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Abstract

In multiple-input multiple-output (MIMO) antenna wireless communication systems,

finite geometry low density parity check (FG-LDPC) channel codes can be used to

achieve a very high reliability. In general, in a MIMO-LDPC system, joint detection and

decoding is needed to guarantee the near-optimal performance and a practical approach

to achieving this is by iterative joint detection and decoding (IJDD). But, the joint

detection and decoding of FG-LDPC codes using the near-optimal belief propagation

(BP) algorithm is prohibitively complex in MIMO systems.

In this thesis, a novel low complexity IJDD algorithm based on a simple multiple bit

flipping (MBF) decoder is proposed for FG-LDPC coded MIMO systems where the

MIMO detector and the FG-LDPC decoder iteratively exchange soft information. An

important issue addressed here is the generation of soft-information from the binary

outputs of the MBF decoder to be fed back to the MIMO detector. In particular, two

methods are proposed to generate the soft feedback information from the decoder's bit

vector output. Simulation results show that the proposed IJDD algorithm achieves a

substantial reduction in decoding error probability compared to a cascaded detector and

a decoder. We also compare the performance with BP based detector-decoders which

are significantly more complex. The new algorithm provides a practical approach to

joint detection and decoding of popular FG-LDPC codes in a MIMO system.
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Chapter 1

Introduction

Today's high demand for high speed data communication over the wireless channels

has generated new requirements. Communicating high volumes of data through limited

capacity channels with minimum amount of errors, introduces the need of efficient source

coding for signal compression and channel coding for error correction. F\rrther the

wireless technologies like multiple-input multiple-output (MIMO) systems have been a

wide choice to improve the capacity and reliability of a channel.

In this introductory chapter, the basic elements in a digital communication system

are introduced. Further, digital wireless communication system fundamentals will be

followed by a brief discussion on MIMO channels and their advantages. The use of

channel coding to combat the channel's impairments in MIMO systems will be discussed.

Finally, the contributions of this thesis will be outlined.
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1.1

Receiver

Figure 1.1: A digital communication system

An Overview of the Digital Communication Sys-

tem

A general communication system consists of three main components. The transmitter

processes and converts the source information to a different format which is compatible

with the channel. The channel is a medium to convey this signal to the receiver which

ïecovers the original information. In any communication system, the modulator present

at the transmitter converts the baseband information signal to a form which can travel a

longer distances tolerating the channel impairments and the demodulator at the receiver

extracts the baseband signal from the received signal. However in a digital communi-

cation system (Fig. 1.1), where the system deaÌs with the signals which are discrete

both in time and amplitude, more processing can be carried out in order to have a more

efficient and reliable communication. This includes the source coding to eliminate the
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redundancy in information and to compress the signals and channel coding which adds

a controlled redundancy to the information, such that the original information can be

recovered in case of a loss. Even with all these, there can be a mismatch between the

recovered information at the receiver and the original information due to the following

two reasons. First, the source coded information may be lossy compressed. Secondly the

channel impairments may cause errors which are not completely eliminated by channel

coding. Therefore the difference between the original signal and the recovered signal is

â very important performance measure which in every digital communication system is

the highest priority to be kept at an acceptable level.

The channel in a communication system can consist of a variety of media, namely twisted

pair, coaxial cable, fiber optics or wireless communication with radio waves. In today's

communication industry, wireless communication has become the most interesting com-

munication area.

L.2 An Overvie\M of the -Wireless Channel

Radio v/aves are a kind of electro-magnetic ruaves which can carry energy over free space.

The information can be embedded in these signals to be transmitted over a distance.

However in a wireless channel, resources namely bandwidth and the transmit power are

finite and special care is needed in sharing these resources in a multi-user, multi-system

environment. Moreover it's of highest interest to efficiently use the bandwidth in wire-
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less communication. In achieving this goal, the source coding plays a major role.

F\-rrther the information communicated must be reliable at the receiver end, hence chan-

nel coding plays the role of detecting and correcting the errors caused in the channel.

It is worthwhile to explore the causes of errors in the wireless channel. Wireless chan-

nel may have multiple paths for a signal to travel between a single transmitter and a

single receiver. These multiple paths are created by 3 main phenomena in radio wave

propagation.

o reflection

o refraction

c scattering

The multiple paths may vary in traveling distance, hence arriving at the receiver at dif-

ferent times. The signals traveling longer than the shortest path are said to be arriving

with a delay. This delay causes multiple copies of the same signal to arrive at different

times causing the symbols to interfere with the adjacent symbols which is known as

inter-symbol interference (ISI). Whenever the channel is affected by ISI, the channel

is said to be a frequency selective fading channel and the coherence bandwidth, of the

channel is smaller than the bandwidth of the signal. Coherence bandwidth is defined

as the minimum frequency separation needed for two signals to undergo uncorrelated

fading.

On the other hand the multiple paths received at the same time can have different
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attenuations and phases, thus they can add up constructively or destructively at the

receiver, which causes fading. Fading is two fold, namely fast fading and slow fading.

Slow fading occurs whenever the coherence t'ime, the time over which the channel stays

constant is greater than the channel symbol time and fast fading otherwise.

Fading in communication systems can be stochastically modeled as a probability distri-

bution of the magnitude of the fading coefficient. Rician and Raleigh [1] are the two

most common models while some practical channels are more accurate to be modeled

as Nakagami fading channels [2]. Moreover there are some empirical models such as

Okumura-Hata model [2] which best fit some practical scenarios.

In wireless mobile communication, further impairments are added to the channel due to

the mobility of the user [2]. The relative movement of the user causes a Dopler shift in

frequency. With the multi-path signal, a range of frequencies are received at the receiver

corresponding to one transmitted frequency, thus if the bandwidth of the signal is less

than this frequency spread, frequency domain interference can occur.

Various measures are being taken to combat these adverse effects. Examples include

the deployment of equalizers to mitigate ISI and use of diversity schemes to cope up

with fading. Further, some multiple access schemes such as code division multiple

access (CDMA) and orthogonal frequency division multiplexing (OFDM) provide ISI

prevention themselves with their special properties. Apart from the fading effect, noise

is introduced at the receiver antennas. Noise is usually modeled as additive white Gaus-

sian noise (AWGN).



1.3 Introduction to MIMO Systems

Fading in wireless channels is a main

schemes have been deployed to combat

diversity. Diversity can be three fold,

1. Flequency diversity

2. Time diversity

3. Space diversity

CHAPTER 1. INTRODUCTION

cause of performance degradation, thus many

fading. One of the main such techniques is the

Ftequency diversity refers to a technique where multiple copies of the same information

are transmitted over different frequencies spaced more than the coherence bandwidth of

the channel. Hence in case of a fading of one frequency, there will not be a complete

loss of data.

Time diversity refers to a technique where multiple copies of the same information is

transmitted over different time slots. Hence even when fading affects some time slots, the

information has a higher probability to reach the destination. Channel coding is a very

good example for time diversity where the check bits carrying the duplicate information

are sent over different time slots. Channel coding provides a highly efficient method of

deploying time diversity. However the proper design of channel codes and the decoding

algorithms are required to ensure good performance.

However, both these diversity schemes add redundancy to the transmitted bit stream,

hence threaten the efficiency in resource usage. As a remedy a third scheme, spacial
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diversity has been proposed.

Spatial diversity is simply the use of multiple different paths to transmit the same

information assuming that the probability of simultaneous fading in all the paths is very

low. Spatial diversity can be easily achieved with MIMO antenna systems [3],[ ]. Use

of multiple antennas not only provide this reliability but also can be used to transmit

multiple data streams through different antennas at the same time. This technique,

known as spatial multiplexing, improves the system capacity. Further spatial diversity

and spatial multiplexing can both be simultaneously achieved by utilizing a space-time

block code (STBC) on top of the MIMO system [5]-[7] Widely used STB codes such as

the Alamouti code [8] and the Bell labs layered space-time (BLAST) code [9] provide

exceptional performance in practical MIMO systems.

L.4 MIMO Systems \Mith Channel Coding

As discussed in the previous section, multiple antennas add space diversity while chan-

nel codes provide time diversity. In most of the practical MIMO systems a space time

code is deployed as the inner code and a channel code is utilized as the outer code to

harness both these diversity advantages simultaneously [10]-[16].

Further, at the receiver, ideally the detection and decoding should be carried out jointly

to obtain this total diversity gain advantage or otherwise the performance degrada-

tion can occur due to the lack of information transfer between dis-joint detection and
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decoding processes. On the other hand such joint detection-decoding schemes are pro-

hibitively complex when deployed with some of the channel codes such as low density

parity check (LDPC) codes [17]-[21] due to their very large block length. However this

issue can be partially resolved with the introduction of iterative joint detection and

decoding (IJDD), where an information exchange between the two dis-joint sub systems

occur in the form of a feedback.

Moreover a sub class of LDPC codes, finite geometric low density parity check (FG-

LDPC) codes 122],1231provides ease of encoding and also high performance due to their

special structural properties. However the same properties add more complexity to de-

coding. Specially the belief propagation (BP) algorithm [17], which is the best perform-

ing algorithm for LDPC decoding becomes prohibitively complex. Therefore a simpler

IJDD algorithm is required in order to benefit from the iterative joint decoding while

gaining the advantages of FG-LDPC codes.

1.5 Contribution of the Thesis

In this thesis, a simplified IJDD algorithm is proposed as a solution to the above prob-

lem. The contribution of this thesis is basically two-fold. First a simulation is carried

out to verify the performance gain in existing best performing tripartite message pass-

ing IJDD algorithm 12\ in the FG-LDPC environment. Then, as a solution to the

high complexity problem, a simple algorithm is proposed whose complexity rises only
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linearly with the LDPC codeword length. In developing this algorithm, the complex

message passing decoder is replaced by a simple decoder with the intention of simplify-

ing the overall algorithm. The most important element of this thesis is the generation

of soft feedback information from the decoder's output bit (hard) vector. An additional

module is proposed to carryout this soft feedback information generation. Further, the

performance of the proposed algorithm is investigated together with the computational

complexity compared to the existing message passing algorithm.

1.6 Outline of the Thesrs

The rest of the thesis is organized as follows. Chapter 2 introduces the fundamentals

underlying the work in this thesis, namely the MIMO systems, LDPC codes, FG-LDPC

codes and their decoding algorithms. In Chapter 3, a discussion of the existing methods

for IJDD is presented. The BP based IJDD algorithms with simplified detector are first

discussed. Moreover in Chapter 3, tripartite message passing algorithm consisting of

an optimal detector and BP decoder, which is the existing algorithm with the highest

performance is discussed. This algorithm's performance is verified by numerical simu-

lations and compared with that of the disjoint detection-decoding scheme.

Any of the existing IJDD algorithms that will be discussed in Chapter 3 does not fit

in FG-LDPC in MIMO enviorenment due to their high complexity. To the author's

knowledge, IJDD with FG-LDPC has not been analysed in any of the previous work.
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Therefore in Chapter 4, a novel algorithm is proposed to combat this complexity issue.

Further, the algorithm's novel components, the log likelihood domain detector, and most

importantly the new feedback methods are discussed in detail. Moreover, a complexity

analysis of the novel algorithm and the existing BP based methods are carried out and

compared. In the final section of Chapter 4, a simulation is carried out for some FG-

LDPC codes to investigate the performance of the proposed algorithm.

Finally, Chapter 5 concludes the thesis with a discussion of possible future research

paths in this area.

10



Chapter 2

F.rrndamentals

In this chapter, the main components present in the MIMO system studied in this

thesis are discussed. Moreover, LDPC and FG-LDPC codes are discussed in detail. In

these discussions, although we generally concentrate on the MIMO system, the LDPC

decoding methods are presented in a single-input single-output (SISO) environment for

simplicity.

2.L MIMO System Model

The main components of the system considered in this thesis are shown in Fig. 2.1. Here

we consider a channel coded MIMO system with l/¿ and N," transmitter and receiver

antennas, respectively. We will be describing the transmitter, the MIMO channel and

the receiver in this section. We are specially interested in the receiver as the main focus

of this thesis is on the two functions of the receiver, the detection and decoding.

11
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Estimated {x}"

I

I

I Receiver
\______J

2.L.L

Figure 2.1: The MIMO system model

The Transmitter

The transmitter is responsible for the conversion of the information into a format which

will ensure that the data is transfered to the receiver side and can be decoded with the

minimal error probability. In this sense, both the channel coding and the modulation

play a major role. Apart from those, the MIMO system itself adds redundancy to the

information transfer so that the error probability is reduced. There are some forms of

MIMO applications [25] where multiple antennas can be used to increase the capacity,

but in this thesis we are only concerned with reducing the error probability.

At first, each consecutive block of n - rn information bits, x is encoded by a (n,n - m)

binary channel code to produce an n bit channel codeword, c. In this thesis lve use

binary FG-LDPC codes for this purpose, which will be described in detail in Section

2.3.

After encoding, the output of the channel encoder is modulated using a binary phase

shift keying (BPSK) modulator to provide a symbol stream s of length n. Consider-

72

Trensmitter
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ing the discrete time baseband equivalent of the wireless system (See Appendix A for

details), let the modulation constellation be {-1,*1}. Hence the modulator uniquely

maps the n bit channel codeword c € {0,1}' to a n dimensional modulated signal

vector s : (sr, ...,sn)T, where sj € {-1,+1}. After modulation, the symbol stream

needs to be distributed among the multiple transmission session s K : [fr'l , such that

" 
: (¡grtl¡' ,..., ls{rl¡r¡r. Note that in the system considered in this thesis, extra,\\ / ' '\ / /

n mod l/¿ padding bits are added to the KÚä transmission session in each block. In fact

one code block needs to be transmitted over K sessions of I/¿ symbols for each session.

Each symbol is transmitted by a separate antenna in the ly'¿ transmit antenna array.

With the use of MIMO antenna array, there is a possibility to use space-time codes such

as Alamouti codes or BLAST architecture to obtain an inner coding gain. However, vr'e

are interested in comparing disjoint (cascaded) and joint systems and the improvement

made by the use of the space-time code affects both systems in a similar way. Hence, in

this thesis we avoid the use of a space time code for simplicity and clarity.

2.L.2 The MIMO Channel

\Ã/e consider a MIMO channel with l/¿ transmit antennas and Af,(> l/t) receiver anten-

nas. The modulated signal vector is sub-divided and the sub-blocks are transmitted by

the transmitter antenna array as described in Section 2.7.7.

Practical channels are not perfect, in fact they consist of two main impairments. One

of these is the fading, a phenomenon which randomly reduces or amplifies the signal

13
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intensity at the receiver and fading can be represented by a channel gain coefficient

matrix. Although the channel gains in a MIMO system in general are correlated, for

simplicity we assume that the channel gains are uncorrelated in this thesis. Also, we

assume that the channel gains are constant over a single transmission and the channel

gains are completely known at the receiver.

As stated in Chapter 1, fading can be further described by the random distribution

of channel gain magnitudes for which the most common models are the Rayleigh and

Rician fading. Rayleigh fading occurs whenever there is no direct path between the

transmitter and the receiver. However when there is a direct path between the trans-

mitter and the receiver, the fading can be more accurately modeled as Rician fading.

In this work, we select our fading model to be Rayleigh fading, thus the channel matrix

corresponding to lhe lth use of the channe!, HØ consist of ¡/, x N¿ zelo mean i.i.d.

circularly symmetric complex Gaussian entries.

The other impairment is that the channel is affected by the Gaussian noise at the receiver

antennas which in general is correlated. However in this work, as usual we consider the

noise to be uncorrelated complex Gaussian with zero mean and variance ø2 per real

dimension. Let (I/, x 1) dimensional noise vector corresponding to the lth transmission

be denoted by fr(¿).

Now we are in a position to state the relationship between the received values at the

receiver antennas, ¡(l), and the transmitted values õ(¿) at thelth use of the channel. The

74
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received value at the lth use of the channel

15

is given by the ÄL x 1 dimensional vector,

¡(r):¡1(r)g(¿)+ñ(¿)

Thus the received value vector r corresponds to a single transmitted codeword to be

collected over K uses of the channel is r : (1rttl¡t,... , (rtnl¡r)?.

2.L.3 The Receiver

As discussed earlier, the received signal at the receiver antenna array is impaired by

fading and the channel noise, thus the objective of the receiver is to estimate the trans-

mitted information c, while minimizing the corresponding error probability. Due to the

fact that in the MIMO system discussed in this thesis, the channel code's output code-

word length is very much larger than the number of antennas, each MIMO transmission

delivers only a fraction of the entire codeword. As a result, an optimal receiver will have

to estimate the transmitted information based on several MIMO transmissions.

In general this estimation is based on the minimization of either the bit error probabil-

ity or the frame error probability. The estimate the receiver can make to minimize the

probability of bit error is to maximize the a-posteriori probabilities (APPs), hence,

j:Lr'.')n.
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To perform the above, in an ideal system, joint detection and decoding is used. How-

ever with the large block lengths in LDPC codes, it involves a prohibitively complex

marginalization process [28], which cannot be accommodated in the system studied in

this thesis.

Given that the implementation of the optimal joint detection and decoding is impossi

ble, one obvious option in practical receiver design is to implement the disjoint receivers.

The idea of disjoint detection and decoding, also known as cascaded detection-decoding

is to separate the two coupled operations by ignoring the presence of the other. Such

simplification is achieved at the cost of performance degradation in the receiver, because

each detection is only capable of detecting a small fraction of a codeword and the corre-

lation between these detected symbols (bits) and the rest of the codeword is neglected.

In other words, with this disjoint scheme, the detector does not utilize knowledge about

the code and the decoder does not use the knowledge of the channel. Hence, not all the

available structure in the codeword is taken advantage of. Therefore due to the separa-

tion of the two functions, although they are optimal individually, as a whole they do not

provide an optimal solution. In order to minimize this performance loss while retaining

the low complexity, IJDD is used in practical receiver design [26]. IJDD is an iterative

process derived directly from the concept of iterative decoding, also known as turbo

decoding [27]-[30], in which soft information is exchanged between the detector and the

channel decoder. Through exchanging of information with the channel decoder, the

detector can explore the correlation of data bits in a codeword and improve its decision
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based on the knowledge of the codeword inter-dependencies. In this thesis, we explore

the IJDD schemes used in the general MIMO-LDPC systems and propose an IJDD al-

gorithm to further reduce the complexity, thus it can be deployed in FG-LDPC coded

MIMO systems which are too complex to decode with the existing IJDD techniques.

2.2 Low Density Parity-Check Codes

LDPC codes is a class of linear block codes which has the capability to achieve high error

correcting performance, very close to Shannon's limit. LDPC codes were first discovered

by Gallager [i7] in 1960's, but unfortunately they were almost neglected for about forty

years due to the lack of feasible decoding technologies. However, in late 90's they were

again brought into prominence by Mackay and Neal [18]. Since then they have attracted

a very high research interest and are accepted as a leading competitor to the commonly

used high performing turbo codes.

A LDPC code is completely defined by its parity check matrix 11 and like any other

linear block code, any valid codeword c belongs to the null space of '11. In other words

c is a valid codeword iff the syndrome vector Z: cJlT :0.

A binary LDPC code is said to be a regulør LDPC code if the number of 1's along

a row is a constant over all the rows in 71 and the number of 1's along a column are

a constant over all columns of.71. Further an LDPC code is a sgstemati,c code if the

codeword's structure is either [I C] or [C I] where I and C are the information bit

L7
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vector and check bit vector of a codeword respectively. For the convenience, we only

consider regular systemati,c LDPC codes in this thesis.

The key difference between the LDPC codes and the regular parity check codes is the

sparse parity check matrix of LDPC codes. Similar to any other block code, LDPC

code performance is highly dependent on its block length. Larger block lengths in

the range of thousands of bits provide appealing performance than the shorter codes.

However, decoding of such large block length LDPC codes have only been possible

because of the sparse parity check matrix, which reduces the number of calculations in

decoding. Due to the above properties, LDPC codes have been nominated for a myriad of

communication standards and technologies such as Mobile WiMAX [3l](IEEE 802.16e-

2005) and lOGBase-T Ethernet [32](IEEE 802.3an.).

In early 80's a method of graphically representing the LDPC codes was introduced by

Tanner and this graph is well known as the Tanner graph [33]. This provides an insight

into a LDPC code and are very useful in code design and also decoding of LDPC codes.

2.2.L Tanner Graphs

Tanner discovered the representation of a LDPC code using a bipartite graph consisting

of bit (variable) nodes and check nodes at the edges of the graph. This structure can be

directly derived from the parity check matrix. In this case, the rn check nodes correspond

to the 7n rows of.'11 and n bit nodes correspond to the n columns of.ll. The nodes by

edges are connected such that whenever the (j, z) position in 7l is 1, the variable node
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Check
Nodes

81 B2 83 B4 85 86 87 B8 B9

Figure 2.2: A, Tanner graph representation

¿ is connected with check node j. In the Tanner graph, there exist connections only

between nodes of different types. For the regular LDPC codes, the number of bit nodes

connected to any of the check nodes is a constant and is equal to the row weight, u), of

11. Similarly the number of check nodes connected to each bit node is also a constant

and is equal to the column weight, tl". As an example consider the regular LDPC code

given b¡

T1-

1111000000

1000111000

0100100110

0010010101

0001001011

The corresponding Tanner graph is shown in Fig. 2.2. The length of the shortest cycle,

the number of edges it takes when starting from one node and returning to the same

node via the shortest path is a very important parameter which is known as the gi'rth of

19
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the Tanner graph. In this example, the girth is six. Having a girth as high as possible

is important in LDPC decoding to validate the independence assumption discussed in

Chapters 3 U 4 (See Appendix F for details). Therefore, the Tanner graph not only

provides a complete representation of the LDPC code, but also helps to decide the girth

and the structure of the code easily.

The performance highly depends on the generation methods of LDPC codes and the

decoding methods. There are a handful of methods in designing efficient LDPC codes

and extrinsic information transfer (EXIT) chart based LDPC code generation [34] and

geometry based LDPC code generation are two of the most commonly used. In this

thesis we are interested in the LDPC codes generated based on finite geometries which

will be discussed in Section 2.3.

2.2.2 Encoding of LDPC Codes

As in any other error correcting code, encoding process at the transmitter is to generate

a set of additional bits (parity check bits) p : (pt,pz,. . .,p-), based on the information

bits b : (br, bz, . . . ,bn-,n). This duplication of information provides a method to recover

the original information in case of transmission errors.

In a systematic LDPC code, the information bits and the parity check bits are ordered as

[b p] to form a transmitted codeword. In order to encode an incoming set of information

bits, the first step is to determine the generator matrix Ç of. size (" - *) x n such that

ç'11'r :0. This is usually achieved by reducingthe?l to the form [1 P] bV Gaussian
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elimination, where .I represents an identity matrix. Then I can be written as [P"

with // being an identity matrix to match the dimensions of P". The codeword can

generated by multiplying the incoming information bit set by Ç.

2.2.3 Decoding of LDPC Codes

LDPC decoding can be achieved by many methods and these decoding methods influence

the performance of the code. These methods range from moderate to very good in

performance and also from simple to very high in complexity. However, depending

on the application, the decoding algorithm needs to be selected to achieve a trade-off

between the complexity and the performance.

Belief propagation algorithm, which is also known as the sum-product algorithm, is an

iterative message passing schemes which provides the best performance, very close to

the Shannon's limit [i8]. However, this method involves a large number of probability

updates within each iteration, passed between bit and check nodes of a Tanner graph

and hence is the most complex. The complexity of this algorithm increases rapidly with

the block length. To cope with this issue many simplifications have been proposed. BP

algorithm and its variants fall into the category of soft-in soft-out algorithms for LDPC

decoding.

On the other hand, bit flipping (BF) is a very simple heuristic algorithm originally

proposed by Gallager [17], which is a hard -in hard-out algorithm. It too is an iterative

algorithm which has "hard-valued" inputs and outputs. However, the simplicity of this

27

I,)

be



CHAPTER 2. FUNDAMENTALS

decoding algorithm comes at a cost; a performance loss compared to the BP algorithm.

In order to have a tradeoff between performance and complexity, a third algorithm is

proposed [35], which is a hybrid of the two algorithms above and it makes use of the

soft and hard information at the input to provide a hard bit vector at the output. This

hybrid algorithm is further improved to have better performance without much added

complexity by the introduction of the concept of multiple bit flipping within a single

iteration.

Belief Propagation Algorithm

The BP algorithm iteratively calculates the probabilities of each node in a Tanner graph

and these values are exchanged between bit nodes and check nodes to update and obtain

a new set of probability values. This exchange of information can be viewed as a message

passing between the two types of nodes, hence the BP is also known as a message passing

algorithm.

Before presenting the BP algorithm for an isolated decoder, we need to define some

notation to be used. Let ,A,f¡ denote the set of bits which participate in the jth parily

check and {\e denote the set of all the elements of "Â/¡ excluding z. Similarly M¿ and

M¿\j represents the set of checks in which bit z participate and the set of checks in M¿

excluding check j. Further in an iteration, let the message passed from the check node

j to bit node i be p¡¿(c) and the message passed from bit node 'd to check node j be

44þ). Here c¿ € {0,1}. Moreover, let r be the received value vector in a SISO channel.
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Now we are in a position to present the probability domain BP algorithm.

Without the loss of generality we consider the message passing between bit node ¿ and

check node 7. Initially, assuming Gaussian noise channel,

1

ø,i¡(1):Po : Pr(q:1lr¿) : --2.i,
t i e-;T

at¿(0) : 7-qoi(7)'

where o2 and r¿ stand for the Gaussian noise variance and the i,th received value, respec-

tively.

At any iteration the message passed from the check node j to the bit node z is

(2.1)

(2.2)

p¡¿(I) :

p¡¿(0) :

i lt- 11 (r-zq,¡(r))1,
o I i/€^,|\i I
I - p¡¿(t).

Derivation of these two equations is based on the probability of having an odd number

of ones in other participating bits (in a parity check equation), given that the bit z is one

and the probability of having an even number of ones in other participating bits, given

that the bit z is zero 1771. This probability represents the probability of satisfying the

j¿h parity check equation, given that the bit z is either zero or one. It is an important

thing to note that the message from the i,th bit node is excluded in this calculation in

order to avoid the same information from looping back again.
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Then,

ø;¡(l) :

qu¡(o) :

Qu(L)

8n(o)

K¿¡Po lI p¡,¿(7),
j,eMi\i

Ko¡(L - Po) II p¡,¿(0).

¡,elØt\i

24

(2.3)

Here K¿¡ is the normalizing constant. These two equations represent the probability of

satisfying all the parity check equations where bit ¿ is involved, given that the bit z is

either zero or one [17]. Here too, the message from the jth check bit is excluded from

the calculation, in order to avoid the loop back of the same information.

Finally, in each and every iteration,

Kon L p¡u(r),
j€M¿

N¿(r- e) II p¡¿(o),
ieMi

(2.4)

are calculated with K¿ being a normalizing constant and

for every i,

| 1 qc(l) >o.b
C¿: \

I o otherwise,(

is used to generate the estimate ô for the transmitted

iteration, the syndrome bit vector Z: ôJiT is generated.

a null vectot, further refinements are needed and the q¿¡

the next iteration.

the rule,

bit vector. At the end of the

If the syndrome vector is not

values are taken as inputs for
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More detailed derivation of these probability calculation equations can be found in

[17] and also presented in Appendix B.

In a binary coding scheme, each of these probabilities passed can assume two values,

corresponding to the cases of the probability of the bit being either zero or one. This

involves a huge number of messages passed, but this number can be halved by work-

ing in the log-likelihood domain, where the two messages passed between two nodes

simultaneously are replaced by a single log-likelihood ratio (LLR) value.

LLR of a binary random variable z is defined as,

Dl^, 
- 

1\
LLR(u): lo8'ffi,

which carries the information corresponding to both messages.

It is obvious that the sign of the LLR value determines the decoded value of the bit while

the magnitude determines the reliability of this decision. Further, in the LLR domain,

the probability domain multiplication operation becomes an addition. The addition in

the probability domain must be represented in the LLR domain as a more complex

operation involving the hyperbolic tangent function [36]'

Let L(c¿): log ffi, L(più - log ffi, una Lku¡): tos *qE.
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Then, the initialization in (2.1) becomes,

The message passed from the check node j to the bit node ¿ can be presented as,

L(p¡¿) : -2tanh-' 
[,,#,r, 

ørn (-]r'rn'rl)] (2 6)

Derivation of this expression is given in detail in Appendix C.

Then, the message passed from the bit node ¿ to the check node j can be converted to

LLR domain as,

L(qn¡) : L(c¿) * 
r,àr, 

L(p¡,.), Q.7)

and

L(Qu) : L(q) + | L(n¡,;.).
jt€Júi

Finally, using the fact that the sign of the LLR completely define the hard bit deci-

sion,

+

+
I
(r

log'

2r¿
o'

L(qo¡) : r(q) : Ð
2.;\'

"-)

-l

-l
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t L L(et)>o
?. 

- 
f

t.

Although the number of messages aïe halved in the LLR domain, the computing of the

hyperbolic tangent and the inverse hyperbolic tangent adds a lot of complexity. But

this issue can be resolved with the use of a specific function as given in [36], which is

outside the scope of this thesis.

Bit Ftipping Algorithm

Gallager's bit flipping algorithm is one of the simplest and earliest proposed algorithms

for the decoding of LDPC codes. It too is an iterative decoding algorithm, but instead

of a systematic convergence as in the BP algorithm, it makes a guess of the transmitted

codeword at each iteration, by looking at the results of the parity check calculations' In

BF algorithm, decoder computes all the parity checks and determine the bits which are

involved in more than a predetermined number of unsuccessful parity check equations

and then flip those bits to generate an estimate for the transmitted codeword. The re-

sultant estimate is used to calculate a fresh set of parity check results, and if any of these

resultant checks are non-zero, \Me proceed to the next iteration for another set of flips.

Whenever all the parity checks are satisfied (i.e. whenever all parity check syndrome

bits are zero), the currently estimated codeword is accepted as the valid transmitted

codeword.
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Although it does not have a rapid convergence as in the BP algorithm, this algorithm's

convergence is also at a reasonable rate. Furthermore, with a smaller set of bits partic-

ipating in each parity check (i.e. with lower row weights), this decoding scheme tends

to provide better convergence. This can be easily explained by the fact that, with fairly

smaller row weights, most of the parity checks will contain one or no bits affected by

transmission errors. Hence, when most of the parity checks in which a given bit is

involved are unsuccessful, it's a clear indication that that bit is in error.

Hybrid BF Algorithm

FG-LDPC codes are a special class of LDPC codes which offer a low probability of de-

coding error, but also involves a high decoding complexity due to their special structure.

We will be discussing FG-LDPC in detail in the next section. In decoding FG-LDPC

codes, the use of BP algorithm is very complex due to the higher number of bits involved

in parity check equations, resulting in a large number of messages passed within one it-

eration. On the other hand, while BF is very simple, the benefit of using it in FG-LDPC

scenario is reduced by increased probability of decoding error. Moreover with high row

weight of the FG-LDPC parity check matrix, the rate of convergence is reduced.

To cope with these two problems, a hybrid algorithm between soft-in soft-out and hard-

in hard-out is proposed in [35], which provides very much high performance than the

Gallager BF algorithm, but at a very less complexity compared to the optimal BP

algorithm. This algorithm is further modified to provide even appealing performance
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without much increment in the complexity [37]. The modified hybrid algorithm, which

will be referred to as the multiple bit flipping (MBF) algorithm in the rest of the thesis,

can be presented as follows . Similar to the Gallager BF algorithm this algorithm starts

with the hard limited received vector and searches iteratively over the n dimensional

binary space for a valid codeword. Let, I¡: 
Iå1,ä lg¿l and u¡ : gfflanl ,

where A¿ : log ffi In other words l¡ and u¡ stand for the minimum and the maxi-

mum reliabilities corresponding to the set of bits which involves in the jth parity check.

Now we are in a position to describe the MBF algorithm. Let the syndrome vector

generated by the parity check at (k - 1)¿h iteration be Zk-r - ôfr-1Hr f 0. Then we

need to select a set of 2 bits to be flipped to generate the estimate or the new candidate

for the transmitted bit vector. It is observed that the number of nonzero syndrome bits

is proportional to the number of errors on average, hence there should be more bits

to be flipped whenever there are more erroïs. The number of bits to be flipped can

hence be decided by P : 
Éfl 

where *(Zr-')and tr" stands for the weight of the

syndrome vector at the k - 1 stage and the column weight of 11, respectively.

In order to select those 2 bits from the total of n bits, sub-metric value /f, is

calculated as (,
,k I la)-rb trz!-1 :s
9¿,i: \

I lu,l - (",* ?) ff z!-1 : 7,

for every check j : I,2,.. . ,m and' i' € AÍ¡. Thereafter, Óf,¡ is summed over all

the checks to generate the metric value Óf : Ð. Ó1,i, 'i : I,. . ' )rL. Finally, the
leJvLi
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minimum P number of /f values are selected (these are the most unreliable considering

the received values and the code structure) and the corresponding bits are flipped to

generate the new estimate bit vector. This procedure takes into account that the bits to

be flipped are decided not only depending on the reliability of the bit being considered,

but also on the reliabilities of the other bits involved in the same unsuccessful parity

checks. As an example, if a bit is occupied in an unsuccessful parity check and if all the

other bits in the same parity check have a high reliability, the bit being considered has

a higher probability of being in error. Hence will be selected with a high probability for

flipping.

2.3 Finite Geometry LDPC Codes

LDPC codes are observed to be a leading competitor to turbo codes and they are

widely used in a variety of applications. However, there are only a very few solid

analytic procedures to generate good LDPC codes (eg: EXIT chart based LDPC code

generation) [34],[38]. In fact, foundation work by Gallager only proposes a semi-random

method for generating LDPC codes. Therefore, most of the good LDPC codes are

computer generated and as a result they lack any structure. Consequently, encoding

is very hard. Therefore, lately a class of LDPC codes called finite geometry LDPC

codes have attracted much attention due to their special structure. Due to their either

cyclic or quasi cyclic nature, the encoding can be done in linear time with feedback shift
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registers, based on their generator polynomials. This ability of linear time encoding is

unique to FG-LDPC.

There are two families of finite geometric LDPC codes, namely euclidean and projective

geometric LDPC codes. Based on these two families, there are four classes of LDPC

codes. Construction of the FG-LDPC codes is totally based on lines and points of a

finite geometry. Let G be the finite geometry consisting of n points and -I lines which

has the following fundamental structural properties:

1. Every line consists of w, points.

2. Every point is intersected by u.'" lines.

3. Any two points are connected by one and only one line.

4. Two lines are either parallel (i.e. they have no point in common) or they intersect

at one and only one point.

As stated earlier, two families of finite geometries possess the above structural prop-

erties.

Further, for a given dimension and a given Galois feild [22], there is a finite geometry

which satisfies the above properties. Several parameters, those define that finite geome-

try are proven 122] to be functions of the dimension D and the feild parameter 7. These

parameters are listed in Appendix D. After determining these parameters, the lines and

points, hence the finite geometry, can be formed. A simple example is discussed in Ap-

pendix D. Moreover the corresponding FG-LDPC code's parity check matrix generation
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procedure is as follows.

Let us form a J x n matrix Hç over the binary field whose rows and columns

corresponds to the -I lines and z¿ points of the finite geometry G, respectively. Hence

the (j,'l)¿ä element of. H6 is "one" if and only if jth \ine contains the i,th point and

the matrix element is zero otherwise. This -Ë[c represents the parity check matrix of

the corresponding FG-LDPC code. Flom the structural properties described above, it

follows that every two columns have only one " 1" in common and also any two rows

have only one " 1" in common. Since w. and u).r are small compared to J and n,, it is

obvious that the resultant H6 is a sparse matrix and the null space of the same gives

a binary LDPC code of length n. However, all the rows in .I{ç generated by the finite

geometry are not linearly independent. Hence, the rank of the matrix, 7? is lesser than

the number of rows. Therefore, this in turn provides a (n, n - R) binary LDPC code

with parity check matrix f16. This FG-LDPC is known as a type-I FG-LDPC code.

The transpose of .[y'6 also satisfies the above finite geometric properties and hence the

null space of H$ too provides a FG-LDPC code, which is well known as a type-Il LDPC

code.

Another important property of the FG-LDPC codes is the minimum Tanner graph cycle

length (girth) being six. Using the above structural properties, it can be proven that

cycles with length four do not occur. (This proof is beyond the scope of this thesis).

This is very important in the decoding process, as it preserves the independence of bits

as much as possible, and improves the code's performance. Specially, the higher girth
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of the FG-LDPC codes are very important for BP decoding.

Apart from all these, a very interesting property of the FG-LDPC codes is their

ability to expand or compress a given FG-LDPC code to provide different FG-LDPC

codes. Specially, by expanding the code, the girth can be increased to dramatically

improve the performance of that code. However, the expanding methods are beyond the

scope of this thesis and will not be discussed.

,f,f



Chapter 3

Iterative Joint Detection and

I)ecoding of LDPC Coded MIMO

Systems

As discussed in Chapter 2, IJDD is a technique to achieve a tradeoff between the high

complexity and high performance of joint detection-decoding and the low complexity

and low performance of disjoint (cascaded) sub-optimal schemes. It allows the system

to approach near optimal performance, without much complexity.

The idea behind the IJDD is that the detector and the decoder are considered as

two serial individually optimal subsystems where the detector output becomes the input

for the decoder. Further the decoder output is fed back as an input to the detector, to

provide a new estimate in an iterative fashion (Fig. 3.1). By using the refined informa-
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Figure 3.1: Iterative joint detection and decoding

tion of decoded bit values as feedback, the detector can provide an improved estimate

compared to a standalone detector. However, when the number of antennas in the

MIMO system is large, the length of the bit vector to be transmitted and detected in

one use of the MIMO channel also becomes larger. Therefore, whenever an individually

optimal detector is used as usual, it involves a marginalization over a large number of

variables which is prohibitively complex [21]. This in turn increases the complexity of

the overall IJDD system. As a solution to this issue, a large number of sub-optimal

detectors are proposed, such as the list sphere detector (LSD) [39] and the minimum

mean square error equalizer with successive interference cancellation (MMSF-SIC) [14].

All these sub-optimal detectors further reduce the overall performance from that of the

individually optimal schemes. However, these allow us to keep the complexity of the

overall IJDD system at an acceptable level.

tÉ.
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3.1 Suboptimal Detectors in IJDD

In this section, we focus our attention on two widely used suboptimal detection schemes

used in BP decoding based IJDD schemes, namely the list sphere detection and minimum

mean square error equalization with successive interference cancellation.

3.1.1 List Sphere Detection (LSD)

In the optimal detector, the marginalization is carried out over the entire modulation

signal constellation space (all possible valid combinations of the //¿ bits transmitted in

a single use of the channel), 5"'. Thus, the key idea behind LSD is to select a sub-space

of this entire constellation space such that this sub-space contains the candidate bit

vectors with a high probability. Then, the marginalization is carried out only over this

subspace. Since LSD is directly derived from the sphere decoding algorithm (SDA), it

is worthwhile to discuss the concept of SDA first.

In the optimal maximum likelihood detector, the estimate for the symbol vector is given

by

â: ars#.1*, llt - H"llt, (3 1)

where r and H are the received vector and the channel gain matrix respectively. The

index for the transmission (use of the channel) is omitted here for simplicity. Equa-

tion (3.1) involves an exhaustive search over the total space, S&. However, given the

transmitted values, some of the candidates in this search space have very low probabil-
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ity of occurrence. Hence the search can be greatly simplified by confining to the high

probability candidate set. These candidates satisfy the condition

d'> llr - H"ll', (3.2)

ðt

where the sphere radius d is a parameter to

between the performance and the complexity.

the LSD algorithm discussed below. By "Q-R"

d'2>llA(Ë-t)ll',

to have a tradeoff

the foundation for

in (3.2)

(3.4)

be selected in

This idea of S

decomposition

order

DA is

ofH

"ll'
lt

il'
"ll

A

0

A

0

: llql'- a'll'+ llqi'll', (3.3)

where A is a //r x ¡/¿ upper triangular matrix and Q : [Qr Qr] i. a unitary matrix with

Q, and Q, matrices consisting of the first .l/¿ and last 
^t 

- ¡/¿ columns of Q respectively.

Then, by letting 5 : A-1QTr

d,>t_H,r, : 
ll,_,r,Q,l

aîllr-
arl



CHAPTER 3. IJDD OF LDPC CODED MIMO SYSTEMS 38

where a¿,¡ denotes the (2, j)-th element of A. Right hand side of this inequality Ís a sum

of different terms and with the addition of more terms, the inequality becomes tighter.

If every term on the right hand side is considered as a separate necessary condition,

starting from the first term , a set of inequalities can be derived as follows.

d') o'*,,*r(rr, - 5rr)', (3 6)

which implies,

where d,'2 : d2 - lleitll'. Thereafter, by expanding the matrices in (3.a)

d,}o,*,,*,("¡*,-5',),*a2¡¡,_7,N¿-7(,*,-,_5",_,*@("".
\ øN¿-1,N¿-1

[u*- d'l(s¡,,,=lu** d' 
l.

I aNt,Nt I L øN¿,N, J

[" d'*,_, I L d'*,-, 
I

lu*-t'* -;Í-*,-r,*,-rl = 
t*-t 

= Lu*-',* - ^ï;;l '
(3 8)

_ u*)), *
(3 5)

where 5¡¿,-rl¡r, : 5¡r,-r - *5# ("t, - 5¡¡,) and d'&,4: d'' - ('¡¡, - a¡¿,,¡¿,s¡¿,)' with

the knowledge of s¡¿,, (3.8) can be solved for a range of values of sry,-i.

Similarly, calculating in backward direction, all the constraints for the s¿, 'i:I,...,¡y'¿

values can be determined. Finally, the marginalization is carried out within the bound-

(3 7)

Now with the knowledge of the range of s¡¿, we can consider the second term in (3.5),

which yields
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aries defined by these constraints. It is obvious that, with proper selection of d, these

boundaries can be expanded or shrunken. Thus, d defines the marginalization space.

3.t.2 Minimum Mean Square Error Equalizer with Successive

Interference Cancellation

MMSE-SIC is also a widely deployed technique to achieve the detection function in

IJDD algorithms. The goal of the MMSE equalization is to minimize the mean square

error between the transmitted signal vector s and its estimate ê

minE ll" - sll' (3.e)

The estimate S, which minimizes the MSE can be easily obtained by passing the

received bit vector through an MMSE filter G¡a¡asø such that

3: Gmuspt. (3 10)

The coefficients of the MMSE filter are selected to minimize (3.9) and are given by [40]

(3. 1 1)

Here (.)H is the Hermitian operation and I¡¿. is an identity matrix of dimension ÄL.

However ISI present in the channel causes a performance degradation and a SIC is
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usually deployed before the equalizer to reduce the effect of ISL By using the a priori

information fed back from the channel decoder, SIC calculates a modified received vector

in which the interference from other bits at a given bit position are minimized. The a

priori information provides the estimate

i¿: Els¿] 'i :1,. . . , Nr, (3. i2)

and let

*¿ : fñt,. . .,ãi.- 7,0,ã¿+t,. . ., Í*rf', (3.13)

which carries all the interfering symbol information corresponding to the bit position z.

The "soft-interference-cancelled" version of the received vector can be defined as
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i¿: r - Hx¿. (3.14)

However, at the first iteration there will not be any a priori information available. Thus

in a binary system, all the starting a priori information is taken as 0.5. Now the modified

received vector i¿ is fed back to the equalizer to calculate the best estimate

^H3¿: wi-¡4¡4gqt¿, (3.15)

where the filter w{untsn is selected to minimize the mean square error between the
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transmitted signal s¿ and the filter output ,î¿.

It can be further proven that

w¿,MMsE: (tta,ott* + o2IN,)-t H"o, (3.16)

where A¿ is a diagonal matrix with A¿ : COV ("n - io) and e¿ is an all zero column vec-

tor with a "1" only at position z. Derivation of (3.16) is discussed in detail in Appendix

E. Further, the distribution of ,î¿ is well approximated by a Gaussian distribution and

can be expressed as

3i:uis,i+Tli) (3 17)

where u¿ : wf;,mmsnHeo and r¡¿ is Gaussian distributed with zero mean and variance

zl. Then it follows that

4T

(3.18)

The main difference between this method and the optimal methods is that, the bit-wise

soft information is calculated here considering only the ,î¡ instead of the whole received

vector. This is also the reason for the sub-optimality of this method. It is important to

note that the decoder of these suboptimal detector based IJDD implementations is still

the optimal BP decoder.

However, most of the practical situations considered in prior work in this area and

Í (;olso- õ) : 4.*o [- ll'î¿ - 
ucsll'?l

Ttzi I zí I



CHAPTER 3. IJDD OF LDPC CODED MIMO SYSTEMS

the work in this thesis deal with a fairly small antenna array due to cost effectiveness

and also due to the space constraints. The near optimal schemes, which uses IJDD

based on the individually optimal maximum a posteriori probability (MAP) detector,

can still be deployed with manageable complexity in small antenna array based MIMO

systems. Thus we do not come across the need for these suboptimal detectors. Further,

in this thesis our main focus is on FG-LDPC coded systems and the interest is in the

reduction of the complexity of the decoder. Hence a small antenna array with the

optimal MAP detector is considered. Therefore, the IJDD implementations with MAP

based individually optimal detectors are discussed in the next section.

3.2 Individually Optimal Detector Based IJDD Al-

gorithm

In this section, the main existing implementation of IJDD with individually optimal

detector is explored. However, it is worth to note that there are many improvements

and simplifications of the IJDD algorithm based on this approach, but for simplicity

only the main algorithm is presented in this thesis.

This IJDD algorithm is completely based on the BP decoder operating with the tripartite

message passing algorithm [24]. Before moving on to the algorithm it is worthwhile to

describe the tripartite representation of the joint system.
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3.2.L Three Level Tanner Graph

In chapter 2, we discussed the two level Tanner graph representing the check nodes and

the bit nodes and also the message passing between these two levels to carry-out the de-

coding in an iterative fashion. Three level Tanner graph is a simple extension of the two

level Tanner graph with the addition of the third level to represent the received value

nodes. Thus, in the tripartite Tanner graph, the structure of the top part consisting of

bit nodes and check nodes clearly follows the channel code (LDPC) structure, and it is

identical to the bipartite Tanner graph when the channel code representation is taken

alone. However, with the MIMO channel, the third set of nodes is added to represent the

received values. This third level consists of altogether KÄL nodes representing all the

values received by //, receiver antennas in K uses of the channel. The connections are

present between these bottom two levels' nodes to depict the information transfer paths

or the inter-relationships. Since the signal transmitted by an antenna (corresponding to

a particular bit) is received by all .ðy',. receiver antennas, any given bit node is connected

to //, corresponding received value nodes as shown in Fig. 3.2. Similarly every received

value contains the information of all the bits transmitted in the same use of the channel

and thus all the bit nodes corresponding to the same transmission are connected to all

the received values corresponding to the same use of the channel.

However, in passing messages between the bit nodes and the received value nodes along

the connections defined earlier, there will be short loops due to the structure of the

MIMO channel. This poses a threat to the independence assumption described in Ap-
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Received
Value
Nodes

Figure 3.2: Three level example Tanner graph with 2x2 MIMO array

pendix F, which seriously affect the performance of the IJDD algorithm. In order to

cope with this situation, short loops in the bottom half of the Tanner graph need to be

eliminated. This can be easily achieved by the lumping of the received value nodes so

that there exists only a single node at the received value node level corresponding to

each use of channel as shown in Fig. 3.3 [4i]. This results in a short-loop-free Tanner

graph, which can provide a very much low bit error rate (BER) in detection-decoding.

3.2.2 Tripartite Message Passing Algorithm

After presenting the tripartite Tanner graph representation of the LDPC coded MIMO

system, now we are in a position to describe the tripartite message passing algorithm

used in the IJDD based on BP decoder.

As usual, the messages passed in the top half of the Tanner graph (i.e. the messages

passed between the check nodes and the bit nodes) are identical to those in the two level
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Bit
Nodes

Received
Value
Nodes

(Lumped)

Figure 3.3: Three level Tanner graph with 2x2 MIMO array and lumped r nodes

Tanner graph except for the fact that the a priori probabilities contained in the bit node

to check node message is updated in each iteration. This update is carried out through

the utilization of the knowledge of the channel and hence the messages are passed from

bit nodes to received value nodes. Then a set of messages will be generated and passed

from received value nodes back to the bit node to update the a priori probability of the

bit.

Without loss of generality, let's consider the bit node 'd, check node j and the received

value node (r-node) k for the discussion of the passed messages. First, the message from

the check node j to bit node ¿ is the probability of satisfying j¿h parity check equation

with either one or zero at f,he i,th bit position. Using the same notation used in presenting

the BP algorithm in Chapter 1
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p¡o(O) : t-pi¿G).

The product of such messages at the bit node z provides the message from bit node z to

check node j, which in turn is the probability of satisfying all the parity check equations

given the bit e being either zero oÍ one, given by

ø;¡(t) : Ko¡Àno II p¡,r(L) (3'20)
¡'eM;\j

ø¡(0) : K¿iÀn¿ II p¡,0(0),
jteM;\j

where À¡¿ are the a priori probabilities discussed below. At the bottom half of the tripar-

tite Tanner graph, the update of a priori probabilities takes place using the information

passed from the bit nodes to the r-nodes given by

nnn(I) : K¿k Il P¡'o(I) (3'21)
jt€M;

z¿¿(o) - K¿k fl p¡,,'(o).
jt€Mi

Then the updated a priori conditional probability message À representing the probability

of the bit z being one or zero given the received value vector, can be represented as

Àno(co): t/ (rlco,.') lI n6(Ci,). (3.22)
ci ci,
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Here Ci is the set of all valid codeword combinations for the other bits, when the

bit position z is set to c¿. F\rrther, in these equations K¿¡ and Ku" are the normalizing

constants and the message from the ¿¿ä node is omitted in calculating the message for the

i¿å node, in order to avoid the error propagation. As usual, at the end of each iteration

the resultant soft values are hard decoded and parity checked for a null syndrome vector.

Finally, the key difference between the tripartite message passing in the MIMO channel

scenario and the bipartite message passing in the SISO scenario can be summarized as

follows. In the SISO case, each bit is connected to one r-node and therefore the update

of the probabilities in a given bit node does not change the probabilities of neighboring

bits. But in the case of MIMO systems, due to the fact that more than one bit is

connected to a given r-node the update of one bit's probability information does affect

the other bits connected to the same r-node. Thus, in each and every iteration, the a

priori probabilities should also be updated.

Many improvements have been added to the tripartite message passing method

to improve the performance by carrying out the IJDD in a non-binary Galois field

(GF(q), q> 2) [10]. These approaches benefit from the fact that in non-binary fields,

the short loops in the structure are eliminated.

3.3 Simulation Results
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1. Cascaded detector and decoder system

2. Iterative joint detector-decoder system

are carried out for three FG-LDPC codes of three different block lengths 63, 255, and

1023 with equal row and column weights 8, 16, and 32 respectively. Further, for this

simulation a 2 x 2 antenna array is considered. The channel coefficients are assumed to

be uncorrelated Rayleigh distributed and channel noise is assumed to be uncorrelated

complex additive white Gaussian. The results are presented in Fig. 3.4 - Fig. 3.6. It can

be seen that the tripartite message passing algorithm provides a low probability of error

compared to the cascaded schemes. It is worth to note that the three different 63x37,

255xI75 and 1023x781 FG-LDPC codes considered here have the code rates 0.58, 0.64

and 0.76, respectively. Since, with increased code rates the BER performance decreases,

high code rate codes need a higher SNR value for a given BER performance, than the

SNR value needed for a code with a lower code rate. Therefore, if different codes are

compared, it is very important to consider the codes with similar code rates.

However the IJDD based on tripartite message passing suffers from a serious problem

due to its large number of interconnections between the three levels, which causes the

number of messages to be passed within one iteration to be very large. Therefore this

algorithm is proven to be highly complex. Specially with the increased block length,

the complexity is prohibitively high. Similarly, the systems using FG-LDPC codes

which have a larger column weight and a larger row weight also introduces the same

complexity issue as it is required to pass a relatively huge number of messages in that
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SNR per receiver antenna (dB)

Figure 3.4: Comparison of BER performance of joint and cascaded detection-decoding
schemes for 63x37 FG-LDPC code with 2x2 MIMO antenna array
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8 9 10 11 12 13 14 15 16 17 18

SNR per receiver antenna (dB)

Figure 3.5: Comparison of BER performance of joint and cascaded detection-decoding
schemes for 255x775 FG-LDPC code with 2x2 MIMO antenna array
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10-6
1 1 12 13 14 15 '16 17 18 19 20

SNR per receiver antenna (dB)

Figure 3.6: Comparison of BER performance of joint and cascaded detection-decoding

schemes lor L023x781 FG-LDPC code with 2x2 MIMO antenna array
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case too. This is a result of their denser parity check matrix which results in a Tanner

graph with higher number of interconnections. In this thesis, we consider the iterative

joint detection and decoding of FG-LDPC coded MIMO systems. It is obvious that

the existing algorithm can not be practically used in this case due to its unmanageable

complexity. Therefore, a simpler algorithm replacing the BP based tripartite message

passing algorithm is proposed to achieve a tradeoff between the complexity and the

performance. The proposed algorithm not only provides a manageable simplicity in the

case of FG-LDPC codes, but can also be utilized in general LDPC cqded system to

further simplify the decoding process with only a small degradation in performance.
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Low Complexity IJDD of FG-LDPC

Coded MIMO Systems

Due to the special properties of FG-LDPC codes discussed in Chapter 2, they have

recently captured a high research interest. While providing the ease of encoding due

to their special cyclic and quasi-cyclic structures, FG-LDPC codes perform better than

regular LDPC codes due to their dense parity check matrix and the extended short loop

free structure. In practical MIMO systems, FG-LDPC codes can be utilized as the outer

or the channel code in order to harness this performance advantage and to simplify the

encoding. However this performance gain comes at a cost; it will increase the overall

complexity due to the increased number of calculations, when deployed along with BP

decoder based IJDD as discussed in Chapter 3. As a remedy for this situation, a simpli-

fied IJDD algorithm which retains the benefits of FG-LDPC codes, while reducing the
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complexity of detector-decoder system is proposed in this chapter. This novel algorithm

is based on the simple multiple bit flipping decoder and thus its overall complexity is

greatly reduced from that of the BP based IJDD systems. The proposed IJDD system

has a similar functional structure as BP based IJDD algorithm, but with the individ-

ually optimal detector and a MBF decoder. Further, the output of the decoder is fed

back to the detector input to be used in the next iteration. Meanwhile, at each and

every iteration the resultant decoder output is parity checked to identify whether the

estimated decoder output is a valid codeword or it needs to be further refined. However,

unlike in tripartite message passing algorithm discussed in Chapter 3, the output of the

MBF decoder deployed here is a binary (hard bit) vector while the required feedback

to the detector is a soft value. Therefore, there should be some mechanism to generate

the soft values from the hard bit vector output of the decoder. In this chapter, together

with the proposed IJDD algorithm, the two novel components, the log likelihood domain

detector and the feedback mechanism are developed.

4.L The Log Likelihood Domain Detector

The detector in this algorithm is capable of accepting the received values from the

channel and the fed back information from the decoder output to provide a soft output.

In order to further simplify the calculation by reducing the number of operations, the

algorithm is developed in log likelihood domain.
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First, the LLR value for the j-th bit computed by the soft-channel detector can be

defined as

t ,f (., ')s:s¡:{1t¡ si +1lr)
LLR¡(s¡lr) : losîffi : .-(

,"- 
(

t .f (., r)
s: si:- 1

t /(rls)P(s)
s:s¡:{l

(4 1)

t /(rls)P(s) | '

s:sj:- 1

where j : 1,. . . ,tu, and each sum involves all the possible codewords with s¡ : f 1.

Clearly, this involves a prohibitively complex marginalization process, which is compu-

tationally unmanageable for long LDPC codes. Further, the complexity of this marginal-

ization increases exponentially with increments in the block length. Therefore, an ap-

proximation is needed to cope with this situation. In the proposed algorithm, the

approximation comes from the fact that in IJDD, the detector operates on a received

sub-vector corresponding to asingle use of the channel at a time. Note that s¡ (i.e., the

j-th element of s) is the z-th element of õ(¿), where

i - ((j - 1) mod //¿) + 1,

and

| : (j div ¡/,) + 1,

. -(¿\Le., s;' - s¡.
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Now to simplify (4.1), we assume that , and hence

LLR¡(s¡lr) - los

where the sums now only involves 2&-1 terms. \.Vith a small number of antennas, this

marginalization is computationally manageable. It is worthwhile to note that with the

above simplification, the correlation of the bits in the rest of the codewords is neglected

within a single detection operation, causing a performance degradation. However as in

any other IJDD algorithm, a partial compensation for this loss is obtained by feedback.

As usually done with belief-propagation decoding [17], assume that õ¿ has indepen-

dent elements (this independent assumption is further discussed in Appendix F). It then

follows that

(4.2)

Plc. - 11\
LLR¡(s¡lr) - los äffi * L.(s¡lr), (4.3)

where,
(Ð /(r{¿)¡s{')¡
I

L.(s¡lr): log | **tt-v\J / "l t /(ñ(¿)ls(¿))

\ s{rr:s{¿):-1

/(r{¿)¡s{')¡ lI p(õj,)) \t:tfi 
_ IMl

t:tfi' )

(4.4)

Now, in order to develop an iterative detector-decoder algorithm, (4.3) can be written

in the iterative form

trÈ+l(s¡lr) : Lk(s¡) + L!(slr), (4 5)

where Lk+L(s¡lr): LLR:'(s¡lr) is the LLR value passed to the decoder by the soft-
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detector in the k-th iteration, trÀ(sy) : log ("<FB) is the intrinsi,c 'informati,on of

j-th bit in c, and L!(s¡lr) plays the role of ertrinsic i,nformati,on, determined by the

code structure and MIMO channel. As in any other iterative algorithm, the intrinsic

information is excluded to avoid the error propagation.

As described in Chapt er 2, al/¿ x l/, MIMO channel with uncorrelated Rayleigh fad-

ing and ¿?d AWGN is considered and the channel realization is assumed to be completely

known to the decoder. Therefore, for the l¿å use of the channel we have

llrt¿l

Using (a. ) and (4.5), an expression for extrinsic information can be obtained. How-

ever, this equation contains probabilities and further simplification is required before

its utilization in the LLR domain IJDD algorithm. It can be shown that the LLR and

binary bit probabilities are related as follows

/(r{¿)¡s{r)¡ : 
ãzno)2N..*o 

(

P(s: *1) : -!:-: ,,3,# ,'\" '-/ I+eL(")- 
"-"{")+e9,

tt(¿)S(¿) llz

2o2

P(s : -1) :
1_:

I+eL(")- 
"-LuG) 

+e9'

- L(")
e2
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Then (4.4) can be represented as
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(4.6)

t "*p(-
3(r);g(¿):a1 \

+ t s1'r¿f FÍ')l)
t,tt'i /

llr{tl - g(r)"(t)¡¡z

2o2

.t!(s¡lr) :1eg

,,,,,ä-, 
*' (- øl-#er * 

Fo,=1"'i 
çÍ") 

)

where fr¡GÍ\, the feedback information from the output of the decoder, is defined in

the next section.

4.2 The Feedback

The feedback in (4.6), ¿ï(Si')), plays a major role in the proposed algorithm. Further,

as discussed earlier, hard bits-to-soft information conversion is needed for feedback. As

our main goal is to retain the simplicity of BF-decoding, we propose two simple heuristic

methods of feedback conversion whose complexity is only linear in LDPC code block

Iength.

4.2.t Inverted LLR Soft Information (I-LSI)

In BF, a bit is inverted if its LLR value is deemed close to zero (hence unreliable) and

also if it participates in parity check equations where the other bits are more reliable.

Hence, if the decoder output in a given iteration is assumed correct, then the new

information available at the decoder output can be fed back to the detector by inverting
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the sign of the LLR values of the flipped bits. Based on this idea, feedback LlR-values

are generated as

| -Lk(s¡lr) if s¡ is flippedLj*'þ): 1 \

IIÈ(s¡lr) otherwise.

(4.7)

Through this hard-to-soft conversion, the information at the output of the decoder is

clearly conveyed to the soft feedback to the detector. Thus with this conveyed knowledge

of the correlation of bits, the resultant algorithm is expected to perform better than the

cascaded detector and decoder.

4.2.2 Modified Inverted LLR Soft Information (MI-LSI)

However, a weakness of the above approach is that, while it correctly feeds the new

information at the decoder output back to the detector in the form of a sign change,

one still assumes that the magnitudes of the LLR values of the flipped bits remain

unchanged. Note that, as the BF algorithm is a search algorithm, it typically flips some

bits erroneously, which will eventually be corrected at a later iteration. Although, this

usually works for a hard bit vector, the incorrect sign changes in the soft information

leads to error accumulation in the feedback loop if the magnitudes of the LLRs are

retained while the signs are inverted. Therefore, we need to ensure that when a bit is

erroneously flipped, this decision is not "hard-encoded" into the LLR magnitude fed

back to the detector. In order to accomplish this, the rule in (a.7) can be improved as
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follows.

Lj*'(tt) : -\¡Lk(sllr) if s¡ is flipped

60

(4 8)

where À¡ > 0 is a value selected to depict the reliability of the bit inversion decision as

below.

For the computation of À¡, three possibilities are considered.

M-ILSI-1

À¡ corresponding to multiple bits flipped within a single iteration are chosen from

the interval [0,1], uniformly spaced such that the bits flipped with high certainty

are given a higher À value while the bits flipped with low certainty are given low

À values. This step makes sure that the high reliable flipping are provided with

only a sign change while the low reliable flipping are given a higher chance to be

reconsidered by decreasing the magnitude. Decision of the reliability is taken by

the metric valre þ!, calculated in the MBF iteration step.

M-ILSI-2

However in the above update rule, equispaced selection of À3 does not take into

account the relative values of the reliability metric values. As an example, when

one metric value is far less than the others, it is a clear indication that the flipped

result is highly reliable. But the above assignment of equi-spaced À fails to capture

such relatively high reliabilities

On the other hand if a flipped bit value is proven to be highly reliable by its

i.

2.
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low metric value, it is reasonable to increase its reliability in the fed back LLR

magnitude rather than retaining the same magnitude. These effects can be easily

achieved by the use of following rule for the À3 selection.

\ - ør-ø!
^i-Tfeo@t"-41¡'

with /f , j : !,. . . ,P being the reliability values of those bits flipped by the BF-

decoder in the iteration k and õr :^u*¡{Ó!}' rne difference metric value in the

numerator effectively maps the ó! e (-æ,oo) to a set in [0, *), and the division

by the average effectively scales this set of values. Therefore the low metric values

(i.e. the values corresponding to the high reliable flipped bits) are now mapped to

À, > 1 and high metric values (corresponding to the low reliable flipped bits) are

now mapped to À¡ < 1. This mapping ensures that high reliable flippings are given

a boost by increasing the magnitude of the LLR while reducing the magnitude for

low reliable flippings so that they have a high chance to be rechecked. Further the

relative reliabilities are taken care of.

It is expected the first À¡ selection to yield a noticeable improvement from the sign

inversion method and the second selection method to provide a further improve-

ment.

3. M-ILSI-?

Stochastic perturbation is widely used in optimization la2]. Whenever a function,
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whose roots to be determined are affected by random noise, a random iterative

search for roots is proven to be a better approach over a deterministic iterative

search. In every iteration, the random search method randomly selects a search di-

rection and search interval, opposed to deterministic searches such as the Newton-

Rapson method. Localized random search algorithm ín la2l is such an improved

random search method and is presented in Appendix G.

In the context of MBF based IJDD algorithm, the decoding is a localized search

algorithm which finds a ô to satisfy Z: èl1r : 0, which is a root finding process.

Further, flippings can be viewed as addition of another bit vector to the current

candidate, ô. Thus, if the feedback is selected randomly, then a random vector can

be added to the current candidate to generate the new candidate exactly the same

way as in the modified localized random search algorithm presented in Appendix

G. In other words, the localized random search algorithm in la2l can be easily

modified and adopted to fit the proposed IJDD algorithm to find the local root of

Z:0, by a controlled random selection of feedback values.

This can be implemented with selecting the À¡ from a random distribution. The

choice of the probability distribution is important and we consider two possibilities,

(u) À, uniformly distributed in [0,1] so that

between [0, l-LÆ(s¡ lr) l],

is randomly distributedl¿?*'("r)l

(b) À, exponentially distributed such thai P(0 < Àj < 1) - 1.
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The two extremes cases of this approach correspond to fixed-detection (À, : 0)

and the update rule (4.7) [Ài : 1].

The use of magnitudes which are exponentially distributed ensures that the flipped

LLRs are more likely to be assigned smaller reliability values. This can be expected

to yield improved results compared to uniformly distributed values, as it better

reflects our increased uncertainty about the flipped bits.

4.3 The Proposed IJDD Algorithm

Now the overall IJDD algorithm based on MBF decoder can be presented as follows.

1. Initially ¿Í(Si')) are assumed to be zero (equal a priori probabilities).

2. The f!þ¡lr) values for j : 1,. . . , n are calculated using (4.5) and (4.6) in the

detector.

3. The resultant L¡(s¡lr) are passed on to the MBF decoder as the reliabilities of the

channel outputs and the decoder outputs a set of hard decoded outputs (bits) ôÀ.

4. Decoder output, the estimated bit vector ôÈ is used to calculate the syndrome

vector 7k : (ê)k11" which if it is a null vector, the estimate is accepted as the

transmitted codeword and the algorithm is stopped. If. Zk is not a null vector,

then it proceeds to the next iteration.

b. In the case of non zero Zk, the Sk values are converted to a set of soft LLR values,
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Estimated {x}n*

Estimated{s}"

Figure 4.1: The receiver operating with MBF based IJDD

Lj*'GÍ¿)), which reflects the bit value information in Sfr and they are fed back as

inputs to the detector calculation in step 2.

{r}"

4.4 Computational Complexity

The main goal of the proposed algorithm is to simplify the overall IJDD with the sim-

plified decoder so that it is computationally manageable in a FG-LDPC enviorenment.

Therefore, it is worthwhile to analyse the computational complexity of the proposed

detection-decoding algorithm and compare it to the complexity of two other algorithms

with BP decoding listed below.

1. cascaded BP receiver, where the detection and decoding are performed in a disjoint

fashion with a BP based decoder.

2. IJDD receiver with BP decoder.
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In this analysis we assume the complexity of additions, inversions and comparisons

are almost the same, which will be generally referred to as additions. Also the complexity

of multiplications and divisions are the same, which will be referred to as multiplications.

With the row and column weights of 1l being w, and.ur" respectively, first the detector

can be analyzed as follows.

In (a.6) there are [(2¡l¿ + 4N, I 4NrN,)2N'-t + 4] x n total number of calculations at

the detector within a single iteration. However in the comparison with the BP based

algorithms, it is sufficient to compare only the decoder and feedback, since the same log

likelihood domain detector can be used in both.

Therefore we focus on the MBF decoder discussed in Chapter 2 and feedback, in this

comparison. Let the number of bits selected to be flipped in a given iteration of the

MBF decoder be P. Within this iteration there will be ÐT:Ì-p'i : Pn - Ç(n + l,¡

comparisons to select theP least reliable positions. Then we need to update a maximum

of u.r" syndrome bits per selected position, in which the selected position participate. If

bit by bit updating is selected, this will require w. x P additions. At the next step the

reliability metric parameter /, should be updated tl, times for each of the above updated

w. x P syndrome bits. Therefore, all together there will be Pn - Te + 7) + Pw.w,

additions in the MBF decoder.

For the I-LSI feedback we need the sign inversion for P positions, hence 2 additions and

for M-ILSI-I or M-ILSI-2 feedback we require 2P - 3 additions and 2P multiplications.

Further for M-ILSI-3 feedback we require P multiplications. These clearly show a linear
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behavior with n. Further, wtTh P value decreasing and tending to reach one after some

number of iterations, average number of calculations per iteration is very much lesser.

On the other hand, in BP algorithm there are n(3w.* 1) additions and 12nw.-5n-6m

multiplications per iteration [35]. Moreover, there is no feedback in the disjoint BP

based algorithm and no feedback conversion in the BP based IJDD algorithm.

Thus, it is obvious that the number of calculations in the BP based algorithm in general

are very much higher. Further it's very important to note that multiplications are more

expensive in implementing than the additions. In the BP based algorithms, the number

of multiplications are huge compared to the proposed algorithm. Therefore the proposed

algorithm is computationally very efficient.

4.5 Simulation Results

In order to investigate the performance and the complexity of the novel algorithm, it is

simulated together with the joint tripartite message passing algorithm and the disjoint

BP algorithm for the MIMO-LDPC system introduced in Section 1.3. Simulation results

show that the average number of flippings f.or 255x775 FG-LDPC code at SNR:18 dB

(Mid value of the range) is observed to be 6 approximately. Then the average number of

calculations needed in the decoder and the feedback within an iteration for the 255x775

FG-LDPC coded system can be summarized as in Table. 4.1.

Similarly, the average number of flippings for the 1023x781 code at SNR:21 dB
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Table 4.1: Comparison of the average number of calculations per iteration of 255 x L75

code at SNR: 18 dB

ithm Additions Multiplications

Proposed IJDD with I-LSI feedback
Proposed IJDD with MI-LSI-I or -2 feedback

Proposed IJDD with MI-LSI-3 feedback
Tlipartite message passing IJDD or Cascaded BP

3051
3054
3045
L2495

0

T2

6

46155

(Mid value of the range) is observed to be 11, thus the average number of calculations

needed in the decoder and the feedback within an iteration for this FG-LDPC coded

system is summarized in Table. 4.2.

Table 4.2: Comparison of the average number of calculations per iteration of 1023 x 781

code at SNR:21 dB

Algorithm Additions Multiplications

Proposed IJDD with I-LSI feedback 22462 0

Proposed IJDD with M-ILSI-1 or -2 feedback 22470 22

Proposed IJDD with M-ILSI-3 feedback 2245r
Tlipartite message passing IJDD or Cascaded BP 9923I

11

381579

Secondly, the histograms for the occurrence of the number of iterations for the same

two codes are observed for SNR:18 dB and SNR:2L dB respectively and the results

are shown in Fig. 4.2 and Fig. 4.3.

It is observed that the average number of iterations are within the same order of

magnitude. Hence it is clearly verified by the results that the overall number of opera-

tions in the proposed algorithm are very much less than the BP based algorithms.

However, convergence is a little slower in the proposed algorithm than BP based al-
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gorithms and also there is a higher probability for a non-convergence, but still nearly

80-90% of the time it is converging at the selected mid SNRs. With the dramatic re-

duction in complexity, this minor adverse efect of non-convergence can be neglected and

the new algorithm can be well accepted. Further, this non-convergence can be overcome

without much added complexity by the use of a loop detection mechanism in the MBF

decoder.

Next we focus our attention on the BER performance of the novel algorithm in the

above simulation scenario. A comparison with ,

1. disjoint algorithm with MBF decoding (cascaded MBF)

2. disjoint algorithm with BP decoding (cascaded BP)

3. tripartite message passing algorithm (joint BP),

is shown in Fig. 4.4, Fig. 4.5 and Fig. 4.6 and it clearly depicts the superior performance

of the proposed algorithm over the cascaded MBF. Although it does not perform better

than BP based algorithms, the proposed algorithm's performance lies within few decibels

from the BP based algorithms

Finally in order to investigate the validity of the independence assumption we have

made in deriving (4.6), a system in which the bits from two consecutive LDPC codewords

are interleaved to decrease correlation among parity bits in a codeword is considered.

That is, bits from two different codewords are transmitted over the two antennas, at a

time. The BER performance of interleaved systems are compared with non-interleaved
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20

Figure 4.4: Comparison of BER
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Figure 4.8: Comparison of proposed decoder, with and without interieaver for 1023x781

code
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Chapter 5

Conclusions and S,tggestions for

Future Work

5.1 Summary and Conclusion

In today's wireless communication systems, LDPC coded MIMO channels are deployed

to harness the temporal diversity gain of LDPC codes and the space diversity and spa-

tial multiplexing gains of MIMO channels. FG-LDPC codes provide additional means

of reliability with their special structure and also they are efficient in encoding. Hence

FG-LDPC coded MIMO systems can provide an excellent error-rate performance. In-

corporating FG-LDPC codes in a MIMO system ideally requires joint detection and

decoding or IJDD for a near optimal performance. However both are unattainable with

the existing BP based algorithms due to the complexity issues. Therefore in this thesis,

76
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a simplified algorithm has been proposed for IJDD of FG-LDPC coded MIMO systems.

The contributions of this thesis are two fold.

o First an iterative joint detection and decoding algorithm is proposed based on the

MBF decoder. In this algorithm the output of the decoder is fed-back to the de-

tector to be used in the next iteration's calculation. Hence the detector makes use

of the correlation of bits in a codeword, which is explored by the decoder. Further

this IJDD scheme performs acceptably well and has a complexity comparable to

the MBF decoder. Therefore the introduction of the MBF decoder has made this

algorithm possible to be deployed in FG-LDPC coded systems.

o Secondly, the introduction of MBF decoder is not straightforward. In fact a special

mechanism is needed to convert the hard bit vector output of the decoder to a soft

information to be fed back. Four such conversion methods are proposed.

1. Taking in to account that the sign of the soft information LLR represents the

bit decision, working in the backward direction the bit decision at the detector

output is represented as a sign change in the original soft LLR information.

This feedback does not change the reliability of the modified bits. Thus,

whenever a bit is flipped erroneously and corrected in a later iteration which

is very usual in LDPC, the erroneous sign change in the soft information

cannot be removed easily.

2. The second method proposes a feedback where the soft information corre-
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sponding to the changed bits are also assigned new magnitudes together with

the sign changes. These magnitudes are generated such that the less reliable

bits'current magnitudes are reduced, increasing their chances to be corrected,

if in error. On the other hand more reliable bits are kept at nearly the same

previous magnitude.

3. In the third proposal, together with decreasing the LLR magnitude corre-

sponding to the less reliable bits, a magnitude increment is provided for more

reliable bits confirming the decision of the decoder.

4. Finally a stochastic perturbation technique is adopted to provide a controlled

random magnitude to the flipped bits.

Moreover, a separate independent assumption is used to simplify the calculation in the

detector. Experimental results indicate that the proposed IJDD algorithm provides a

substantial error rate improvement compared to a cascaded detector and a bit-flipping

decoder. F\rrther the second and third feedback methods prove to be providing better

performance than the sign inverted feedback. The simulation for a bit interleaved system

shows that the independence assumption used here is reasonably acceptable, even though

it is weak compared to the original independent assumption in BP algorithm.
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5.2 Possible F\rture Research Areas

Modifying the proposed algorithm in oder to have a better BER perfrmance and a lower

complexity will be an interesting research path. In order to focus on simplifrcation of

the decoder and to highlight the key units of the proposed algorithm, we have assumed

a BPSK modulation. However, this can be further extended to higher-order modulation

schemes. Further the FG-LDPC code may be defined in a non-binary Galois field to

eliminate short loops in the Tanner graph [20] which strengthens the independence

assumption. However, the MBF decoder should be modified in such a way that instead

of bit flipping, bit changing is used which will lead to an interesting research path.

Incorporating these extensions can be expected to improve the system performance.

Furthermore, an optimized feedback calculation method will be the greatest challenge

in improving this novel IJDD algorithm.
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Appendix A

Equivalent Representation of a

Bandpass System

,A'.1 Equivalent Lowpass for a Bandpass Signal

Many of the signals in communication systems are real bandpass signals whose frequency

response can be represented with a bandwidth 2B centered around f"(>> 2B). Since

they are real signals, their frequency response is symmetric around the origin but the

positive frequency components are not necessarily symmetric around /". Let's represent

a bandpass signal s(ú) with a center carrier f", as

s(t) : s¡(ú) cos(2zr f .t) - sq(t) sin(2lT f "t),
(A.1)
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where s¡(ú) and sç(ú) representing two real baseband signals with a bandwidth of B

each. s¡(ú) and sç(ú) are known as the i,n-phase and quadrature components of s(ú).

Then define a complex baseband signal s¿(t) : s7(ú) + itq(t) with a bandwidth B.

With this definition, \Me can observe that

s(¿)

s¿(t) : o'(t)eiÓ(t) 
'

where a(t¡: ,1146T4ø and ó(t): tan-1 (f,$), veilds

Re{s¿(t) cos(2tr f "t)} - Im{s¿(t) sin(2tr f .t)}

Fte{s¿(t)ei2*f¿t}.

This representation is called lhe compler lowpass representati,on of. the bandpass signal

s(ú) and the signai s¿(ú) is known as the equi,ualent low pass si,gnalor the compler enuelope

for the signal s(ú). Further with the Fourier transform, it can be shown that

,s(/) : |w,tr - r.) - sier - r.)1.

(A 2)

(A 4)

(A 3)

It is important to note that S¿(f - /") and Si(-/ - f.) ate not necessarily symmetric

around f : f"and / : -f"respectively.

An alternative representation

s(t) : Re{a(t)eiÓ(t) 
"j2tr"t¡ 

: a(t) cos(2r f .t + ó(t))' (A.5)
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A.2 Equivalent Lowpass for a Bandpass Channel

Let's consider a real channel with impulse response h(t). Lef Fourier transform of h(t)

be H(f). Similar to the bandpass signal, the channel's frequency response is symmetric

around the origin, but not symmetric around the carrier frequency /". Similar to the

baseband signals it can be written as

h(t) : 2Re{h¿(t) et2r r "t ¡, (A 6)

where h¿(ú) represents the equivalent lowpass channel impulse response. F\,rrther, in the

frequency domain

HU): Ht(f - f") + Hief - Ð (A 7)

Note that the extra factor of. 2 in (4.6) is to avoid a fraction in equation (A 7)

'A'.3 Equivalent Lowpass for a Bandpass System

Now we are in a position to describe the lowpass equivalent of a total bandpass system.

With both s(ú) and h,(ú) being real, the channel output r(ú) is a real signal with r(ú) :

s(t) x å,(ú). The Fourier transform yields A(/) : H(f)9ff) This concludes that Æ(/)

is also a bandpass signal, thus the complex low pass representation of r(Ú) is

r (t) : Fte{r ¿(t) ejz" r'r }, (A 8)
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with r¿(ú) representing the lowpass equivalent of r(t). Then considering that A(/)

HU)SU),

Rff):|W,ff - f")+Hief-l")l Is,(/-¿) +si(- f - f")l (Ae)

With the expansion of (A..9) and the fact that Híf - fòSief - fò:0 and Hief -

¡;Síf - Í"):0, it imPlies that

89

R(Í) : lrw,u - f.)súf - r.) + Hie f - r")sier - ¿)l

F\rrther, given (4.2) and (4.3), (4.8) implies,

a(/) : |w,tt - f") + Rier - r")).

(A.10)

(4.i1)

Now by equating the terms at positive frequencies in the two representations of Ë(/),

(4.10) and (4.11)

Rt(f - fò : Híf - fòs,U - fò,

or equivalently

Ríf) : Híf)súr). (A.12)
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In the time domain we have an equivalent given by

r¿(t): h¿(t) x s¿(t), (A.13)

which is the equivalent lowpass signal for the received bandpass signal. Finally, the

received signal can be represented as

r(t) : ne {(sr(t) * h¿(t))ej2"r"t)¡ . (A.14)

The main advantage of these baseband equivalents of a bandpass system is the ability

to analyze them in baseband without the carrier components.



8.1 Proof of 2.L

Consider a Gaussian noise channel with noise variance o2. Assuming BPSK modulation,

the source bit vector {0,1}' is mapped to the symbol vector {-1, +1}' , thus P(c¿:

1lr¿) : P(s¡: +1lr¿) and P(c¿: 0lr¿) : P(s¿: -1lri).

Then,
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Proof of (2.1), (2.2) and (2.3)

""p 
(åt) * exp ?:¡)
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1- exp ç+")

P(q:7lro)

P(c¿: Qlv')
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Therefore,

PROOF OF (2.1), (2 2) AND (2 3)

1
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(B 1)

(B 2)

(B 3)

1 - exp (-3)'
1

11__' 1-*p(-þ)
7 - P(c¿: llri).

8.2 Proof of 2.2

Lemma: Consider a sequence of n independent binary digits ¿ : &Lt . . . t an and P(a¡" :

7) : pr. Then the probability that a contains an even number of l's is

(r - zpn) . (B 4)

Proof by Induction: Let the boolean sum of the bits in a L bit vector be 27.

the event that the number of 1's is even is represented by zL:0.

o rt:2

;.;þ_

P(22: g) : P(ot + az:Q)
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: PtPz * (r - pr)(L - pr)

: ;.;G-2pt)(L-2p,) (Bb)

: ;.;ú rt - 2pt") (B 6)

Therefore (B. ) is true for n:2.

o Assume that (B.a) holds for n: L- 1, i.e.

P(,u,.- 1) : ; -;'n tt - 2pt") . (B 7)

o For n: L,

Therefore (B. ) is proved by induction.

Then the probability of having an odd number of l's

{by B 6}

{by 8.7}

+-;fr,e - ro¿ (B 8)
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When the'ith bit is 1, Iet the event of satisfying the jth parity check be Z¡lc¿: 1: This

is identical to the event of having an odd number of 1's in other contributing bits. Then

from (8.8) with the notation used in Section 2.2.3

p¡o(1) :1,r)

|l (1- 2q¿,¡(1)) ,

€^/i\i
(B e)

where Qy¡ àrê, the probability messages representing bit probabilities.

8.3 Proof of 2.3

Let the event of satisfying all parity checks be Z and with the bits assumed uncorellated,

P(Zlc¿,r) : lI P(Z¡,lc¿,r).
j'eMi

(8.10)

With Bayes' rule

P(c¿lr,Z)
P(c¿)P(Zlc¿,r)

: P(Zilc¿

11
tt4 uit

P(Z)

ftt"",*,
,-]rul"u' ,*,

P(Z¡,la,r)

p¡'¿(c¿)'

{f rom(B.10)}

(8.11)
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Let,

È'u¡(q): K¿iP(q) II pi,¿(c¿), (8.12)
j'€M¿\j

where K¿¡ is the normalizing constant explained in Section 2.2.3.

Finally in order to have an iterative algorithm,

a4þ¿)'þu¡(q). (8.13)

However note that probability message from'iúà node is ignored here and this elimination

of extrinsic information is needed in avoding error propagation.



Appendix C

Derivation of (2.6)

It's trivial that

From (C.1) and (C.3),

Let

11p¡¿(r):;-ir[,r,l1-2q¡¡(1)1, (c.2)

which can be re-arranged as

t""n 
[;.- ä] 

: pt - Po: ! - 2po. (c 1)

L - 2p¡¿(t) : II l1 - 2qv¡(t)1. (C 3)
iteM¡\i

t^nllr çn,,¡) 

:, _- oro_,ï,r,,rr,
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: II lL _ 2qt,¡(r)l
it€ñj\i

- I], - tanh lïtø,¡li/€¡/i\i Lu

Therefore
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L(pi¿) - -2ranh-r 
{,,#,, 

*'nl-}rtn,,l]} . (c.4)



Appendix D

Generation of Finite Geometries

Let, EG (D,2") be aD dimensional euclidean geometry over the GF (27), where D and

T are positive integers. Then each point in this euclidean space is a 2-tuple over GF

(Zz). zurther all zero D-trple, 0 : (0, 0, . . . , 0) is called the origin and the origin point

is not considered in forming the euclidean geometry. The euclidean geometry has the

following parameter values [22]:

o There are 2DT points.

o There ¿¡s 2(D-1)r (2", - t) t (zr - r) unes.

o Each line consists of.2T points.

o For any point there are 2(o-t)r f (2r - 1) Iines intersecting at that point.

o Every line has 2@-t)T - 1 lines parallel to it.

Consider an example EG (2,21). Then
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Figure D.1: A sample euclidean geometry: D :2, T : I

There are 4 points (including the origin).

o There are 6 lines.

o Each line consists of 2 points.

o For any point there are 3 lines intersecting at that point.

o Every line has one lines parallel to it.

As usual, the origin and the three lines passing through the origin are ignored. Now

the ecledian geometry can be shown as in Fig. D.l with the three points p7,p2,p3 and

the three lines 11, 12,13. The corresponding EG-LDPC code's parity check matrix can

be generated as [22]

71-

:lil
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Appendix E

Derivation of (3.16)

From Section 3.1.2 we have 3¿ : w{¡,a¡asnÍr. s.t. ø fllr - Sll'] is a minimum. An

optimal value for *f,*rru can be calculated using the principle of orthogonality.

Hence

" l(*f,* *snio -',)'fl] : o

+ *f,rrruø (t,rf) - ø (sorf) : o

+ w!,v,sø : E (t,rÐ n (t,rf)-' . (E 1)

With i¿ : r - [I*i : H(t - iu) + n,

E(i{Y) : øl{n("-*o) +n}{H(s-Í;) +n}ã]

: ø l{u(" - *o) + "} {(r - *..)'Hu *'"}]
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: ø [u(s-'o)(s -"u)"Ht] +E [n(s-*o)tH"] +E [u(s -*u)'"] +ø InnH]

: HCOV(s - io)H" * o2I¡¡,

: HA¿HH + o2I¡¡,. (E.2)

Also

0
+,-

0

n ls,rfl : E ls;(s - *o)"Ht * s;nã]

: n ('o'fn!) .3!"'t"_'",1t"t]*3$)

: ø (','f)nl
: E"elIJH

: uTll'. (E.3)

Here h¿, H1;, x1,; and e¿ are the ¿¿h column of H, H matrix excluding the'ith column,

sub vector x excludin g the ith element and a l/¿ dimensional column vector of all zeros

except a 1 at zÚå position, respectively. Further, E" is the average signal energy which

is set to one in this work.

Then with (E.1), (E.2) and (E.3),

wi,MMSE: (HloHH + o'rr,,,)-t H.o.



Appendix F

Justification of the Independence

Assumption

F.l Independence Assumption for Bipartite BP Al-

gorithm

o Given the received values, initially the bits are statistically independent.

o The independence holds until the message passing between the two levels reaches

the closure of a loop. In practical LDPC codes design, girth is selected to be fairly

high so that the loop closure occurs only after a fairly large number of iterations.

Therefore the independence property is preserved up to a fairly large depth.

r However In practical codes, infinite gi,rthis not possible, thus a loop closure occurs

L02
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afber some iterations and dependencies appear. But at that point, the bit values

are more refined and the uncertainties are reduced. With the reduced uncertainty

the mutual information is also reduced, reducing the bit dependencies. Further,

the resultant bit vector at this stage can again be considered as a ne\M received

value set with lesser uncertainty.

Therefore the independence assumption is well justified for the bipartite BP algorithm.

F.2 Independence Assumption for Tripartite IJDD

Algorithm

In tripartite message passing algorithm, by lumping of received value nodes, the

short loops between the received value nodes and bit nodes are eliminated. Further

the code is designed to have a higher gi,r'th. Therefore there are no short loops,

thus similar to the bipartite algorithm, the independence is preserved until the

closure of a loop.

Mlhenever the dependencies appear, ihe bit values aIe more refined, even than

bipartite algorithm due to the high rate of convergence in IJDD. Therefore

mutual information and hence the dependencies, are greatly reduced.

the

the
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F.3 Independence Assumption for MBF Based Novel

Algorithm

Since the proposed MBF based IJDD algorithm does not use any message passing along

the edges of a Tanner graph, the independence assumption can be justified as follows.

In the MBF algorithm , the information transfer follows a similar way as in BP

message passing. Therefore if the LDPC code has a Tanner graph which is free of

short loops, then the same information does not get transferred to two separate

bit nodes until a loop closes, preserving the independence.

With high code rates, the fraction of independent information bits (compared to

dependent parity bits) is large and therefore, the independence assumption holds

for majority of bits in a codeword.

o In MBF decoding, a fair amount of uncertainty is reduced at each iteration so that

the mutual information and hence the correlation between bits is also reduced.

Therefore the independence assumption can be assumed to hold, even though it is

weaker than for the BP algorithm. The simulations in Section 4.5 for a bit interleaved

system where the bits are truly independent, is observed to be having only a minor

improvement, which further justify the independence assumption.



Appendix G

Localized Random Search

Algorithm

Considerarootfindingprocessofanequationg(0):0.Thentheiterativelocalized

random search algorithm is as follows l42l:

Step 0: (Initiaization) Initial guess d6 e O is selected either randomly or with prior

information.

Step 7, ên.-: ât"* d¡ where d¡ is an independent random vector.

lf ên"- t' O, then include 0n.- in set O, otherwise repeat Step 7.

Step 2: rr lø(4""-)l <lo@ùl,tr*r: ân"-, otherwise g,n+r:0n'

Step 3: Stop when the maximum number of iterations reached or a predefined stopping

criterion is reached, otherwise return to Step 7.

105
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This algorithm can be easily modified to suit the MBF decoder. The modified algo-

rithm in the context of the MBF decoder is as follows:

Step 0: (Initialization) Initial guess for the codeword is ô0.

Step 7t ðn.-: ôk+d¡, where d¿ is a random bit vector depicting the bit positions to

be inverted.If è,n.- has been considered in an earlier iteration repeat Step 7, otherwise

goto Step 2.

Step 2: è,k*L : ôn.-.

Step 3: If the maximum number of iterations are reach ed or Zk+I - ôÀ+1H" : 0, then

stop. Otherwise go to Step 1.

It is important to note that Step 2 here is different from that of the original local-

ized random search algorithm that ôn"- is accepted without checking the closeness of

ô*.-IJT to zero. This measure is important to account for the fact that èn"-HT is not a

smooth function even near a local root point. However, it can be shown by simulation

that this root search converges.


