier frequency, power,
etc.) with regards to the surrounding radio environment and
spectrum policy. Spectrum sensing and especially system iden-
tification is therefore a crucial step towards radio environment
awareness. In this paper we focus on OFDM based systems
as it becomes the physical layer for many wireless standards
[2]–[5]. Identification of such systems has mainly been studied
using various OFDM cyclostationary properties induced by the
Cyclic Prefix (CP) [6]–[9]. The performance of this approach
fully depends on the cyclic prefix duration and on the length
of the multipath propagation channel. Note also that such a
method is totally inefficient in the presence of a zero-padded
OFDM system which may be relevant in a cognitive context
[10]. Moreover, considering the increasing interest in OFDM
by the wireless designers, cyclostationary properties of such
systems are likely to become closer and closer. For instance
3GPP/LTE [5] and Mobile WiMAX [11] systems have already
an intercarrier spacing only different from 4% which may
prevent from getting an accurate system identification based
on the intercarrier spacing estimation principle.

To overcome these limitations, methods that involve more
particular signatures in OFDM systems are required. [12]
suggested approaches using specific preambles or dedicated
subcarriers with cyclostationary patterns. Preambles being
usually intermittently transmitted and therefore difficult to in-
tercept, the use of dedicated subcarriers is preferable. However,
dedicating subcarriers to only embed signatures may have a
cost as it adds overhead and thus reduces systems capacity.
One way to address this issue is to jointly use pilot tones for
synchronization and/or channel estimation (their initialusage)
as well as for system identification.

In this contribution, we develop a solution relying on the use
of m-sequence (MS) modulated pilot tones to embed signatures
in OFDM signals. MSs show specific high order statistics
relevant for system identification and avoid any additional
overhead as they meet the requirements of usual training se-
quences (suchm-sequences are indeed already used in existing
standards for synchronization and/or channel estimation,see
WiMAX [2] and Wifi [3]). Thus, we here suggest to take
advantage of signatures created as a side-effect of existing
MS structures to identify standards such as [2] and [3] and
also advocate to generalize MSs use in a cognitive context.

The paper is organised as follows: Section II describes the
MS useful properties. Section III introduces the OFDM iden-
tification scheme and especially the associated cost function
based on MS signature characterization. In section IV the
impact of synchronization impairments is analysed. Identifi-
cation performance is assessed through simulations in Section
V. Finally, conclusions are presented in Section VI.

II. MS PROPERTIES

A maximum length sequence, commonly calledm-
sequence, is a type of pseudorandom binary sequence gen-
erated using maximal linear feedback shift registers and
modulo 2 addition. A necessary and sufficient condition that
a sequence be of maximal length (i.e. sequence of length
2p−1 for length-p registers) is that its corresponding generator
polynomial, denoted byPMS , be primitive.

Any binary MS wk generated by lengthp registers of
polynomialPMS =

∑p
i=0 αiX

i verifies over GF(2)

wk =

p∑

i=1

αiwk−i ⇔
p∑

i=0

αiwk−i = 0.



Moreover, let w̆k = 1 − 2wk be the BPSK associated
sequence. Thanks to [13], one can see that

lim
M→+∞

1

M

M−1∑

k=0

(
∏

i∈B

w̆k−i

)
=

{
1, if B = A

1/(1 − 2p) otherwise

(1)
where B is any subset of{0, · · · , 2p − 2} and A = {i ∈
{0, · · · , p}|αi = 1}.

III. OFDM SYSTEM IDENTIFICATION ALGORITHM

A. System model

In order to facilitate the identification of OFDM systems, we
suggest to generalize the use ofm-sequence modulated pilot
tones. Assuming that a transmitted OFDM symbol consists of
N subcarriers andNp comb-type pilot tones, the discrete-time
baseband equivalent signal is given by

x(m) =

√
Es

N

[
xd(m) + xr(m)

]
, (2)

where

xd(m) =
∑

k∈Z

N−1∑

n=0
n/∈Ip

ak(n)e2iπ n
N

[m−D−k(N+D)]g[m−k(N+D)],

and

xr(m) =
∑

k∈Z

∑

n∈Ip

w̆k(n)e2iπ n
N

[m−D−k(N+D)]g[m−k(N+D)].

Es is the signal power,ak(n) are the transmit data symbols
assumed to be independent and identically distributed (i.i.d),
D is the CP length,m 7→ g(m) is the pulse shaping filter.Ip
denotes the set of pilot subcarrier indexes. For eachn ∈ Ip,
w̆k(n) is a BPSK pilot symbols sequence associated with one
m-sequence obtained by the generator polynomialPMS(n).

System signature is thus entirely characterized byIp and
{PMS(n)}n=0,··· ,Np−1. Notice that the number of primitive
polynomials of degreep over GF(2) is given byφ(2p − 1)/p,
where φ(.) is Euler’s Totient function [14]. As an example,
for Np = 1 and p ≤ 11, there are335 different possible
signatures which is much larger than the number of existing
OFDM systems! Consequently each existing or future system
may have its own system signature based on the knowledge
of Ip and{PMS(n)}n=0,··· ,Np−1.

Now, we consider that the signal propagates through a
multipath channel. Let{h(l)}l=0,··· ,L be the base-band equiv-
alent discrete-time channel impulse response of lengthL. The
received samples of the OFDM signal are thus given by

y(m) = e−i(2πε m−τ

N
+θ)

L−1∑

l=0

h(l)x(m − l − τ) + η(m), (3)

where ε is the carrier frequency offset (normalized by the
intercarrier spacing),θ the initial arbitrary carrier phase,τ
the timing offset andη(m) a zero mean circularly-symmetric
complex-valued white Gaussian noise of varianceσ2 per
complex dimension.

The k-th received symbol on subcarriern is therefore
written as

Yk(n) =
1√
N

N−1∑

m=0

y[k(N + D) + D + m]e−2iπ nm
N .

In the case of perfect synchronization (i.e.ε = 0, τ = 0 and
θ = 0) and forn ∈ Ip, Yk(n) simplifies to

Yk(n) = Hk(n)w̆k(n)
√

Es + Nk(n)

where Hk(n) and Nk(n) are respectively the channel fre-
quency response and the noise at subcarriern of the k-th
received symbol.

B. Identification cost function

Thanks to Eq. (1), systems described in Eq. (2) can be
discriminated by using the following criterionJ

J =
∑

n∈Ip

∣∣∣∣∣∣
lim

M→+∞

1

M

M−1∑

k=0




∏

i∈A(n)

w̆k−i(n)





∣∣∣∣∣∣

2

where A(n) is the set of indexes associated with the non-
null components ofPMS(n). For the sake of simplicity, we
consider that the same MS generator polynomial is used for
all pilot subcarriers. ConsequentlyA(n) and PMS(n) are
independent ofn. Moreover, we limitPMS to trinomials of
the form1 + X l + Xp (p > l). 1

J can now be written as

J =
∑

n∈Ip

∣∣∣∣∣ lim
M→+∞

1

M

M−1∑

k=0

w̆k(n)w̆k−l(n)w̆k−p(n)

∣∣∣∣∣

2

.

In practice,J cannot be computed and the sequencew̆k(n)
is only accessible via the observationsYk(n). Thus, the cost
function is based on the following estimate

Ĵ =
∑

n∈Ip

|Z(n)|2 , (4)

whereZ(n) is defined as

Z(n) =
1

M − p

M−1∑

k=p

Ỹk(n)Ỹ ∗
k−l(n)Ỹk−p(n). (5)

M is the number of available OFDM symbols and the su-
perscript “*” stands for complex conjugation which is added
on the second term to mitigate the influence of the frequency
offset ǫ on Ĵ (for more details, see Section IV). Moreover, in
order to get the criterion̂J independent of the received signal
gain, each termYk(n) in Eq. (5) is normalized so that

Ỹk(n) =
Yk(n)√

V̂ar [Y (n)]
, (6)

where Var[.] denotes the variance and

V̂ar [Y (n)] =
1

M

M−1∑

k=0

|Yk(n)|2 . (7)

1Limiting PMS to trinomials reduces the number of possible signatures
but does not call the validity of the concept into question. For instance, there
are still 19 different possible signatures forNp = 1 andp ≤ 11.



C. Decision statistics

In this section we assume perfect synchronization (i.e.ε =
0, τ = 0 andθ = 0). Synchronization impairments are studied
in Section IV.

Our identification problem described in the previous subsec-
tion boils down to a standard detection problem for which we
have to select the most likely hypothesis between the following
two hypotheses





H0 : y(m) writes as in Eq.(3) without MS structure
or with MS structure for tones inIp associated
with P ′

MS = 1 + X l′ + Xp′

and (l′, p′) 6= (l, p)
H1 : y(m) writes as in Eq.(3) with MS structure for

tones inIp described byPMS = 1 + X l + Xp.
(8)

To decide the most likely hypothesis, we propose a detection
test constrained by the asymptotic false alarm probability
similar to what is suggested in [9]. The decision is made by
comparingĴ to a positive threshold such that

Ĵ
H1

>
<
H0

Λ,

with Λ defined as

FĴ|H0
(Λ) = 1 − Pfa. (9)

FĴ|H0
is the cumulative distribution of̂J whenH0 holds and

Pfa is the tolerated false alarm probability.
As implied in (8), H0 embodies two different sub-

hypotheses respectively namedHa
0 andHb

0. Ha
0 represents the

case wherey(m) does not have any MS structure that is to say
thaty(m) is any signal such thatYk(n), Y ∗

k−l(n) andYk−p(n)
are mutually independent andE [Yk(n)] = 0. As for Hb

0, it
corresponds to the case where the tones ofy(m) belonging
to the setIp follow a MS structure with generator polynomial
P ′

MS = 1 + X l′ + Xp′

(6= PMS) where l′ 6= l and/orp′ 6= p.
Thanks to the random, independent and centered nature of the
vast majority of digital modulated signals, we can make the
reasonable assumption thatH0 = Ha

0 ∪Hb
0.

In order to find a relevant thresholdΛ, we hereafter analyse
the asymptotic statistical behavior of̂J under both hypotheses
Ha

0 andHb
0.

1) Asymptotic probability density function of̂J underHa
0 :

As shown in Eq.(6),Ỹk(n) is expressed as a ratio of two
random variables. The variance estimator introduced in Eq.(7)
being consistent, it converges almost surely to a constant de-
notedvn so that, thanks to the asymptotic theory developped in
[15], Ỹk(n) converges in distribution toY (n)/

√
vn. Moreover,

Z(n) being a sum of i.i.d random variables whenHa
0 holds,

we deduce thatZ(n)|Ha
0 is asymptotically normal with

E [Z(n)|Ha
0 ] = 0,

Var [Z(n)|Ha
0 ] =

(
E

[
|Hk(n)|2

]
ρ(n) + σ2/N

)3

(M − p)v3
n

.

whereρ(n) is the signal power of subcarriern. If we consider
the multipath channel as static over the observation window
(impacts of channel variation are discussed in section V) then
vn = |H(n)|2 ρ(n) + σ2/N and Var[Z(n)|Ha

0 ] simplifies to

Var [Z(n)|Ha
0 ] =

1

M − p
.

Therefore, the asymptotic probability density function ofĴ
underHa

0 is given by

2(M − p)Ĵ ∼ χ2
2Np

,

whereχ2
d denotes a chi-square distribution withd degrees of

freedom.
2) Asymptotic probability density function of̂J underHb

0:
According to Eq. (1),

lim
M→+∞

1

M

M−1∑

k=0

w̆k(n)w̆k−l(n)w̆k−p(n) =
1

1 − 2p′

when Hb
0 holds. Following the same approach described in

Sec. III-C1, we then have

E
[
Z(n)|Hb

0

]
=

|H(n)|2H(n)ρ(n)
3

2

(1 − 2p′)v
3

2

n

,

Var
[
Z(n)|Hb

0

]
=

1

(M − p)2v3
n

M−p−1∑

i,j=0

[C]i,j .

[C]i,j are the elements of the covariance matrix defined as

C = E
[
(Υ − E{Υ})(Υ − E{Υ})H

]

where the superscriptH stands for transpose conjugate and

Υ = [Yk(n)Y ∗
k−l(n)Yk−p(n), Yk+1(n)Y ∗

k−l+1(n)Yk−p+1(n),

· · · , Yk+M−p(n)Y ∗
k+M−p−l(n)Yk+M−2p(n)].

By developing each product term of the covariance matrix and
assuming thatM ≤ 2p′ − 1, we get

[C]i,j =






(
|H(n)|2ρ(n) + σ2/N

)3 − |H(n)|6ρ(n)3

(1−2p′ )2
, i = j

σ2|H(n)|4ρ(n)2

N(1−2p′ )
− |H(n)|6ρ(n)32p′

(1−2p′ )2
, |i − j| = p

− |H(n)|6ρ(n)32p′

(1−2p′ )2
, otherwise.

In a realistic scenario, the probability density function of
Ĵ under Hb

0 cannot be easily estimated as it depends on
H(n), ρ(n), σ2 and p′ which are unknown by the receiver.
However, in practice MS degrees can be chosen large enough
(e.g., p = 11 in [2] and [4]) to consider the covariance
matrix C as diagonal. In that case,Z(n)|Hb

0 is asymptot-
ically normal and Var

[
Z(n)|Hb

0

]
is well approximated by

1/(M − p). Furthermore, if we assume thatM ≪ 2p′ − 1
then

∣∣E
[
Z(n)|Hb

0

]∣∣≪ Var
[
Z(n)|Hb

0

]
.

Therefore, we can consider that̂J follows the same cumu-
lative distribution under both hypothesesHa

0 andHb
0, that is

FĴ|H0
(x) =

γ (Np, (M − p)x)

(Np − 1)!

whereγ(a, x) is the incomplete gamma function.



IV. EFFECT OF SYNCHRONIZATION IMPAIRMENTS

Timing missynchronization (τ 6= 0) and/or frequency offset
(ε 6= 0) damage the observationsYk(n) as inter-symbol (ISI)
and inter-carrier (ICI) interferences occur [16]. In addition to
interference,ε modifies the phase ofYk(n)Y ∗

k−l(n)Yk−p(n)
and consequently makesE[Z(n)|H1] decrease (note that the
complex conjugation in Eq.(5) mitigates the phase variation
speed). Therefore, as illustrated in Figure 1, the identification
algorithm performance decreases dramatically in the case
whereε 6= 0 and/orτ 6= 0.
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Fig. 1. Effect ofε andτ on the correct detection probability (SNR = 0 dB,
M = 50, PMS = 1 + X9 + X11, Np = 8, Pfa = 0.01).

To overcome this issue,ǫ andτ can be estimated as

[ε̂, τ̂ ] = argmax
(ε,τ)

Ĵ . (10)

The direct use of the identification cost function̂J to estimate
(ε, τ) implies to change the detection thresholdΛ. In the
specific case where Eq. (10) is solved using a grid ofK points
and assuming that the different̂J on this grid are mutually
independent,Λ is given by

(
FĴ|H0

(Λ)
)K

= 1 − Pfa.

V. SIMULATIONS

In the following, all the results are averaged over1000
Monte Carlo runs. The system to be recognized is the Fixed
WiMAX described in [2]. WiMAX embeds MS structures of
polynomialPMS = 1+X9+X11. We recall thatN = 256 and
Np = 8. Unless otherwise stated,N/D = 32. The subcarriers
are equipowered. The asymptotic false alarm probabilityPfa

is fixed to 0.01. The Signal-to-Noise Ratio (SNR) is defined
as SNR(dB)= 10log10

(
Es/σ2

)
.

In Figure 2, we plot the correct detection probability versus
SNR in the context of AWGN channel. Different synchroniza-
tion assumptions and variousM are considered. We show that
the performance of the MS criterion is significantly improved
when the observation window increases. Moreover, we observe
the impact of the synchronization method based on Eq. (10).
We see that the loss due to missynchronization decreases

when M increases. For the simulation, uniformly distributed
randomε and τ were generated with−0.5 ≤ ε ≤ 0.5 and
−0.5(N +D) ≤ τ ≤ 0.5(N +D). ε andτ were estimated by
maximizing Ĵ over a grid with a step of4.10−3 over ε and
0.1(N + D) over τ .
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Fig. 2. Effect of SNR,M , ε andτ on the correct detection probability.

We hereafter consider a time-invariant discrete-time channel
{h(l)}l=0,··· ,L with L = D and an exponential decay profile
for its non-null component (i.e.,E[|h(l)|2] = Ge−l/β for
l = 0, · · · , L andG is chosen such that

∑L
l=0 E[|h(l)|2] = 1).

Notice that β approximately corresponds to the root mean
square (RMS) delay spread.

In Figure 3, we display the correct detection probability
versus SNR for various RMS delay spread. We observe
that the more frequency-selective the channel is, the better
the performance is. This is due to the fact that Var[|h(l)|2]
decreases as the RMS delay spread increases.
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Fig. 3. Effect ofβ on the correct detection probability (M = 50).

In Figure 4, we compare the correct detection probability
versus SNR between the proposed MS criterion and the
standard correlation based method forβ = 0.5D and the
various CP lengths handled by the WiMAX system.

To compare both methods, we consider that the correlation
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Fig. 4. Comparison between correlation based method and MS criterion
(M = 50, β = 0.5D).

based detection is correct when

N−δ/2 ≤ argmax
v∈[vmin,vmax]

∣∣∣∣∣∣

M ′−v−1∑

m=0

y(m)y∗(m + v)

∣∣∣∣∣∣
≤ N+δ/2

whereM ′ = M(N +D), vmin = 32 andvmax = 2048 which
corresponds to searching systems from32 to 2048 subcarriers,
and whereδ is the tolerated error on the subcarrier spacing.
We chooseδ to be conditioned by thePfa under the white
gaussian noise hypothesis such thatδ = (vmax − vmin)Pfa.
We observe that the proposed algorithm is not dependent on
the CP length and outperforms the correlation based method
as soon asN/D ≥ 8. Moreover, for a fair comparison, it is
important to remind that as long as the MSs are different, our
method can discriminate systems with the same intercarrier
spacing whereas the correlation algorithm cannot.

In Figure 5, we plot the correct detection probability versus
SNR when the frequency-selective channel becomes time-
variant. Various values of maximum Doppler frequenciesfd

have been inspected. We see that our algorithm is quite robust
to Doppler spread below 100Hz (at 3GHz, this corresponds
to a relative velocity of 36kph) whilst above this frequency,
performance degrades significantly.

VI. CONCLUSION

In this paper, we developed a new method based onm-
sequence properties to embed signatures in OFDM systems
without adding any overhead to standard pilot tones. We also
studied the MS identification cost function and showed that
this method exhibits excellent performance and is quite robust
to channel impairements. Moreover, simulation results indicate
that in addition to stronger discriminating properties, MS
identification outperforms classical correlation based method
in some relevant contexts.
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