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Abstract—Spectrum occupancy modeling in the context of
Dynamic Spectrum Access/Cognitive Radio (DSA/CR) constitutes
a rather unexplored research area that still requires much more
effort. This paper addresses the problem of modeling spectrum
occupancy in the spatial domain by proposing a novel theoretical
approach that enables modeling the occupancy level perceived at
any geographical location based on the knowledge of some simple
primary signal parameters. The validity of the theoretical model
is verified with extensive empirical measurement results. Some
examples of its potential applicability are discussed as well.

I. INTRODUCTION

The dramatic spectrum demand growth experienced during
the last years has resulted in the so-called spectrum scarcity
problem. Recent spectrum measurement campaigns [1-6] have
demonstrated, however, that spectrum is vastly underutilized
and the virtual scarcity actually results from the fixed and
inflexible spectrum access policies currently employed in most
regulatory regimes. This situation has motivated the emergence
of Dynamic Spectrum Access (DSA) policies based on the
Cognitive Radio (CR) technology [7]. The basic underlying
principle of DSA/CR is to allow unlicensed users to access
in an opportunistic and non-interfering manner some licensed
bands temporarily unoccupied by the licensed users. Unli-
censed (secondary) CR terminals sense the spectrum to detect
spectrum gaps left by licensed (primary) users and transmit
on them. Secondary unlicensed transmissions are allowed
following this operating principle as long as they do not
provoke harmful interference levels to the primary network.

Due to the opportunistic nature of the DSA paradigm,
the behavior and performance of a secondary CR network
strongly depends on the spectrum occupancy patterns of the
primary networks. A realistic and accurate modeling of such
patterns becomes therefore essential and extremely useful in
the domain of DSA/CR research. The potential applicability
of spectrum use models ranges from analytical studies to the
design and dimensioning of secondary networks, including
the development of innovative simulation tools as well as
novel DSA techniques. Nevertheless, the utility of such models
depends on their realism and accuracy degree. Unfortunately,
the models for spectrum use commonly used to the date in
DSA/CR research are limited in scope and based on oversim-
plifications or assumptions that have not been validated with
empirical measurement data. Spectrum occupancy modeling
in the context of DSA/CR constitutes a rather unexplored
research area that still requires much more effort.

In this paper we address the problem of modeling spectrum
occupancy in the spatial domain. Previous works in this area
have faced the problem from a statistical perspective. In [8],
some methods of spatial statistics are employed to evaluate
the variability and correlation of spectrum occupancy among
sectors of a mobile communication cellular system based

on measurements of a real network. In [9], the theories of
random fields and point processes are employed to model
the Power Spectral Density (PSD) distribution over space.
Both techniques have successfully been applied to selected
problems in wireless communications before. In this paper
we introduce a novel spatial spectrum use model based on
a different, simple, clear and intuitive theoretical approach
that enables modeling the occupancy level perceived at any
geographical location based on the knowledge of some simple
primary signal parameters. The validity and correctness of
the theoretical model developed in this work is evaluated and
corroborated with extensive empirical measurement results for
various frequency bands and radio technologies.

The rest of this paper is organized as follows. First, section
IT presents the measurement setup and scenario considered in
this work. Sections III, IV and V discuss some preliminary
issues required for the development of the theoretical model
presented in section VI. The potential applications of the
model proposed in this work are discussed and exemplified
in section VII. Finally, section VIII concludes the paper.

II. MEASUREMENT SETUP AND SCENARIOS

The measurement configuration employed in this work (see
Figure 1) relies on a spectrum analyzer setup where different
external devices have been added in order to improve the
detection capabilities and hence obtain more accurate and
reliable results. The design is composed of two broadband
discone-type antennas covering the frequency range from 75
to 7075 MHz, a Single-Pole Double-Throw (SPDT) switch to
select the desired antenna, several filters to remove undesired
overloading (FM) and out-of-band signals, a low-noise pre-
amplifier to enhance the overall sensitivity and thus the ability
to detect weak signals, and a high performance spectrum
analyzer to record the spectral activity. A detailed description
of the measurement setup design and configuration principles
as well as the methodological procedures considered can be
found in [10], where some important methodological aspects
to be accounted for when evaluating spectrum occupancy in
the context of CR are analyzed and discussed.

The measurement equipment of Figure 1 was employed to
perform empirical measurements of various spectrum bands
throughout the UPC campus in an urban environment in
Barcelona, Spain. The different considered geographical lo-
cations are illustrated in Figure 2 and include both indoor (2)
and outdoor environments at high points (1), narrow streets (3—
7), between buildings (8—10) and in open areas (11-12). For
more details, the reader is referred to [11]. The considered
measurement locations represent various physical scenarios
of practical interest and embrace a wide range of receiving
conditions and levels of radio propagation blocking, ranging
from direct line of sight to severely blocked and faded signals.



Discone antenna SPDT switch

Discone antenna [ —
[Y JXTXPZ-100800-P // DC - 18 GHz

AOR DN753

Spectrum analyzer
7 75 MHz -3 GHz

Anritsu Spectrum
Master MS2721B

3-7GHz
il High-pass filter |
7o 3000 - 7000 MHz ¥ Low-noise amplifier

- 9kHz- 7.1 GHz
= h -8 2w
FM band-stop filter X —I Gain: 8 -11.5 dB v g
& Low-pass filter | N

~=|Rejection 20 - 35 dB /
88-108MHz DG~ 30OMMZ |/l noice figure: 4 - 4.5 dB

= 20 - 8000 MHz

Fig. 1. Measurement setup employed in this study.

Fig. 2. Measurement locations considered in this study.

This variety of measurement conditions enabled us to observe
the same set of transmitters under different propagation condi-
tions and with different levels of Signal-to-Noise Ratio (SNR).
The empirical data captured for various radio technologies at
each location enabled an adequate validation of the theoretical
model developed in this work.

III. DUTY CYCLE DEFINITION

The model introduced in this work describes the spatial
distribution of the Duty Cycle (DC). The DC can be defined
from both empirical and probabilistic perspectives. From an
empirical viewpoint, the DC can be defined as the fraction
(or percentage) of time that a certain channel (or frequency
range) is observed as occupied by a secondary CR terminal at
a given geographical location. From a probabilistic viewpoint,
the DC can be defined as the probability that a certain channel
(or frequency range) is observed as occupied at a given
geographical location. While the former is more appropriate
for the validation with measurement results, the latter results
more convenient for theoretical analyses.

The interest of employing the DC lies in its ability to
summarize the overall spectrum occupancy within a certain
time and frequency range in a single numerical value. The duty
cycle has been employed in many past spectrum occupancy
studies to quantify and compare the occupancy level of several
spectrum bands, or to compare the occupancy of the same band
under different conditions or at different locations. In this work
we employ the DC spatial distribution as a mean to describe
the spatial spectrum occupancy that would be perceived by a
secondary CR terminal at different locations.

It is important to make a clear distinction between the
Activity Factor (AF) of a primary transmitter in a certain
channel and the DC perceived by a secondary CR terminal
in that channel. The AF of a primary transmitter represents
the fraction (or percentage) of time that the transmitter is
active (i.e., transmitting in the channel). A CR terminal in
an arbitrary location with good propagation conditions with
respect to the primary transmitter would observe the channel as
occupied whenever the primary transmitter is active. However,
at other locations where the propagation conditions are not so
favorable, the primary signal might not be detected. In such
a case, the level of spectrum activity perceived by the CR
terminal (i.e., the DC) would be lower than the actual AF of
the primary transmitter. While the AF is unique for a given
transmitter, the DC perceived at different locations may be
different. Since the propagation conditions strongly vary with
the geographical location, the perceived DC will vary over
space accordingly. The aim of this work is to develop a model
able to describe the spatial distribution of the DC as a function
of the propagation conditions.

IV. ENERGY DETECTION

Before transmitting, a CR terminal has to determine whether
a primary signal is present in the spectrum band of interest.
Several signal detection principles, referred to as spectrum
sensing schemes in the context of CR, have been proposed
in the literature to perform such task [12, 13]. They provide
different trade-offs between required sensing time, complexity
and detection capabilities. Their applicability depends on how
much information is available about the primary signal. In
the most generic case, a CR user is not expected to be
provided with any prior information about the primary signals
that may be present within a certain frequency band. When
the secondary receiver cannot gather sufficient information
about the primary signal, the energy detection principle can be
employed due to its ability to work irrespective of the actual
signal to be detected. Due to its simplicity and relevance,
energy detection has been a preferred approach for many past
CR studies and also is the approach adopted in this study.

An energy detector measures the signal energy received in
a certain frequency band during an specified time period and
employs this value as a test statistic T. The test statistic T
is then compared to a predefined decision threshold A. If the
signal energy lies above the threshold (T > \), a licensed
signal is declared to be present. Otherwise (T < M), the
measured frequency channel is supposed to be idle. In practice,
the decision threshold A is normally chosen to satisfy a certain
probability of false alarm, which is defined as the probability
that the channel is declared to be occupied when it is actually
free (for an energy detector, a false alarm occurs when the
noise energy exceeds the decision threshold). Interestingly, this
method provides some detection benefits with respect to other
simple methods for establishing the energy decision threshold
[10] and is the approach considered in this work.

Since the measurement device employed in this study
(spectrum analyzer) provides PSD values in dBm units, and
in order to simplify the validation process, in this work we
employ, without any loss of generality, the received signal
power expressed in dBm as a test statistic T for the energy
detection principle instead of the received signal energy.



V. RECEIVED AVERAGE POWER DISTRIBUTION

To decide if a channel is occupied, a CR terminal employing
energy detection averages the power received during a prede-
fined time period 27, which can be expressed as:

1 +T
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where Pr(t) is the instantaneous power received by the CR
terminal and Ppg is the average power computed in order to
decide if a primary signal is present in the sensed channel.

To develop our model we are interested in the Probability
Density Function (PDF) of the average power Pr. We assume
that the PDF of Pg(t) is in general unknown since it is the
result of the combined effects of the primary transmission
power pattern, which in principle is unknown, and the prop-
agation effects. However, we assume that the mean value of
Pg(t), denoted as gy, and its variance, denoted as 0% ,,
can be computed at any arbitrary location by employing an
appropriate propagation model (notice that this procedure is
not restricted to any propagation model in particular).

The instantaneous power Pg(t) is as a stochastic process
that can be thought of as a non-countable infinity of in-
dependent and identically distributed random variables, one
for each time instant ¢, with mean p g, and variance oth.
Since Pg is obtained as the average of an infinite number
of random variables, the central limit theorem can therefore
be employed to approximate the PDF of Pr as a normal
distribution, regardless of the actual PDF of Pg(t), with mean
pr and variance 0% given by [14, pp. 523-525]:

1 [T
pr = B(Pab=gp [ E{PeO}dt=pn: @
-7
1 2T T
0% = Var{Pa)=rz [ Ca(n) (1 - ﬁ) dr
1 2T 1 o
o ; Cr(1) dTZT/O Cr(7) dr
Te Te
~ T on0) = ok, 3)

where T has been assumed to be sufficiently large, Cr(7) is
the autocovariance of Pr(t) and 7. is a constant called the
correlation time, which satisfies that Cr(7) ~ 0 for 7 > 7,
and is defined as the ratio [14, p. 389]:

1 o0
Te = mA CR(T) dT (4)

As it can be appreciated, the received average power dis-
tribution can be modeled as a Gaussian PDF. Its mean value
equals the mean value of the instantaneous received power
and its variance is directly related to the variance of the
instantaneous power and depends on the sensing period and
the primary signal’s autocorrelation properties.

The validity of the Gaussian approximation is verified in
Figure 3 for various radio technologies and also for the thermal
noise’s average power (measured by replacing the antenna
with a matched load). It is worth noting that the PSD values
provided by a swept spectrum analyzer (our measurement
device) are obtained by tuning a narrowband filter to a set of
frequency points during a fixed time period, thus causing some

\- --Gaussian fit —Empirical\

0.8

Noise 5 Analogical TV Digital TV
| \

‘ TN . \

2 vfmé 15 f' ﬂ} My 08 Y
& Y ; f I' 4 04 i
g, PR AR ost A o2 / \\

J 05 \ 2/
) \

A S R VU WU S OV S, NN N OV AN
%7 —e65 -9 65 Z6a %3 62 -61 -60 To4 92 90
8 Ums Fbb 04 GSWo00 DCS, 1800 04] TETRA

- y 03 o)
PRI A 03 AR ! E’ o3 f%
o ) } [ 0.2] Y [
g . o2l /4 % oz /%

Sl \ 0.1 / \ o1/ \, 01| f ‘\

/" A \ o v N ok N
8786586855 7472 -70 -68 -66

-90 -85 -60 -55
Average power (dBm) Average power (dBm) Average power (dBm) Average power (dBm)

Fig. 3. Validation of the Gaussian approximation for the average power.
The approximation is valid for line-of-sight measurements (location 1) and
non-line-of-sight measurements (locations 2-12).

unavoidable averaging effect over the measured signal. There-
fore, the PSD values provided by our measurement device
reflect the averaging effect of equation 1. Figure 3 compares
the Pr values captured by the spectrum analyzer at some
selected channels and the Gaussian curve corresponding to
the sample mean and sample variance of the signal. Although
different radio technologies are expected to exhibit various
instantaneous power patterns Pg(t), Figure 3 indicates that
the received average power Pr can be modeled as a Gaussian
random variable for all cases regardless of the particular
instantaneous power distributions.

VI. SPATIAL DUTY CYCLE MODEL
A. Constant-Power Continuous Transmitters

In this section we focus on modeling the spectral occupancy,
in terms of the DC, that would be perceived by a CR terminal
at certain location for the particular case of constant-power
transmitters with an AF of 100% (e.g., TV and DAB-T). This
case provides the basis for a simple occupancy model that
will be extended in the next sections for non-constant-power
transmitters and/or discontinuous transmission patterns.

If the primary transmitter is always active, the PDF of
the received average power, fr(Pg), will be that of the
primary signal (with noise) at the location of the CR terminal,
fs(Ps), which can be modeled as a Gaussian PDF with
mean power pg and standard deviation og. According to the
probabilistic definition of section III, the DC, denoted as WV,
can be computed as the probability that the received average
power Pr is above the decision threshold A\ (see Figure 4):
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where erfc(+) is the complementary error function and Q(-) is
the Gaussian Q-function.

As mentioned in section IV, the decision threshold ) is
normally chosen to satisfy a certain probability of false alarm

Py,. Since average noise power can be modeled as a Gaussian
law with mean g and standard deviation o (see Figure 4):
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Fig. 4. Model considered for computing the duty cycle (shaded area).
Solving in equation 6 for A yields the decision threshold:
A=Q ' (Pra) on + pn (7)

where Q~1(-) denotes the inverse of Q(-). Substituting equa-
tion 7 into equation 5 finally yields the DC model:

\I/:Q(Q_l(Pfa) O'N_’Y> (8)
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where v = ug — v represents the average SNR expressed in
decibels, while 0g and on are the standard deviation of the
signal and noise average powers also in decibels.

To validate equation 8, Figure 5 depicts, for selected analog-
ical and digital TV channels, the empirical DC obtained for the
12 locations measured in Figure 2. The empirical DC has been
computed for the decision thresholds corresponding to Py, =
1% and P, = 10%, and it is shown as a function of the
difference between the empirically measured average signal
power jig and average noise power py in dBm, i.e. the SNR
v in dB. The dependence of the perceived spectral activity
with the geographical location is reflected in the different
SNR values observed at each location. The theoretical curve of
equation 8 corresponding to the empirically measured means
(ns,pun) and standard deviations (og,0n) is also shown for
comparison. As it can be appreciated, the model agrees with
the empirical values for both analogical and digital channels.
These results demonstrate that equation 8 is able to accurately
predict the spectral activity that would be perceived by a CR
user at any position based on some basic signal parameters.

B. Constant-Power Discontinuous Transmitters

In this section we extend the model of equation 8 by
including the case of constant-power but non-continuous trans-
mitters. If the primary transmitter is characterized by an AF
0 < a < 1, the PDF of the received average power, fr(Pr),
will be that of the primary signal (with noise), fs(Ps),
whenever the transmitter is active (which will occur with
probability «), or thermal noise, fn(Py), otherwise. Hence:

fr(Pr) = (1—a) fn(PNn) +a fs(Ps) ©)
and the resulting expression for the DC becomes:
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Fig. 5. Validation of DC model for constant-power continuous transmitters.

Each empirical point corresponds to the result of one location in Figure 2.

Notice that equation 8 is a particular case with o = 1.

The validation of equation 10 based on the empirical mea-
surements is not as straightforward as in section VI-A. While
the values of pn and o (receiver’s noise) can be obtained by
replacing the antenna with a matched load, the values of g
and og cannot be obtained from the captured data sequences
as in section VI-A because in the case of transmitters with
a < 1 the captured data is composed of both signal and noise
samples, which cannot be distinguished reliably. Moreover, the
actual AF of the transmitter, v, is also unknown and cannot
reliably be derived from the measurements without additional
information. To estimate ug, os and «, we first compute the
empirical PDF of the captured data sequences and employ
curve-fitting procedures in order to fit equation 9, where py
and on are known, to the empirical PDF. The set of values
(us, 0g, o) minimizing the Root Mean Square Error (RSME)
of the fit is then selected. As shown in Figure 6, the theoretical
PDF corresponding to the empirically measured (uy, on)
and the estimated set (us, og, o) perfectly agrees with the
empirical PDF, thus indicating that this procedure is able to
provide good estimates of the true values. Applying these
values to equation 10, the theoretical DC curve is obtained.

To obtain the empirical DC curve, it is important to notice
that the locations considered in the measurement campaign
were measured at different time instants and the actual AF
during each measurement session might not be the same even
for the same transmitter. When this occurs, the DC values
obtained for each location/SNR are the result of different AFs
and are therefore unrelated. As a result, the empirical curve
obtained by plotting the empirical DC values as a function of
the SNR is characterized by a completely random behavior.
Since this phenomenon was observed in the empirical data
sequences, a different approach was employed to obtain the
empirical DC curve. The data sequence captured with the
highest SNR was selected, and different SNR values were
artificially emulated by subtracting the adequate amplitude
value from all the samples of the original sequence. In a
spectrum analyzer, signal amplitudes below the noise floor
cannot be detected and are reported as noise. To emulate this
effect, all the samples lying below the noise floor after sub-
tracting the adequate amplitude value were replaced with the
corresponding noise floor value. Moreover, the instantaneous
noise floor value of a spectrum analyzer varies among sweeps.
To emulate this effect, the noise floor sequence employed in
this procedure was generated as a random variable drawn from
a Gaussian distribution whose mean p 5 and standard deviation
on were obtained from the empirical measurements of the
system’s noise. The sequence obtained after this procedure was
employed to compute the empirical DC for each SNR value.
This procedure enables computing the DC corresponding to
different SNR values for the same AF, and was proven to
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Fig. 6. Validation of the approach to estimate signal parameter’s (upper part)
and DC model for constant-power discontinuous transmitters (lower part).

provide realistic results. The DC curve obtained with this
procedure, referred to as empirical simulated, is shown in
Figure 6 and compared to the theoretical DC curve obtained
as detailed above. As it can be appreciated, both curves agree,
thus validating equation 10.

C. Variable-Power Discontinuous Transmitters

In this section the model is extended to account for variable-
power transmitters. In this case, the average transmission
power is not constant but characterized by a certain PDF. To
simplify the model, let’s assume that the variability of the
transmission power can adequately be described by a discrete
set of K average transmission power levels, instead of a con-
tinuous PDF. This assumption not only simplifies the analytical
expressions of the model, but also enables the application of
the model to the case in which a channel is time-shared by K
transmitters with different power levels as it may be the case
of various TDMA-based systems such as GSM/DCS, TETRA,
etc. The model will be developed considering both cases, i.e. a
single variable-power transmitter with K transmission power
levels and K constant-power transmitters time-sharing the
channel. In both cases, the problem reduces to the possibility
of observing K different transmission powers in the channel.

Let’s denote as fg, (Ps,), with mean ug, and standard
deviation og,, the PDF of the received average power at
certain location when the k-th transmission power level is
present in the channel (k = 1,2,..., K). In general it can
be assumed that p1s, # ps, and os, # os, for p # q. Let’s
define an AF ay, for each transmission power representing
the fraction of time (empirical definition) or the probability
(probabilistic definition) that the k-th transmission power level
is present in the channel. In the case of a single-transmitter
with K transmission power levels, only one out of the K
power levels can be selected at any time. Moreover, in the case
of K transmitters time-sharing the channel it is reasonable to
assume that there exists some Medium Access Control (MAC)
mechanism so that when one primary transmitter accesses the
channel the rest remain inactive. In both cases, the K average
power levels are mutually exclusive events. Hence,

K
Zak <1
k=1

where the equality holds when the channel is always occupied.

(1)

The left-hand side of equation 11 represents the probability
that any of the K transmitters is active, i.e. the probability that
the channel is occupied, and its complementary probability
1- Zszl oy is the probability that the channel is free. The
PDF of the received average power, fr(Pg), will be that of the
k-th primary signal (with noise), fs, (Ps, ), whenever the k-th
transmission power is active (which will occur with probability
ay), or it will be thermal noise, fn (P ), otherwise. Hence:

K K
fr(Pr) = (1= ar| fn(Px)+ Y ax fs,(Ps,) (12)
k=1 k=1
and the resulting expression for the DC becomes:
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where vy, = pg, — pun is the SNR resulting from the k-th
average transmission power level, expressed in decibels.

To validate equation 13, the same approach of section VI-B
is followed. First, the parameters required for equation 13 are
obtained measuring the system’s thermal noise (uy, o) and
estimating the rest of parameters (us,, 0g,, o) by fitting
equation 12 to the empirical PDF of the captured sequence.
The number of transmitters K can readily be determined by
counting the number of peaks in the empirical PDF others
than that of the thermal noise. The validity of this approach
is verified in Figure 7 (as opposed to Figure 6, in this case
there are several transmitters in the channel). For the part of
the empirical PDF corresponding to the thermal noise some
divergence is observed between the empirical and fitted curves.
This can be explained by the presence of ambient noise.
The values of uy and oy employed in the fitting procedure
are obtained by replacing the antenna with a matched load
in order to measure the system’s noise. In this case the
ambient noise is not captured and the noise part of the fitted
curve resembles that of the system’s noise. However, when
connecting the antenna, the signal captured when no primary
transmission is active also includes the ambient noise, thus
leading to a slightly higher noise level than when measuring
with the matched load. In any case, the fitting for the rest of
peaks of the empirical PDF (i.e., primary signals, denoted as
51,549, ...) is shown to be satisfactory, indicating that primary
signal parameters are estimated accurately. By applying these
estimated parameters to equation 13, a theoretical DC curve
is obtained. The empirical DC curve is obtained as in section
VI-B and compared in Figure 7 to the theoretical DC curve.
Since several primary signals are present with different SNR
values each, the DC is shown in this case as a function of
the SNR offset, i.e. the amplitude correction factor applied to
the original sequence in order to obtain various SNR values.
As it can be appreciated, the theoretical and empirical curves
perfectly agree, thus validating equation 13.

VII. APPLICABILITY OF THE MODEL

The model proposed in this work is theoretical in essence
and provides closed-form expressions that can be employed
in analytical studies. However, the model is not restricted to
analytical studies but it could find more practical applications.
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Fig. 7. Validation of the approach to estimate signal parameter’s (upper part)
and DC model for variable-power discontinuous transmitters (lower part).

One illustrative example is the simplification of simulation
platforms. Let’s assume two system level simulators integrated
into a single simulation platform and working together. One
of them emulates a whole primary network and is required
to know what channels are actually occupied at any time
instant during the simulation. This information is used by
the second simulator, emulating a secondary CR network, to
decide if the CR terminals at different locations observe the
channels as occupied or not, and therefore if they transmit
or remain inactive. The model proposed in this work can be
used to replace the primary network simulator. Based on the
locations of the primary transmitters, the knowledge of some
basic signal parameters and the use of a propagation model,
it is possible to determine the DC that would be perceived at
each location inside the simulation scenario. This value can
be thought of as the probability that each channel is observed
as occupied at each location, and the local decisions of CR
terminals can be obtained e.g. by comparing the DC value ¥
computed at their locations with a random value X, drawn
from a uniform distribution U (0, 1). If Xy < ¥, then the CR
terminal would observe the channel as occupied. Replacing the
primary network simulator with this simulation model would
result in a more efficient simulation platform and therefore in
significantly reduced simulation times.

Another good example is the simplification of a spectrum
measurement campaign in the context of CR as those per-
formed in [1-6]. To obtain statistically accurate results on the
occupancy level of various bands it is necessary to capture
a sufficiently high number of data samples, which normally
requires long measurement periods in the order of several
hours even days. If the measurements are to be repeated at
different locations, the measurement campaign might require
several weeks/moths. Instead of performing a high number of
long measurements sessions, it would be enough to perform a
single long measurement at a high-position with direct line of
sight to the transmitters of interest (high SNR conditions) in
order to accurately estimate the AF of the desired transmitters,
and then perform some relatively short measurement sessions
at the locations of interest in order to obtain good estimates
of the received power means jg, and standard deviations
os,- The model proposed in this work could then be applied
to estimate the occupancy levels that would be observed at
each location. Therefore, in order to measure the occupancy
level of L locations, the model could be employed to reduce

the overall measurement time from L long measurement
sessions to only one long measurement session and L short
measurement sessions. These are only some examples of the
potential applications of the model proposed in this work.

VIII. CONCLUSIONS

Spectrum occupancy modeling in the context of DSA/CR
constitutes a rather unexplored research area that still requires
much more effort. This paper has addressed the problem
of modeling spectrum occupancy in the spatial domain by
proposing a novel theoretical approach that enables modeling
the occupancy level perceived at any geographical location
based on the knowledge of some simple primary signal param-
eters. The validity of the theoretical model has been verified
with extensive empirical measurement results. Some examples
of its potential applicability have been discussed as well.
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