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Abstract—In this paper we derive the information theoretic
capacity of the uplink of a cellular system with variable inter
site distance and a generalised fading environment. The capacity
is shown to be a direct function of the ratio of total received signal
power (from within and outside of a cell) to the AWGN noise
power, at any BS. This ratio is defined as the Rise over Thermal
(RoT). It is shown that the variation in system parameters like the
path loss exponent, number of users, transmit power constraint
and the inter site distance, changes the region of operation on a
capacity-versus-RoT curve. Results are interpreted for practical
channel models and it is shown that RoT provides a useful
framework to compare various practical systems.

I. INTRODUCTION

With increasing demand of spectrally efficient communica-
tion systems the search for capacity limits of uplink cellular
systems gained momentum. First concrete finding in this
regard was reported in Wyner’s seminal work [1], supporting
earlier observations of [2]. This was extended for fading
channels in [3]. These papers assume that all Base Station (BS)
receivers cooperate in the uplink channel to jointly process
the signals at a centralised receiver – termed as a hyper
receiver. These models provide the foundation for several
extensions but all the findings retain two original assumptions
of Wyner’s model i.e. the collocation of the users in each cell
and fixed Inter Site Distance (ISD) with the interference from
adjacent cells only. Furthermore, the model presented in [3]
assumed that the signals received at each base station from
various users, over the specular path, are synchronised. This
assumption is only reasonable for the collocated model. An
extended model and analysis is required if users are assumed to
be spatially distributed. A recent work [4] provides insights to
a system where the ISD is variable but the collocation of users
is still maintained and only a linear cellular system is studied
for mathematical tractability. The concept of hyper receiver is
adopted in other recent practical investigations (e.g. [5], [6]).

In this paper, a planar cellular system with variable ISD is
assumed along with a generalised fading model. We show that
the information theoretic capacity of the system is a function
of a metric, defined here as the Rise over Thermal, at each
receiving antenna of the system.

In the practical engineering design of cellular systems, the
main figure of merit that determines the capacity (maximum
reliable transmission rate with vanishingly small error rate) of
a User Terminal (UT), is the Signal to Interference and Noise

Ratio (SINR) at the BS receiver, given as

SINR =
PR

I + σ2
(1)

where PR is the received power at the BS of interest, σ2 is the
thermal AWGN at the receiving BS and I is the inter-cell and
intra-cell interference received from other UTs of the system.

However, we will show here that for the information-
theoretic analysis of a cellular systems that uses a hyper
receiver approach, the main figure of merit that determines
the per-cell capacity (at any BS) is:

RoT =
∑

i αiPT

σ2
, (2)

assuming that all UTs in the system transmit at their maximum
allowable power constraint, PT . The factor αi denotes the
relative attenuation experienced by the transmitted signal of
each UT until it reaches the receiver. The numerator term∑

i αiPT is the total received signal power (desired signal
power for the base station in consideration and also the
power of the signals intended for the other base stations in
the system). Splitting the numerator into desired, PR, and
(conventionally termed) undesired signal, I , we can express
RoT as:

RoT =
PR + I

σ2
, (3)

This shows that the information theoretic approach of using a
hyper receiver has the potential of converting the convention-
ally harmful interference into a factor that increases the figure
of merit by moving the interference term from the denominator
to the numerator – compare (1) and (3).

It shall be noted that the problem of finding the (per-cell)
capacity of a cellular system can be greatly simplified by
focusing on the single BS receiver and its RoT. Due to the
symmetry of the problem (ignoring the edge effects) all BS
receivers are identical and system capacity is simply the per-
cell capacity times the number of cells. The mathematical
formulation in the following sections of the paper, backs the
heuristic idea introduced here.

The rest of the paper is organised as follows. In Section II
the extended model is described. In Section III, the model is
used to derive the per-cell capacity of the system. In Section IV
the approach used to model the path loss in the system with a
specific user distribution is explained. In section V we discuss
the results and the paper is concluded in the last section.



II. SYSTEM MODEL

Assume a 2D hexagonal cellular array and a network of
cells where the BSs are uniformly distributed in a hexagonal
grid. All the antennas are considered to be omnidirectional.
A BS, located at the center of each cell, receives signals
from all the users in the system, attenuated according to the
power-law path loss and the multipath fading. We assume that
all the BSs cooperate to jointly decode the received signals
(“hyper-receiver” scheme). The users are spatially distributed
over the cells. Similar to Hanly’s circular array model (for a
linear system) [2], a wrap-around toric model is adopted for
the planar system. In such a model, every cell has the same
number of surrounding cells in order to avoid the edge effects.
Nevertheless, for large number of cells the edge effects do not
significantly affect the results [1].

A. Channel

Consider a network of N cells and K users in each cell.
According to our model, the received signal at the BS antenna
of cell n is the sum of the transmitted signals from the users
within the same cell and also from the rest of the cells in the
system, each appropriately scaled by the path gain and fading
coefficients. Hence, the received signal in a cell n is given by:

yn =
K∑

k=1

[
ςn
n,kgn

n,kxn,k

]
+

N∑
m=1
m �=n

K∑
k=1

[
ςn
m,kgn

m,kxm,k

]
+zn (4)

where yn and zn represent the received signal and the AWGN
noise at the receiver of cell n. The variable xm,k represents the
circularly symmetric complex Gaussian inputs for a transmitter
k in cell m and ςn

m,k, gn
m,k represent the path gain coefficients

and the fading coefficients between a transmitter k in cell m
and the receiver at the BS of cell n. All the complex fading
coefficients are normalized to unit power and when viewed
as complex random processes are circularly symmetric i.i.d.
Gaussian, stationary and ergodic. It is assumed that each user
has average power constraint Pu, i.e. E

[
xm,kx∗

m,k

]
≤ Pu.

B. Path Loss

A widely used model that maps the path gain (defined as
the ratio of the received over the transmitted power) and the
distance in a power-law path loss environment is expressed as:

ςn
m,k =

√
L0

(
D0

D̂

)η/2

(5)

where L0 is defined as the power received at a reference dis-
tance D0 when transmitted power is unity and η is the power-
law path loss exponent. The distance of the user terminal from
the antenna is D̂. If we define the distance from the reference
point to the user terminal as D

′
, it is clear that D̂ = D

′
+D0.

Making this substitution in (5) and considering a reference
distance of 1 meter, the power-law path gain from the user k
to the receiver of cell n is expressed as:

ςn
m,k =

√
L0(

1 + Dn
m,k

)η/2
(6)

with Dn
m,k ≈ D

′

D0
defined as the distance between a user k in

a cell m from the reference point in cell n.

C. Fading

Considering the uniformly distributed random received
phase Φn

m,k on the specular path between a transmitter k in
cell m and the BS of cell n, a generalised model for the fading
coefficients can be given by [7], [8], [9]:

gn
m,k =

√
κ

κ + 1
ejΦn

m,k +

√
1

κ + 1
CN (0, 1) (7)

where E[gg∗] = 1, κ is the ratio of the power in the specular
path and the non-specular multipaths and CN (0, 1) represents
a complex Gaussian random variable with independent real
and imaginary components each normally distributed with
mean zero and variance 1/2.

III. CAPACITY ANALYSIS

To facilitate capacity analysis, the output vector of all the
received signals in the system can be expressed in matrix
form. Consider the representation of the cellular system as a
rectangular array, as described by Wyner in [1], and the raster
scanning method that was used by Somekh and Shamai in [3]
to define the order of the system output vector elements. Thus,
the system output can be expressed as:

y = Hx + z (8)

where y = [y1, y2, ...yN ]T is the N × 1 received signal
column vector, x =

[
x1

T ,x2
T , ...xN

T
]T

is the NK × 1
column vector of the transmitted signals of all the users, with
xn = [xn,1, ..., xn,K ]T , denoting the concatenation of the
transmitted signals from the K users in cell n, z is the N × 1
column vector of noise and H is the overall N ×NK system
gain matrix given by:

H = Σ � G (9)

where Σ is a deterministic N × NK matrix that contains all
the path gain coefficients and G is the N × NK matrix of
all the fading coefficients of the channels. In H matrix, each
row corresponds to a specific receiver and each column to a
specific transmitter.

The maximum per-cell rate is achieved when all UTs are
allowed to transmit all the time at their maximum transmit
power constraint (wide band scheme presented in [3]), and in
this case the capacity is given by [10]:

C = lim
N→∞

E

[
1
N

log det
(

Λy

σ2

)]
(10)

where the expectation is taken over all the fading realizations
and Λy is the covariance matrix of the system output vector:

Λy = PuHH† + σ2IN×N (11)

Taking into consideration equation (9) and the fact that the
path gain and fading coefficients are uncorrelated with each
other we have

HH† = (Σ � G) · (ΣT � G†) =
(
ΣΣT

)� (GG†) (12)



E

[
gn

m,k

(
gń

ḿ,ḱ

)∗]
= E

[(
An

m,kejΦn
m,k +

(
αn

m,k + jβn
m,k

)) · (Ań
ḿ,ḱ

e−jΦń

ḿ,ḱ +
(
αń

ḿ,ḱ
− jβń

ḿ,ḱ

))]
=

E

[
An

m,kAń
ḿ,ḱ

ej
(
Φn

m,k−Φń

ḿ,ḱ

)
+ An

m,kBń
ḿ,ḱ

ej
(
Φn

m,k−Θń

ḿ,ḱ

)
+ Bn

m,kAń
ḿ,ḱ

ej
(
Θn

m,k−Φń

ḿ,ḱ

)
+ Bn

m,kBń
ḿ,ḱ

ej
(
Θn

m,k−Θń

ḿ,ḱ

)]
(13)

Considering a specific wrap-around toric model and that users
follow the same spatial distribution in every cell, Σ can be
considered as a block-circulant matrix, in terms of its row-
vector elements, each of length K. Moreover as the elements
of Σ are real, ΣΣT can be shown to be a real circulant matrix.

Unlike Σ, G matrix does not have symmetry because of
the randomness of the phase. Furthermore, each element of
GG† is the KN sum of random variables multiplied with the
conjugate transpose of other random variables which follow
the same distribution. When K → ∞ for every fixed N ,
the horizontal dimension of GG† grows much faster than
the vertical dimension. In this case the law of large numbers
applies to each element of GG†

(
GG†)

ij
∼= KNE

[
gn

m,k

(
gń

ḿ,ḱ

)∗]
,∀i, j ∈ {1, ..., N} (14)

and GG† converges to the deterministic matrix E
[
GG†].

There are two different types of product elements:
Product of a fading coefficient with the complex conjugate

of the same fading coefficient. Since all the complex fading
coefficients are assumed to be normalized to unit power:

E

[
gn

m,k

(
gn

m,k

)∗] = E

[∣∣gn
m,k

∣∣2] = 1 (15)

This product takes place at the diagonal entries of GG†.
Product of a fading coefficient with the complex conjugate

of a different fading coefficient. The off-diagonal entries of
GG† are the KN sum of the product elements given in
(13) where An

m,k,Bn
m,k are real values and Bn

m,kejΘn
m,k =(

αn
m,k + jβn

m,k

)
. Note that Φ and Θ are uniformly distributed

random variables over (0, 2π). In that case, (13) converges to:

E

[
gn

m,k

(
gń

ḿ,ḱ

)∗]
= 0 (16)

which implies that Λy converges to a diagonal matrix. Consid-
ering that the number of cells grows very large, Λy becomes a
large random matrix. We use Jensen’s inequality that provides
an upper bound for the capacity of the system:

lim
N→∞

1
N

log (det E [Λy]) � lim
N→∞

E

[
1
N

log detΛy

]
(17)

According to the above, if we assume that the number of UTs
per cell is growing large, the law of large numbers ensures
that the upper bound presented in (17) is tight [3]. Hence,

C = lim
N→∞

(
1
N

log (det E [Λy])
)

for K → ∞ (18)

IV. PATH LOSS APPROXIMATION APPROACH

In the following we formulate a path-loss approximation so
as to investigate in more detail the factors that compose matrix
ΣΣT and hence to evaluate their impact on the capacity.
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Fig. 1. Multiple tiers of interference and the geometry of the cellular system

A. Cell and System Geometry

Consider a regular hexagonal cell with side length of r0

and minimal radius of r = r0 cos
(

π
6

)
. We assume multiple

tiers of interference around each cell (Figure 1). The irregular
boundary of each tier can be represented by an equivalent
regular hexagon with the length of its side given by:

rl =

√
[(2l + 1) r]2 +

(r0

2

)2

(19)

where l stands for the lth tier of interference. The hexagonal
boundary of any tier can be approximated by an equivalent
circular boundary with its radius given by:

dl =
6
π

∫ π
6

0

rl

cos θ
cos
(π

6

)
dθ (20)

For evaluating the capacity under any user distribution with
large K, it is useful to group the users in each interference
tier and represent their squared path gain coefficients with an
appropriate mean value, ς2

l . This mean value is calculated by
focusing on a single cell and averaging the path loss of all
users in this cell, with reference to the receiver position. This
average can be expressed as a function of the distance between
the center of the cell in focus and the receiver. As the distance
of various cells in a given interference tier slightly vary from
one cell to the other, we can further estimate this distance
using the approximate distance d̄l, from the inner and outer
circular boundary of the lth tier of interference:

d̄l ≈ dl + dl−1

2
, with d̄0 = 0 (21)



B. User Distribution and Mean Squared Path Loss

The mean squared path loss for the user terminals in a cell
will depend on the proximity of the cell to the receiver of
interest and also on the user distribution over the cell. We
define the distance Dl,k of a user in a cell in the lth tier of
interference from the receiver of interest. It can be proved that:

Dl,k (θ, s) =
√(

s sin θ + d̄l

)2 + (s cos θ)2 (22)

where s and θ respectively define the radial and angular
location of a UT, with respect to the receiver of a BS. Three
different cases of user distribution are examined here.

Uniform Distribution: The UTs are uniformly distributed
over the planar system. The mean squared path gain for each
of the K users in a cell which belongs in the lth tier of
interference from the receiver of interest is given by:

ς2
l−uni =

1
πd0

2

∫ d0

0

∫ π

−π

1
(1 + Dl,k (θ, s))η sdθds (23)

Truncated Cell-Centre Uniform Distribution: Here, the UTs
are uniformly distributed around the centre of their cell and

ς2
l−centre =

1
πρ2

∫ ρ

0

∫ π

−π

1
(1 + Dl,k (θ, s))η sdθds (24)

where ρ (with 0 < ρ ≤ d0) is the truncation radius around
each BS in which the K users are distributed.

Truncated Cell-Edge Uniform Distribution: In this case, the
users are uniformly distributed on an annular segment close
to the edge of their cell. We have,

ς2
l−edge =

1
π(d2

0 − ρ́2)

∫ d0

ρ́

∫ π

−π

1
(1 + Dl,k (θ, s))η sdθds

(25)
where ρ́ (0 ≤ ρ́ < d0) is the radial distance from the center
of the cell to the boundary where the annular section starts.

Assuming a specific user distribution, a maximum of L tiers
of interference for every cell and considering that there are
always 6 · l cells in the lth tier of interference, from (18) we
have that the achievable per-cell capacity is

C = log

[
1 +

KPu

σ2

(
ς2
0 +

L∑
l=1

6 · l · ς2
l

)]
(26)

where ς2
0 denotes the mean squared path gain for the users

inside the cell of interest.

V. RESULTS

An important issue is to establish the relation of the various
system modelling parameters with real-world scenarios so
as to interpret the information theoretic results for these
systems. To model the propagation in real-world systems more
accurately we need to obtain a one-to-one correspondence
between the simplified path loss model and the existing
empirical models. As an example, we have selected two well-
known empirical models for micro-cellular (Wideband PCS
Microcell Model [11]) and macro-cellular (PCS extension
to Hata model by COST-231 [11]) systems. Based on the

limitations of the two models we use the following parameters
to approximate the path loss. We use fc = 1.9GHz, hre =
1.5m and L0 = −38dBW where fc is the carrier frequency,
hre is the effective height of the receive antennas and L0

is equal to the path loss in decibels at reference distance
D0 = 1m. We use the minimum allowed transmit antenna
height for the macrocellular (30m) and the maximum allowed
for the microcellular (13.3m) system models. We assume a
line-of-sight dual slope environment for microcellular and a
small/medium sized city environment for the macrocellular
system. It is widely accepted that the microcellular model
suggests a smaller value of η = 2 while the macrocellular
model suggests a larger value of η = 3.5. We find the empirical
value for the constant L0 (-38 dBW) that achieves a close-
fit between the simplified path loss model and the empirical
models over a large range of distances.

In Figures 2 and 3, all the results have been verified by
running Monte Carlo simulations to generate random fading
coefficients for various system snapshots. The simulation
capacity is obtained by finding the average over a large number
of fading and user distribution snapshots using:

Csim =
1
N

E

[
log2 det

(
I +

Pu

σ2
HH†

)]
(27)

where the AWGN noise spectral density is considered to be
-169 dBm/Hz and I is the identity matrix of appropriate size.
Both figures present the importance of RoT as a parameter
directly connected with capacity. The independent parameters
of a practical system that affect the per-cell capacity are the
user distribution over the cell, the cell size, the path loss
exponent, the user transmit power constraint and the number
of users per cell. Every change on these parameters changes
accordingly the RoT and thus the area of the capacity that the
system operates according to a general equation:

C = log2 (1 + RoT) (28)

Fig. 2 illustrates how the system capacity-range changes
depending on the Inter Site Distance (ISD = 2r). It can be
observed that as ISD decreases the system operates with higher
capacity. Moreover, it is shown that low path loss exponent,
larger number of users per cell and higher transmitted per user
Pu increase the per-cell capacity of the system.

Fig. 3 compares the capacity obtained by the three different
types of user distribution. A more detailed view of the effect of
Pu on capacity is also provided. Cell-centre user distribution
provides the highest capacity and this can be explained from
the fact that the users will always be close to at least one BS no
matter how large the size of the cells is. Furthermore, uniform
user distribution provides a higher capacity than the cell-edge,
but both are close to each other. For the above results, we
considered L = 5. Nevertheless, it was observed that for these
provided practical system parameters the number of tiers of
interference had a minimal effect on the capacity.

VI. CONCLUSION

Rise over Thermal has been presented as a unified parameter
that defines the capacity of the uplink of a cellular system
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Fig. 2. Capacity versus RoT and ISD for various number of users (K = 10, 20, 50), path loss exponents (η = 2.5, 3.5). User transmit power Pu = 100mW.
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Fig. 3. Per-Cell Capacity versus RoT and user transmit power constraint Pu for various types of user distributions (Uniform, CC with ρ → 0 and CE with
ρ́ → 0), path loss exponent η = 2.5, K = 20 users per cell and Inter Site Distance of 3km.

that uses full cooperation at the multiple BS receivers of
the system. Capacity increases with RoT at each BS. RoT
depends on four important parameters: the size of the cells, the
transmit power constraint, the large scale path loss exponent
and the number of transmitters in each cell. Maximum RoT
and hence high capacity region can be achieved for a given
number of users per cell if smaller cells are used with largest
possible power constraint for each user, in an environment
of smallest possible path loss exponent. Introducing larger
number of users in each cell will result in higher per-cell
sum rate capacity when a joint decoding system is considered.
Finally, with the not realistic concept of the hyper receiver
used in this paper, the consideration of network clustering
poses a very interesting question to be further analysed in
our future approach.
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