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Abstract—In this paper, a joint channel estimation and data
detection algorithm is proposed for OFDM systems under
doubly selective channels (DSCs). After representing the DSC
using Karhunen-Loeve basis expansion model (K-L BEM), the
proposed algorithm is developed based on the expectation-
maximization (EM) algorithm. Basically, it is an iterative algo-
rithm including two steps at each iteration. In the first step, the
unknown coefficients in K- BEM are first integrated out to
obtain a function which only depends on data, and meanwhile, a
maximum a posteriori (MAP) channel estimator is obtained. In
the second step, data are directly detected by a novel approach
based on the function obtained in the first step. Moreover, a
Bayesian Cramer-Rao Lower Bound (BCRB) which is valid for
any channel estimator is also derived to evaluate the performance
of the proposed channel estimator. The effectiveness of the
proposed algorithm is finally corroborated by simulation results.

I. INTRODUCTION

With high spectral efficiency and robustness against fre-
quency selective fading, orthogonal frequency division mul-
tiplexing (OFDM) has been widely recognized as an ef-
ficient transmission technique for wireless communications
and has been considered as a strong candidate for next
generation mobile systems. Generally, in mobile systems high
speed movement would cause Doppler spread and result in a
multi-path time-varying channel, i.e., doubly selective channel
(DSC). Due to the time variation of the channel, the number
of channel parameters in one OFDM symbol significantly
increases, which makes the channel estimation a challenge.
Meanwhile, this doubly-selectivity in channel will destroy
the orthogonality among subcarriers and induces intercarrier
interference (ICI) in OFDM systems, which also complicates
the data detection.

So far, channel estimation and data detection for OFDM
systems over DSCs are usually tackled separately. In the
literature [1]-[6], a number of pilot-aided channel estimation
methods have been proposed by adopting various kinds of
basis expansion models (BEMs). With the channel estimate, a
minimum mean square error (MMSE) data detection method
and an improved version with low-complexity have been
proposed in [5] [6] respectively. In recent years, joint channel
estimation and data detection methods have been developed
for single carrier systems in [7] [8]. It is shown that those
joint schemes can generally provide better performance than
the separate approaches, since the data are also exploited
for channel estimation. However, their extension to OFDM
systems is by no means straightforward.

In this paper, a joint channel estimation and data detection
algorithm is proposed for OFDM systems over DSCs. K-L

978-1-4244-5213-4/09/ $26.00 ©2009 |IEEE

BEM channel model is utilized here to achieve minimum
mean square modeling error and also reduce the complexity
of the proposed algorithm. Basically, the proposed algorithm
is an iterative EM algorithm including two steps (E-step
and M-step) at each iteration. In E-step, the unknown BEM
coefficients are integrated out to obtain a function which only
depends on data. Meanwhile, a MAP channel estimator is also
obtained. In M-step, the data are directly detected by a novel
approach based on the function obtained in E-step. In order
to evaluate the performance of the proposed algorithm, the
BCRB which is valid for any channel estimator is then derived.
Simulation results show that the proposed joint algorithm
converges after a few iterations and it performs much better
than those separate approaches in [4] [5]. Furthermore, the
proposed channel estimator would touch the BCRB at high
SNR and the performance of the proposed detector approaches
that of the ideal detector with perfect channel state information
after convergence.

Notation: Boldface uppercase and lowercase letters will be
used for matrices and vectors. Superscripts [ and 7' denotes
Hermitian and transpose respectively. The symbol Iy denotes
an N x N identity matrix, with e; denoting the {*" column of
Iy. diag{x} stands for the diagonal matrix with vector x on
its diagonal. The (m,n)*" entry of a matrix X is denoted by
[X]im,n- The symbol ® denotes the Kronecker product and ®
denotes the Hadamard product. E{-} denotes the expectation.
Tr{X} and |X| are the trace and the determination of a
square matrix X respectively. {-} and {-} are the real and
imaginary parts respectively.

II. SYSTEM MODEL

In an OFDM system, the source data x =
[(0),2(1),--- , (N — 1)]T in frequency domain is
modulated onto N parallel subcarriers to obtain the time
domain signal s = F¥x, where F is the FFT matrix with
Flmn = ﬁe‘j%m”/N. A cyclic prefix (CP) with length
longer than the delay spread of the channel, is inserted at
the beginning of each OFDM symbol to prevent intersymbol
interference (ISI). The signal is then transmitted through a
multi-path time-varying channel which has L independent taps
with the average power of the [*" tap denoted by o?. The auto-
correlation of the [ tap follows the classical Jakes’ model
[3] given by E{h;(mTs)hi(nTs)} = o2 Jo(2m fp(n — m)Ty),
where Jy(-) represents the zero-order Bessel function of the
first kind, fp represents the Doppler spread normalized by
the subcarrier spacing, and T is the sample interval. At the
receiver side, assuming perfect synchronization is achieved,
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after discarding the CP, the received signal can be written as
y=D(s)h+w (1)

where y = [y(0),y(1),---,y(N — 1)]T is the received
signal; D(s) = [diag{Es},...,diag{E,_1s}] with &, =
[el+17 6N, €1, 781]; and w = [w(0)7w(1)a o 7U}(N—
1)]7 is the additive white Gaussian noise vector with zero-
mean and covariance U?UI ~. The channel vector h is defined
as

h=[hg, -+ ,hi_,]" @)
with h; = [hy(0T%), -+, hy((N — 1)Ts)]T being the channel
coefficient of the [ tap during the whole OFDM symbol. For
notation simplicity, the sample interval T will be omitted in
h;. Since the channel taps are independent of each other, the
correlation matrix of h is given by

Ry=Rp®J 3)

with Ry, = diag{c?,--- ,0%_,} and [J]m., = Jo(27fp(n —

m)Ty).

III. PROPOSED EM-KL ALGORITHM
A. Channel model

Using basis expansion model (BEM) [1] [2] [3], the channel
can be expressed as

h= (I, ® W)h, “4)

where W is a fixed N x K matrix with K being a design pa-
rameter balancing a tradeoff between the model accuracy and
complexity, and hy, is the unknown BEM coefficient. In [1], the
columns of W are chosen to be a set of complex exponentials
with frequencies (—552, — 553+ 0,--  £22 KLy and
K being an odd number, resulting a so-called complex-
exponential BEM (CE-BEM). The CE-BEM attracts a lot of
attention due to the orthogonality among columns of W, how-
ever, it induces large modeling error when channel is varying
rapidly. An improved version, which makes the set of complex
exponentials more closely spaced in the frequency domain than
those in CE-BEM, is proposed in [2], named generalized CE-
BEM (GCE-BEM). Though GCE-BEM achieves higher model
accuracy than CE-BEM, the over-sampling in the frequency
domain destroys the orthogonality among columns of W.
Recently in [3], W is chosen to be the matrix which contains
the K principal eigenvectors of J, resulting in Karhunen-
Loeve BEM (K-L BEM). It is shown in [3] that K-L BEM
achieves minimum mean square channel modeling error. More
specifically, given eigen-decomposition of J = VAV where
A is a diagonal matrix composed of eigenvalues of J arranged
in decreasing order and V is a unitary matrix formed by the
corresponding eigenvectors, it follows that W = V. 1.k (i.e.,
the first K columns of V). With K-L BEM, the elements of
the BEM coefficient h;, are independent from each other and
since h is Gaussian, it is easy to prove that h; also follows
Gaussian distribution with probability density function (pdf)
given by

p(hy) = exp(—hy' Ry, 'hy) ©)

1
(m) X F R, |

where R;, = R; ® Ag with Ak denoting the K x K prin-
cipal submatrix of A. Substituting (4) into (1), the received
signal becomes

y =B(s)hy +w (6)

with B(s) = D(s)(I, ® W).
Remark 1: An equivalent model for y is given by

y=Hs+w @)
where
ho(0) 0 hr-1(0) o h1(0)
H= [M1) ho(1) 0 hr-1(1)
0 hri(N-1) ho(N — 1)
(8)

with h;(n) being the (I x N 4 n)t" element of (Ip ® W)hy,.
This expression will be used in the derivation of our proposed
algorithm.

B. Joint channel estimation and data detection

Because the noise is Gaussian distributed, based on (6), the
likelihood function for hy and s is given by

1 1
p(ylhs,s) = 2™ exp(—g\\y ~B(s)y[*). V)
The direct channel estimation and data detection require
exhaustive search over a very high-dimensional space, which
is prohibitively complex. In the following, based on EM
algorithm, we propose an iterative joint channel estimation
and data detection algorithm. For the derivation, the received
signal y is referred as incomplete data and we take (y,hy)
as the complete data. The EM algorithm alternates between
E-step and M-step until convergence, and these two steps at
the %" iteration follows [9]:

1) E-step: Compute Q(s|s'")=E{log(p(y|hy,s)p(hs))[y, 8 };
2) M-step: Solve §' = arg max Q(s|8'~1).

The expectation in E-step is with respect to the conditional
pdf p(hy|y,8'~1). The symbol 8! is the (i — 1)*" estimate
of data. The derivations of E-step and M-step are detailed as
follows.

E-step:
The expectation in E-step with respect to the conditional pdf
p(hy|y,8°~1) can be specified as

Q(s|s") :/10g(P(Y\hb7S)p(hb))p(hb|y,§i71)dhb- (10
Based on (5) and (9),

oglpty I, o)) =~ 5 (7"'y ~ 2Ry B}

+h B (s)B(s)hy) — h{’R, 'hy + ¢;

}Lb

with ¢; being a constant. On the other hand, using Bayes’
rules, the conditional pdf p(h,|y,8'~1) can be expressed as

ai—1
h ’Az’—l :p(Y|hb75 _ )p(hb). 12
p(hyly,s"™") PR (12)
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Putting (5) and (9) into (12) (with s in (9) replaced by §~1)
and after some manipulations, we have

p(hyly, 8 1)
1 CaNH 1 0
:Wem{—(hb—hb) gGi(hb_hb)}

02 G 1, 5 b 1
w1 expf{—— — ()Y G ————
(7TO'121})N|th‘ p{ 0_121} (y y ( b) b)}p(y|slfl)

o (13)
where
h, = G;'BY (5" )y (14)
with
G; =B7(sHB(E") + 0oL R;, (15)

Notice that ¢y is a constant independent of s and h;. Applying
(11) and (13) to (10), we have

Qs = [ (v — 2Ry "B}

+h{'B (s)B(s)hy) — b/ R My + 1] —

(m)EL|o2 Gy
N 1 Ny
x exp{—(hy — hg)HU—Gi(hb —h})}dh,

2
w

(16)
After integrating out h;, we obtain [9]
ai— c D
QeI ™) = — 2 vy — 2R{y " B(s)h}
5 (17)

+ Tr{B"(s)B(s)[02,G; " + hj(hj))"]})
— e Te{R; oo, G, + hy (b)) ]} + cacy

Notice that, lAl;) in (14) is the maximum a posteriori (MAP)
estimator for BEM coefficients at the i*" iteration. Accord-
ingly, the estimate of h at the ith iteration can be updated as
h' = (I, ® W)h!.

M-step:

In M-step, we maximize the Q(s|$°~!) in (17) with respect to
the data s. After dropping those terms and scalars independent
of s, the equivalent Q(s|s$~!) function is

Qs ™) = 2R{y " B(s)h} o
— Te{B (s)B(s)[02 G; " + hi(hi)"]}

(18)

Notice that B(s) depends on the data s in a nonlinear way,
direct maximization of (18) with respect to s is difficult. In the
following we derive an alternative expression for Q(s|§?~1)
from which a solution for s can be directly obtained.

Since G; is a Hermitian matrix, based on eigen-
decomposition, we have

KL
Gi_l = Z 6m,ium7iu1lq—lq)i (19)
m=1

where 3, ; is the mth eigenvalue and u,, ; is the correspond-
ing eigenvector of G;l. Putting (19) into (18), the function

Q(s|8*~1) is equivalent to

Q(s8"") = 2R{y" B(s)hj} — (h})"B" (s)B(s)h;

KL
(20)
=Y 0% Bmiup B (s)B(s) .
m=1
From the result of Remark 1, notice that
B(s)h} = H;s (21)

where H; has the same structure as H in (8) with 7;(n)
replaced by the (I x N + n)"" element of h'. Similarly, we
can write

B(s)uy,;

= U (22)

where U,,, ; also has the same structure as H in (8) with Ry (n)
replaced by the (Ix N+n)!" element of (I, @W )u,, ;. Putting
(21) and (22) back into (20), the function to be maximized
becomes

KL

Q(s[s'™") = 2R{y"His}—s" (H['H; + > 028U} U.i)s

m=1

A

(23)
which is a quadratic function of s. By setting the first derivative
of Q(s[8""!) in (23) to zero and with s = FHx, it follows
that

%' = FP;'Hy. (24)
After taking hard decision on %X, §’ is obtained by transform-
ing the hard decision outputs of %X’ to the time domain, i.e.,
8" = FH(demod(x?)), where demod(X?) denotes making
hard decision on %°.
In summary, the proposed algorithm iterates between the
following two equations:

hy = (B (s B ) + oy Ry, )T BI )y (29)

and

KL
§' = F(demod(F(H{'Hi+ Y _ 07,6,/ Uft ;Upni) ' HY'y),
m=1 ’

(26)
which is referred as the EM-KL algorithm. In each iteration,
the detected data in previous iteration is exploited to update
the channel estimate. If the data detection becomes more
accurate with the increase of iteration number, the channel
estimation can be refined gradually. Meanwhile, the improved
channel estimator could reduce the data detection error further
in the next iteration. Therefore, with the proposed algorithm
working in an iterative fashion, better performance could be
expected (also shown in the simulation results) than that of
those algorithms which solve these two problems separately
(4] [5].

Remark 2: In case pilots are embedded to initialize the
algorithm, we only need to estimate those data subcarriers.
In this case, the transmitted time domain signal is given by

s:FHx:fop—i—Fffxd 27
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where F,, collects those rows of F corresponding to pilot
subcarriers, F; collects those rows of F corresponding to
data subcarriers, x,, and x4 denote pilots and data respec-
tively. Putting (27) into (23), through some straightforward
manipulations, it is obtained that

Q(xdlxy~
_ (28)
By setting the first derivative of Q(x4|%’; ') to zero, it follows

X, = (FP,F)'Fy(Hy - P, Flx,).  (29)
Accordingly, §' is updated using (27) with x4 replaced by its
hard decision outputs demod(XY).

C. Initialization

A good initialization is essential to EM algorithm, and
therefore, the problem now becomes how to obtain the initial
estimates hO and 8°. Over slow fading channels, the channel

D = 2R{(y"H,—xF,P))Fxs} —xF,PFlix,.

Denote the 8 = [R{h}73{h}7]T, the Bayesian CRB (BCRB)
for channel estimator can be expressed as [11]

BCRB, = [Jg] ' =[dp+Jp]! (34)
where Jr is given by [11]
Jr = Eh{Eym{azlogip(};'h)}}
0006 (35)
2 [R{D"(s)D(s)} %{DH(S)D(S)}}
3{D"(s)D(s)} R{D"(s)D(s)}

with the second equality obtained easily as an extension of
the derivation in [12] and Jp is the prior information matrix

defined in [11] as
B 9%log p(h) ZR}:1 0
= Bl 06T }{ 0 2R;§1] 0

with the second equality due to (33). Accordingly,

Jp

es.tl.me.ltes obte.uned.m a glven syrpbol could be directly used to 2 R{DH (s)D(s)} + UiRﬁl ~3{D(s)D(s)}
initialize the iterative algorithm in the next symbol. However, Jg = — S{D" (s)D(s)} .
over DSCs, since the channel is varying rapidly, the channel Tiw >

estimates from the previous symbol might be outdated. To deal
with the fast varying channel, assuming the BEM coefficients
over each symbol obey a simple first-order auto-regressive
(AR) model, prediction of the BEM coefficients could be
carried out to initialize the channel estimates for the next
symbol [10]. However, in general, there is no guideline for
selecting the parameters of the AR model, which significantly
affects the performance of prediction. In this paper, we con-
sider another simple solution based on inserted scattered pilots
in each symbol. The initial estimate of hy is obtained as [4]

h) =R;, S (S, Ry, S + (WALWH) 0 (FYA.F,)
+onIn) "y
(30)
where S,=[diag{EoFx,}, ..., diag{Z; 1 Fx,}](I, ® W)

and Ag4 is a diagonal matrix Whose elements depend on the
average power of x,. After channel estimation, based on
MMSE criterion and following the derivation in [5], the data
estimator is then given by

)A(g = (FdI:I(I){I:I()FgI + UiA;l)_leI:I(I){(y — I:I()fop).
(€29)
Then §° is given by (27) with x, replaced by demod(xY).
The data estimator in (31) is a generalization of that proposed
in [5] with x, = 0. Notice that in the initialization, channel
estimation and data detection are actually tackled separately.

IV. BAYESTAN CRAMER-RAO LOWER BOUNDS

To provide a performance benchmark for the proposed EM-
KL algorithm, in this section we derive the Carmer-Rao lower
bound for the channel estimator by assuming that data on all
subcarriers are training, since the performance of the proposed
EM-KL algorithm is expected to approach the all pilot case.

Notice that

p(ylh) = (32)

oy (5 |y ~ D),

p(h) exp(—h”R; 'h). (33)

1
-~ (MNE[Ry|

After inverting Jy and combing together the real part and
imaginary part of h, we can finally obtain the bound as

BCRB), = 0, (D" (s)D(s) + o2 R, )™ (38)

The BCRB has been derived without using channel model and
therefore is applicable to evaluate performance of any channel
estimator.

V. SIMULATION RESULTS

We now present the simulation results to illustrate the
effectiveness of the proposed EM-KL algorithm for a practical
OFDM system. Each OFDM symbol has 128 subcarriers
(IN=128) and the length of CP is 8; carrier frequency is
fe=2GHz; the sample interval Ty = 2us; the speed of vehicle
is v = 105km/hour which results the normalized Doppler
spread to be fp = NT ”fc = (0.048 with c being the speed of
light. The channel has three taps (L = 3) with an exponential
power delay profile. Each tap is Rayleigh distributed and is
assumed to experience the same fp, and the time correlation of
each tap follows the Jakes” model. The parameter K is set to 4.
The pilot structure in [4] is adopted for the initialization. Four
pilot clusters are used with each cluster occupying three pilots,
where only one non-zero pilot is transmitted in the middle of
the cluster, which means roughly 90.6% of the subcarriers are
used for transmitting data symbols. The non-zero pilots are
chosen according to complex Gaussian distribution and the
data are chosen from QPSK constellation. The average power
of the non-zero pilots and the data is normalized to unity
without loss of generality. The MSE of channel estimation
at the ¢*" iteration is defined as

N—-1L-1

MSE, = Z Zth

n=0 [=0

(n)][*.

1000 Monte carlo trials are averaged to give each point in the
figures.

In Fig. 1, the MSE of channel estimation under different
signal-to-noise ratio (SNR) versus the number of iterations
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Fig. 1. MSE of channel estimation versus number of iterations
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Fig. 3. BER versus different SNR

is depicted. It can be seen that the channel estimation per-
formance improves significantly in the first iteration. Then
the decrease of MSE slows down, and finally the proposed
algorithm converges after about five iterations.

Fig. 2 shows MSE of channel estimation as a function of
SNR. The channel estimate for initialization [4] is labeled as
‘Iter=0". As we can see, due to the low density of pilots (only

twelve pilots inserted), the initial channel estimator performs
poorly. However, with more iterations, the MSE decreases.
In particular, for high SNR, the proposed algorithm can
touch the derived BCRB. For low SNR, though our estimator
cannot touch the bound, compared to the estimator used for
initialization, obvious improvement exists.

Fig. 3 shows the BER performance of the proposed algo-
rithm as a function of SNR. The data detector for initialization
in (31) and the ideal case which assumes perfect channel state
information are labeled as ‘Iter=0" and ‘ideal’ respectively. It is
clear that with even one iteration, the proposed data detector
performs much better than the separate approach (‘Iter=0).
Furthermore, after five iterations, the BER performance is very
close to the ideal case for the considered range of SNR.

VI. CONCLUSIONS

An EM-KL algorithm was derived to jointly estimate chan-
nel and detect data in OFDM systems over doubly selective
channels. KL-BEM was used to reduce the complexity of the
derived estimator. Moreover, a novel approach was proposed to
directly detect data. The BCRB of channel estimation was also
derived. The BCRB does not depends on the KL-BEM and is
valid for any channel estimator. Extensive simulations showed
that the proposed algorithm converged in a few iterations and
the MSE of channel estimation touches the BCRB at high
SNR. Further, the BER performance approaches the ideal case
after convergence.
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