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Abstract— Amplify-and-forward (AF) is one of the most com-
mon and simple approaches for transmitting information over a
cooperative multi-input multi-output (MIMO) relay channel. It
has recently been demonstrated that the spectral efficiency of AF
scheme can be maximized by using the relay as a smart precoder.
However, source node precoding has not been included in the
overall maximization problem. In this paper, we propose a joint
precoder design at the relay and source nodes for maximizing
the cooperative mutual information (MI), i.e., the combination
of direct and relay link MI, and thus, for further improving
the spectral efficiency of AF scheme. In addition, we provide
an algorithm for performing our joint precoding technique. Per-
formance analysis indicates that our novel precoding algorithm
outperforms other existing AF precoding methods in various link
configurations.

I. INTRODUCTION

Cooperative communication is a well-documented research

topic [1]–[6]. In a simple cooperation scenario, which is

composed of a source node (SN), a single relay node (RN)

and a destination node (DN), three main links are established,

i.e., SN-DN, SN-RN and RN-DN links. The SN-DN link is

refereed as the direct link and the combination of the SN-

RN and RN-DN links is known as the relay link. Several

approaches have lately been followed to design cooperative

communication systems and the most popular of them are

decode and forward (DF) and amplify and forward (AF) [1]–

[3] and [6]. DF is a regenerative approach where the source

message is fully decoded and re-encoded at the RN and is then

forwarded to the DN. On the contrary, AF is a nonregenerative

approach where the RN simply amplifies the received signal

from the SN and forwards it to the DN.

In the traditional AF multi-input multi-output (MIMO)

approach [6], the RN was first used as a simple equal gain

(EG) amplifier. It has recently been demonstrated in [7] and

[8] that AF scheme performance can be further enhanced by

utilizing the RN as a smart precoder. In the case that both the

channel state information (CSI) of the SN-RN and RN-DN

links are available at the RN, the power allocation techniques,

which have been developed in [7] and [8], have shown to

greatly enhance the spectral efficiency of AF by maximizing

the relay link mutual information (MI) under a total power

constraint. Later in [9], relay link MI performance has been

further improved by performing a joint power allocation at

the SN and RN when the direct link is weak. However, these

techniques are not optimal in terms of cooperative MI, i.e., the

combination of direct and relay link MI, since they do not take

into account the CSI of the direct link. Here, we propose a joint

power allocation algorithm for maximizing the cooperative MI

of AF system by considering that full CSI (FCSI), i.e., the

CSI of the three links, is available at the SN and RN nodes.

Acquiring FCSI at the SN and RN nodes is hardly feasible in

a real system, however, this assumption allows us to determine

the maximum achievable cooperative MI performance of AF

system for various link Signal-to-Noise Ratio (SNR) settings.

In this paper, we design a novel power allocation method

for nonregenerative cooperative MIMO systems by relying on

the system model that is introduced in Section II. In Section

III, we provide an overview of the different types of power

allocation methods that are based on MI maximization under

a total power constraint. Then in Section IV, we explain

how to jointly design the precoders at the SN and RN for

maximizing the cooperative MI of AF when FCSI is available

and provide an algorithm to do so. Simulation results in

Section V indicate that our joint power allocation scheme

outperforms the schemes of [7], [8] and [9] in various link

SNR configurations. Finally, conclusions are drawn in Section

VI.

II. SYSTEM MODEL

We consider a system that is composed of three nodes,

where a SN, which is equipped with n antennas, cooperate

with a nonregenerative RN, which is equipped with q antennas,

to transmit data to a DN, which is equipped with r antennas,

as it is illustrated in Fig. 1.

For the simplicity of the introduction, we assume a half

duplex relaying scenario with two phases of equal duration

as in [7] and [8]. In the first phase, the SN broadcasts the

signal x = Rs to the DN and RN; in the second phase,

only the RN transmits to the DN. Note that R ∈ C
n×n is

the SN precoding matrix and E
{
ss†

}
= In, where In is a

n × n identity matrix and E{.} stands for the expectation.

The signal x is received by the DN as y0 = H0x + n0

and by the RN as y1 = H1x + n1 at the end of the first

phase, where H0 ∈ C
r×n and H1 ∈ C

q×n characterize the

MIMO channels of the SN-DN and SN-RN links, respectively.

During the second phase, the signal y1 is amplified by using

the precoding matrix G ∈ C
q×q at the RN, is then transmitted
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Fig. 1. Nonregenerative cooperative MIMO communication system model.

towards the DN and is received as y2 = H2Gy1 + n2 by the

DN, where H2 ∈ C
r×q characterizes the MIMO channel of

the RN-DN link. In addition, each of the channel matrices

H0, H1 and H2 is a random matrix having independent

and identically distributed (i.i.d.) complex Gaussian entries

with zero-mean and unit variance. Furthermore, n0 ∈ C
r×1,

n1 ∈ C
q×1 and n2 ∈ C

r×1 are vectors of independent zero-

mean complex Gaussian noise entries with a variance of σ2
0 ,

σ2
1 and σ2

2 , respectively. The system model of the cooperative

MIMO communication system that is depicted in Fig. 1 can

be summarized as

y =

[
y0

y2

]
=

[
H0

H2GH1

]
x +

[
Ir 0 0

0 H2G Ir

] [ n0
n1
n2

]
. (1)

The cooperative MI that is shared between the transmit signal

s and the receive signal y is accordingly expressed as [10]

I(y; s) =
1

2
log2

∣∣I2r + HRR†H†R−1
n

∣∣ =
1

2
log2

∣∣∣∣
A D

C B

∣∣∣∣ ,

(2)

where the factor 1/2 accounts for the two-phase transmission,

(.)† denotes the conjugate transpose operator, H ∈ C
2r×n

characterizes the cooperative MIMO channel and Rn ∈
C

2r×2r is the aggregate noise covariance matrix. Moreover,

the matrices A,B,C and D are given by

A = Ir + H0RR†H
†
0R

−1
n0

B = Ir + H2G (Ry1
− Rn1

)G†H
†
2R

−1
n2

C = H2GH1RR†H
†
0R

−1
n0

D = H0RR†H
†
1G

†H
†
2R

−1
n2

, (3)

where Rn0
= σ2

0Ir, Rn2
= σ2

2Ir + H2GRn1
G†H

†
2, Rn1

=

σ2
1Iq and Ry1

= E
{
y1y

†
1

}
= Rn1

+ H1RR†H
†
1 is the

relay received signal covariance matrix. The direct and relay

link MI, i.e., I(y0; s) and I(y2; s), can also be computed by

employing (2) for H = H0, Rn = Rn0
and H = H2GH1,

Rn = Rn2
such that

I(y0; s)=
1

2
log2 |A| and I(y2; s)=

1

2
log2 |B| , (4)

respectively. Furthermore, we can re-express (2) by using the

matrix determinant formula in [11] as

I(y; s) =
1

2
log2 |A| + 1

2
log2

∣∣B − CA−1D
∣∣

=
1

2
log2 |B| + 1

2
log2

∣∣A − DB−1C
∣∣
. (5)

The two previous equations can be expanded and further

simplified by using the matrix determinant inverse lemma in

[12] such that

I(y; s) = I(y0; s) + I(ŷ2; s)

=
1

2
log2

∣∣In+R†RyR
∣∣ , (6)

where

I(ŷ2; s) =
1

2
log2

∣∣∣Ir+H2G
(
R̂y1

−Rn1

)
G†H

†
2R

−1
n2

∣∣∣

R̂y1
= Rn1

+ H1RÂ−1R†H
†
1

Â = In+R†H
†
0R

−1
n0

H0R

Ry = H
†
0R

−1
n0

H0+H
†
1R

−1
n1

[
Iq− E−1

]
H1

E = Iq +
(
σ2

1/σ2
2

)
G†H

†
2H2G

.

Let us define the SNRs of the SN-DN, SN-RN and RN-

DN links as γ0 = P1/σ2
0 , γ1 = P1/σ2

1 and γ2 = P2/σ2
2 ,

respectively, where P1 is the total transmit power of the SN,

P2 is the total transmit power of the RN and P1 = P2 = 1 are

normalized to unit power. According to the previous equations

and (6), I(y; s) can be approximated for three extreme SNR

settings, as follows:

1) In the case that γ0 ≪ 1, then A ≃ Ir, and hence,

I(y; s) ≃ I(y2; s) is independent of R.

2) In the case that γ1 ≪ 1, then Ry ≃ H
†
0R

−1
n0

H
†
0, and

hence, I(y; s) ≃ I(y0; s) is independent of G.

3) In the case that γ2 ≫ γ1, then E−1 ≃ 0, and hence,

I(y; s) ≃ I(ỹ0; s) = 1
2 log2 |In + R†(H†

0R
−1
n0

H
†
0 +

H
†
1R

−1
n1

H1)R| is independent of G.

4) Moreover, since 0 � Â−1 � In and 0 � E−1 � In,

hence, I(y0; s) ≤ I(y; s) ≤ I(y0; s) + I(y2; s) and

I(y0; s) ≤ I(y; s) ≤ I(ỹ0; s), respectively.

III. RELATED WORKS

A. Maximization of the direct link MI via the precoder R at

the SN

In point-to-point (P2P) MIMO communication, i.e., if only

the SN-DN link is active, the problem of finding the optimal

precoding matrix R that maximizes f(R) = 2I(y0; s) under

a total power constraint, i.e.,

max
R

f(R) s.t. R � 0, tr (RR†) ≤ P1, (7)

has been well investigated. On the one hand if the knowledge

of H0 is not available at the SN, then R = REG =
√

P1/n In

is the optimal solution [13]. On the other hand if H0 is

known at the SN, then the optimal solution is given by

R = RWF0
= V0R̃ [14], where V0 ∈ C

n×n is an unitary

matrix that contains the right singular vectors of H0, R̃ =
diag(

√
p1,1,

√
p1,2, . . . ,

√
p1,n) is a n×n diagonal matrix and

the values of p1,i are obtained via a water-filling algorithm.

Moreover, R̃ ≃ REG when γ0 ≫ 1.
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B. Maximization of the relay link MI via the precoder G at

the RN

In cooperative MIMO communication, it has recently been

shown in [7] and [8] that the cooperative MI I(y;x) can be

increased by maximizing fR(G) = I(y2;x), where the R

matrix is a fixed parameter. The works in [7], [8] and [15]

provide solutions for the following optimization problem

max
G

fR(G) s.t. G � 0, tr (GRy1
G†) ≤ P2. (8)

They solved this problem by considering that either the CSI

of both the first and second hop channels, i.e., H1 and H2,

[7], [8] or only the CSI of the first hop channel, i.e., H1, [7],

[15] is available at the RN. In the former case, the optimal G

matrix is given by Gopt = V2G̃U† with V2 and U ∈ C
q×q

are unitary matrices that contain the right singular vectors of

H2 and the eigenvectors of Ry1
, respectively. In addition

G̃ = diag(
√

p2,1,
√

p2,2, . . . ,
√

p2,q) is a q × q diagonal

matrix, where the values of p2,i are obtained via Lagrangian

optimization [16]. In the latter case, the optimal G matrix is

yet to be found. In these works R = REG.

C. Maximization of the relay link MI via joint determination

of the precoders R and G

Recently, we have investigated the following problem in [9]

max
R,G

f(R,G)

s.t. R � 0, tr (RR†) ≤ P1

G � 0, tr (GRy1
G†) ≤ P2

, (9)

where f(R,G) = I(y2; s), and design two algorithms that

jointly optimize the two precoders R and G by assuming

that either H1 and H2 are known at the SN and RN nodes

or that H1 is known at the SN and H1 and H2 are known

at the RN. Results have indicated that these two techniques

perform similarly and outperform the techniques of Section

III-B in terms of relay link MI. However, their cooperative

MI performances are only better than those of Section III-B

techniques when the direct link is weak, since their precoder

R at the SN is designed regardless of the direct link quality.

IV. COOPERATIVE MUTUAL INFORMATION MAXIMIZATION

In this section, we expand our work in [9] for designing the

precoders R and G that maximize the cooperative MI, instead

of the relay MI, when FCSI is available. In other words, we

propose a novel power allocation method for finding a solution

to the problem in (9) when f(R,G) = I(y; s).
This problem requires the optimization of two matrices

at the same time and it cannot be solved by directly using

classic convex optimization tools [16]. However, we can split

the problem into two sub-problems by using the two distinct

expressions of I(y; s) in (6), where R and G are assumed to

be fixed in the first and second equations of (6), respectively.

Then, we utilize a recursive approach to successively update

G and R until the algorithm converges to a solution. Our

algorithm is summarized in Algorithm 1 and 2.

A. Initialization phase

In the initialization phase of our algorithm, we aim at

finding the G matrix that maximizes I(ŷ2; s) in (6) when R

is fixed and such that R = REG. Notice that G = Gopt when

the direct link is weak in comparison with the relay link, since

I(y2; s) and I(ŷ2; s) are equivalent in this case.

The G matrix that maximizes I(y; s) for a fixed R can

be obtained by using the first equation of (6) and solving the

same problem as in (8) but for fR(G) = I(ŷ2; s). The term

I(ŷ2; s) in (6) can be re-expressed as

I(ŷ2; s) =
1

2
log2

∣∣∣∣∣
σ2

2Ir + H2GR̂y1
G†H

†
2

σ2
2Ir + H2GRn1

G†H
†
2

∣∣∣∣∣ . (10)

The matrix H2 can be decomposed via singular value decom-

position (SVD) as H2 = U2Ω̂
1

2 V
†
2, where U2 ∈ C

r×r and

V2 ∈ C
q×q are unitary matrices, Ω̂ ∈ C

r×q is a rectangular

diagonal matrix, and Ω = Ω̂
1

2 Ω̂
1

2
† is a r × r diagonal matrix

with diagonal elements ωi ∈ R+, i.e., R+ = {x ∈ R|x ≥ 0},

which are sorted in descending order as in [8]. Notice that

ωi 6= 0 for i ∈ [1, Nω] and that ωi = 0 for i ∈ [Nω + 1, r],
with Nω = min{r, q}. Similarly, the matrices R̂y1

and Ry1

can be decomposed via eigenvalue decomposition (EVD) as

R̂y1
= Û∆Û† and Ry1

= UΛU†, respectively, where

Û ∈ C
q×q is a unitary matrix and ∆ and Λ are q×q diagonal

matrices with diagonal elements δi ∈ R+ and λi ∈ R+,

respectively, which are sorted in descending order [7]. In the

case that U = Û, we can set G = Gopt and simplify (10) as

I(ỹ2; s) =
1

2

Nω∑

i=1

log2(σ
2
2 + p2,iωiδi) − log2(σ

2
2 + p2,iωiσ

2
1).

(11)

Then, the values of p2,i that maximize I(ỹ2; s) are obtained

by solving the following simplified problem

max
p2

I(ỹ2; s) s.t. p2,i ≥ 0; Pc :

Nω∑

i=1

p2,iλi ≤ P2, (12)

where p2 = {p2,1, p2,2, . . . , p2,q}. The optimum solution for

this modified problem is obtained by Lagrangian optimization,

such that p2,i(µ) =
[
−σ2

2(δi+σ2
1)+

√
σ2

2(δi−σ2
1)[σ2

2(δi−σ2
1)+4µωi(δi/λi)]

2σ2
1ωiδi

]

+

,

(13)

where [x]+ = max{0, x} and µ ≥ 0 is the Lagrange

multiplier that needs to be tuned for satisfying the power

constraint Pc in (12). The starting value for µ is µmin =
maxi∈[1,Nω]

{
σ2

1σ2
2λi/[(δi − σ2

1)ωi]
}

; then µ is be updated by

using the Newton-Raphson method [17] until µ⋆ is obtained.

The value of µ⋆ must fulfill the following inequality g(µ⋆) <
ǫ, with g(µ) =

∑Nω

i=1 p2,i(µ)λi − P2 and ǫ ≪ 1.

The previous algorithm can only be implemented if U =
Û, which will not be the case for any random R ma-

trix. Let V1 ∈ C
n×n be an unitary matrix that con-

tains the right singular vectors of H1, we can re-expressed

Ry1
= Rn1

+ H1V1(V
†
1RR†V1)V

†
1H

†
1 and R̂y1

= Rn1
+
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H1V1(V
†
1RÂ−1R†V1)V

†
1H

†
1. Clearly, if both (V†

1RR†V1)
and (V†

1RÂ−1R†V1) are diagonal matrices then U = Û.

This condition can simply be fulfilled by setting R =
V1R̃U†

a, where Ua ∈ C
n×n is an unitary matrix that contains

the left singular vectors of Â−1. However, Â−1 is also

dependent of R and R must be set in Â−1 prior to the

computation of Ua. Therefore, this problem is equivalent

to find a matrix Ua such that [Ua,X,Y] = svd{(In +
(V1R̃U†

a)†H†
0R

−1
n0

H0(V1R̃U†
a))−1}, where svd{Z} is a

function that returns the matrices Ua, X and Y that con-

tain the left singular vectors, eigenvalues and right singu-

lar vectors of Z, respectively. Finding a solution to this

problem is outside the scope of this paper and instead we

set R = R = V1R̃ in Â−1. By approximating R̂y1
=

Rn1
+ H1R(In + R†H

†
0R

−1
n0

H0R)−1R†H
†
1 with R̂y1

=

Rn1
+ H1R(In+R

†
H

†
0R

−1
n0

H0R)−1R†H
†
1, we simplify the

optimization problem, which becomes equivalent to (12). In

addition, we narrow the search down to the G matrices of the

Gopt type, which are optimal if the direct link is weaker than

the relay link. At the end of the initialization phase, we set

G in Ry and evaluate y(0) = I(y; s) by using the second

equation of (6) with either R = V1R̃U†
a or R = V1R̃, since

both these R matrices provide the same result for I(y; s).

Algorithm 1 : AF-FCSI

1: Inputs: n, q, r, P1, P2,Rn0
,Rn1

, σ2
2 ,H0,H1,H2 and ǫ

2: Obtain V1 via the SVD of H1;
3: Set R̃ =

√
P1/n In;

4: Set R = V1R̃;
5: Obtain Ua via the EVD of Â−1;
6: Set R = V1R̃U†

a;

7: Obtain δi via the EVD of R̂y1
;

8: Obtain λi via the EVD of Ry1
;

9: Set µ = µmin;
10: Solve g(µ)<ǫ by using the Newton-Raphson method [17] ⇒ µ⋆;
11: Compute the values of p2,i in (13), for i ∈ [1, Nω], by using the

value of µ⋆;

12: Set G = V2G̃U†;
13: Evaluate Ry and y(0) = I(y; s) = 1

2
log2

∣∣In+R†RyR
∣∣in (6);

14: Algorithm 2: Joint CGS Algorithm
15: Outputs: R and G.

B. Recursive phase

In the recursive phase of our algorithm, we utilize a joint

constrained gradient search (CGS) algorithm for first finding

the matrix R that maximizes I(y; s) when G is fixed; see

steps 4-9 of Algorithm 2. Then, we compute Ry1
and R̂y1

according to the new version of R, i.e., R̂, and modify G to

ensure that tr (GRy1
G†) ≤ P2; see steps 10-13 of Algorithm

2. Next, we aim at finding the matrix G that maximizes the

first equation of (6) when R is fixed; see steps 14-19 of

Algorithm 2. We compute R̂y according to the new version

of G, i.e., Ĝ and evaluate y(m) = 1
2 log2

∣∣∣In + R̂†R̂yR̂

∣∣∣ at

the m-th iteration. Finally, y(m) is compared against y(m−1)

and the algorithm proceeds until |y(m) − y(m−1)| < ε or the

number of iteration m is above 1/ε.

Algorithm 2 : joint CGS algorithm

1: Input: n, q, r, P1, P2,Rn0
,Rn1

, σ2
2 ,H0,H1,H2,Ry and ǫ.

2: Set m = 1 and t = 2;
3: repeat
4: Evaluate δR = 1

ln(2)
RyR(In + R†RyR)−1;

5: Set a = P1 − tr(δR†δR);

6: if a < 0 then δR = δR
√

P1/ tr(δR†δR);

7: Set R̂ = R + t−1δR and a = P1 − tr(R̂†R̂);

8: if a < 0 then R̂ = R̂

√
P1/ tr(R̂†R̂);

9: Set Ry1
= Rn1

+ H1R̂R̂†H
†
1;

10: Set R̂y1
= Rn1

+ H1R̂(In + R̂†H
†
0R

−1
n0

H0R̂)−1R̂†H
†
1;

11: Set a = P2 − tr(GRy1
G†);

12: if a < 0 then G = G
√

P2/ tr(GRy1
G†);

13: Evaluate δG = 1
ln(2)

[H†
2(σ

2
2Ir + H2GR̂y1

G†H
†
2)

−1 ×

H2GR̂y1
− H

†
2R

−1
n2

H2GRn1
]R−1

y1
;

14: Set a = P2 − tr(δGRy1
δG†);

15: Set if a < 0 then δG = δG
√

P2/ tr(δGRy1
δG†);

16: Set Ĝ = G + t−1δG;
17: Set a = P2 − tr(ĜRy1

Ĝ†);

18: if a < 0 then Ĝ = Ĝ

√
P2/ tr(ĜRy1

Ĝ†);

19: R̂y = H
†
1R

−1
n1

[
Iq−

(
Iq +

(
σ2

1/σ2
2

)
Ĝ†H

†
2H2Ĝ

)−1
]
H1 +

H
†
0R

−1
n0

H0;

20: Evaluate y(m) = 1
2

log2

∣∣∣In + R̂†R̂yR̂

∣∣∣;
21: Set b = y(m) − y(m−1);
22: if (b < ǫ) then
23: Set t = t + 1;
24: else
25: Set R = R̂, G = Ĝ, Ry = R̂y;
26: end if
27: Set m = m + 1;
28: until (|b| < ǫ or m > 1/ǫ)
29: Outputs: R and G.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, our novel AF-FCSI power allocation method

is compared in terms of cooperative MI against the methods

in [8] and [9], which are here refereed as AF- [8] and AF-

[9], respectively, for various link SNR conditions. We also

plot I(y; s) = 2I(y0; s) for R = RWF0
, which is the MI

of a P2P MIMO system when the CSI is available at the

SN. As we already stated, acquiring FCSI at the SN and RN

nodes is impractical. A practical solution can be to acquire

the SN-RN and SN-DN link CSI at the SN and the SN-

RN and RN-DN link CSI at the RN. In this case, power

allocation can independently be made at the SN and RN by

solving the problem in (7) but for f(R) = I(ỹ0; s), where

the optimal solution is RWF1
= ŴR̃ with Ŵ ∈ C

n×n

being an unitary matrix that contains the eigenvectors of

(H†
0R

−1
n0

H
†
0+H

†
1R

−1
n1

H1), and by using the AF- [8] method,

respectively. We denote this method as AF-Total CSI (TCSI)

and include it in the following performance comparison.

In our simulations, a single-tap i.i.d. Rayleigh fading chan-

nel is assumed for each of the SN-DN, SN-RN and RN-DN

links. Moreover, the parameter ǫ, which is used for fine-tuning

the accuracy of our AF-FCSI algorithm, is set to ǫ = 10−4.
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Fig. 2. Cooperative MI performance of various power allocation methods
against γ1 dB for γ0 = (γ1 − 10) dB, γ2 = 10 dB and n = q = r = 4.

In Fig. 2, we compare the cooperative MI performance of

various power allocation algorithms for n = q = r = 4,

γ0 = (γ1 − 10) dB and γ2 = 10 dB. The results first show

that the range of γ1 dB for which cooperative communication

outperforms P2P communication is limited to 13 dB. Since

γ2 is fixed, the RN-DN acts as a bottleneck and the relay

link MI does not increase as fast as the direct link MI for

γ1 > 13 dB. The results also show the advantage of source

power allocation when γ1 is low, since our AF-FCSI, AF-TCSI

and AF- [9] methods outperform the AF- [8] technique in this

case. The performance gain decreases as γ0 and γ1 grows,

since EG power allocation is the best policy at the SN when

both γ0 and γ1 ≫ 1. Moreover, the comparison of the AF- [8]

with the AF- [9] scheme emphasizes that γ0 has to be fairly

low for the AF- [9] method to outperform the AF- [8] scheme.

In Fig. 3, we compare the same algorithms but for γ0 = 0
dB instead of γ0 = γ1 − 10 dB. The results show again

the advantage of our AF-FCSI and AF-TCSI methods against

the AF- [8] scheme at low γ1 dB, but actually in the range

of γ1 dB where cooperative communication is not efficient.

The three previously mentioned methods perform similarly

for γ1 ∈ [7, 20] dB and then the performance gap between

our AF-FCSI algorithm and the other methods increases as

γ1 dB increases. In the latter case, the RN-DN link acts as

a bottleneck and extra cooperative MI performance can be

achieved by properly balancing the power allocated between

the relay and direct links, i.e., reducing the allocated power

of the relay link and increasing the allocated power of the

direct link. The results indicate that only our AF-FCSI can

properly balance the power distribution by taking advantage of

the joint power allocation. The result of the AF- [9] technique

indicates that it is preferable to use an EG power allocation

than a power allocation that solely takes into account the SN-

RN link CSI when γ0 and γ1 are similar. Moreover, as γ1
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Fig. 3. Cooperative MI performance of various power allocation methods
against γ1 dB for γ0 = 0 dB, γ2 = 10 dB and n = q = r = 4.

grows, this technique gives more weight to the relay link and

if the RN-DN link is weaker than the SN-RN link then more

performance degradation will occur in comparison with the

AF- [8] technique.

In Fig. 4, we compare the same algorithms for n = q =
r = 4, γ0 = 0 dB and γ1 = 10 dB. We also depict the

performance bounds B1 and B2, where I(y; s) = I(ỹ0; s) for

RWF1
and REG, respectively. The results show that the AF-

FCSI, AF-TCSI and AF- [8] methods perform similarly at low

SNRs. As γ2 increases, the impact of power allocation at the

RN on I(y; s) diminishes and the performance of the various

methods get closer to the bound B1 and B2. This result is

consistent with the approximation 3) at the end of Section II.

The difference between B1 and B2, i.e., acquiring or not the

CSI at the source, is only of 0.1 bits/sHz, which is very small

in comparison with the extra complexity that is involved for

acquiring the SN-RN and SN-DN link CSI at the SN.

In Fig. 5, we plot GI = I(y; s)AF-FCSI−I(y; s)AF- [8] against

γ1 dB and γ2 dB for n = q = r = 4 and γ0 = (γ1 −
10) dB. GI is the performance gain in terms of cooperative

MI that our AF-FCSI method achieves when compared with

the AF- [8] technique. On the graph, the light grey shaded

area on the left represents the range of γ1 and γ2 SNRs for

which P2P outperforms cooperative communication. Outside

this SNR area, GI increases as γ1 increases from -10 to -2

dB and then decreases until γ1 = 10 dB regardless of γ2. The

gain GI starts to vary in function of γ2 only when γ1 > 10
dB. This graph mainly points out that GI > 0 and, hence, our

AF-FCSI method always outperforms the AF- [8] scheme.

Overall, the performance analysis demonstrates that our

AF-FCSI method clearly outperforms the other presented

techniques and, thus, its performances act as upper bounds

for these techniques. However, the performance gain of our

joint power allocation technique against the other techniques
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Fig. 4. Cooperative MI performance of various power allocation methods
against γ2 dB for γ0 = 0 dB, γ1 = 10 dB and n = q = r = 4 .

remains relatively small, except when γ1 ≫ γ2, in comparison

with the complexity that is required for acquiring FCSI at the

RN and SN nodes. To this end, the AF-TCSI method can be a

practical alternative since it can provide similar performance

as the AF-FCSI scheme, especially when γ0 is low. Finally,

the results also indicate that the impact of power allocation at

the RN diminishes as the RN gets closer to the DN.

VI. CONCLUSION

in this paper, we have proposed a joint power allocation

algorithm for maximizing the cooperative MI of AF system

by considering that FCSI is available at the SN and RN

nodes. The joint power allocation problem requires the op-

timization of two matrices at the same time and it cannot

be solved by directly using classic convex optimization tools.

However, we have shown how to split the main problem into

two sub-problems by expressing the cooperative MI in two

distinct ways. We also proposed a simplified version of our

scheme. Then, we have compared our novel schemes with

other existing power allocation methods for AF in various

link SNR configurations. The results show that our AF-

FCSI clearly outperforms the other techniques. However, its

performance gain remains relatively small in comparison with

the complexity it incurs. It turns out that practical scheme

such as the one in [8] or our AF-TCSI method can be used

to obtain close to AF-FCSI performance for most of the link

SNR configurations where cooperative communication is more

efficient than P2P communication.
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