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Abstract— We investigate the security of wireless sensor
networks under the pairwise key distribution scheme of
Chan et al. [2]. We present conditions on how to scale the
model parameters so that the network is i) unassailable,
and ii) unsplittable, both with high probability, as the
number of sensor nodes becomes large. We show that the
required number of secure keys to be stored in the memory
of each sensors is order of magnitudesmaller than what
is required for the Eschenauer-Gligor scheme [5].
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I. I NTRODUCTION

It is envisioned that security will constitute a key challenge
for wireless sensor networks (WSNs) deployed in hostile en-
vironments. Unfortunately, many security schemes developed
for general network environments do not take into account
the unique features of WSNs: Public key cryptography is not
computationally feasible because of the severe limitations im-
posed on the physical memory and power consumption of the
individual sensors. Traditional key exchange and distribution
protocols are based on trusting third parties, and this makes
them inadequate for large-scale WSNs whose topologies are
unknown prior to deployment. We refer the reader to [1], [5],
[8] for discussions of the security challenges in WSN settings.

Randomkey predistribution schemes were introduced to
address some of these difficulties. The idea of randomly
assigning secure keys to sensor nodes prior to network de-
ployment was first introduced by Eschenauer and Gligor [5].
Since then, many competing alternatives to the Eschenauer and
Gligor (EG) scheme have been proposed; see [1] for a detailed
survey of various key distribution schemes for WSNs. In this
paper we consider the random pairwise key predistribution
scheme of Chan et al. [2] and analyze its resiliency against
sensor capture attacks. Interest in this scheme stems from the
following advantages over the EG scheme: (i) Even if some
nodes are captured, the secrecy of the remaining nodes is
perfectlypreserved; and (ii) Both node-to-node authentication
and quorum-based revocation are enabled.

Given these advantages, we have found it of interest to
model the pairwise scheme and to assess its performance. A
number of issues related to secure connectivity and to the

dimensioning of memory sizes have been discussed in the
papers [9], [12]. In the present paper, we are interested in
evaluating the resiliency of the pairwise scheme against node
capture attacks.

The setup is as follows: An extremely powerful and knowl-
edgeable adversary captures a number of sensors with the goal
of severely impairing the functionality of the whole network.
As was done in [7] for the EG scheme, the main question to
be discussed here is whether this objective can be achieved by
capturing asmall number of sensors.

The analysis is given in the many node regime: We first look
at the asymptotic behavior of themaximumnumberCr(n;K)
of edges that can be compromised by capturingr nodes vs.
the total number|E(n;K)| of edges in the network as the
numbern of sensors grows unboundedly large – HereK is
the parameter specifying the pairwise scheme; see Section
II for details. Next, in the same regime we characterize
the asymptotic behavior of the sizeIr(n;K) of the largest
subset of sensors whose communications with the rest of
the network can be compromised by capturingr nodes. For
both quantities we give conditions on the scheme parameter
and on r that ensure that ifrn = o(n), then with high
probability Crn

(n;K) (resp. Irn
(n;K)) grows sub-linearly

with |E(n;K)| (resp.n). These conditions are highly desirable
as they imply that an adversary cannot impair a considerable
part of the network without capturing a considerable numberof
nodes. Both conditions were introduced in [7] under the names
of unassailabilityandunsplittability, respectively, and used to
evaluate the resiliency of the EG scheme; see Section III for
details. As discussed in Sections IV and V, a comparison of
our results with those of [7] shows that both properties can be
achieved by the pairwise scheme with memory requirements
which are order of magnitudesmaller than that of the EG
scheme. Proofs are available in Sections VI and VII.

A few words on notation and conventions in use: For
sequencesa, b : N0 → R+, we write an = o(bn) as a
shorthand forlimn→∞

an

bn
= 0. On the other hand,an =

O(bn) means that there existsC > 0 such thatan ≤ C · bn

for all n sufficiently large, whereas we writean = Ω(bn) if
there existsc > 0 such thatan ≥ c · bn for all n sufficiently



large. Throughout, we make use of the standard bounds
(

n

r

)

≤
(en

r

)r

,
r = 1, . . . , n
n = 1, 2, . . .

(1)

II. T HE MODEL

The random pairwise key predistribution scheme of Chan
et al. is parametrized by two positive integersn andK such
thatK < n. There aren nodes which are labeledi = 1, . . . , n
with unique idsId1, . . . , Idn. Write N := {1, . . . n} and set
N−i := N − {i} for each i = 1, . . . , n. With node i we
associate a subsetΓn,i(K) of K nodes selected atrandom
from N−i – We say that each of theK nodes inΓn,i(K) is
paired to nodei. Thus, for any subsetA ⊆ N−i, we require

P [Γn,i(K) = A] =

{

(

n−1
K

)−1
if |A| = K

0 otherwise
,

ensuring that the selection ofΓn,i(K) is done uniformly
amongst all subsets ofN−i which are of sizeK. Also, the set-
valued rvsΓn,1(K), . . . ,Γn,n(K) are assumed to be mutually
independent.

Once thisoffline random pairing has been created, we con-
struct the key ringsΣn,1(K), . . . ,Σn,n(K), one for each node,
as follows: Assumed available is a collection ofnK distinct
cryptographic keys{ωi|ℓ, i = 1, . . . , n; ℓ = 1, . . . ,K}. Fix
i = 1, . . . , n and let ℓn,i : Γn,i(K) → {1, . . . ,K} denote
a labeling of Γn,i(K). For each nodej in Γn,i paired to
i, the cryptographic keyωi|ℓn,i(j) is associated withj. For
instance, if the random setΓn,i(K) is realized as{j1, . . . , jK}
with 1 ≤ j1 < . . . < jK ≤ n, then an obvious labeling
consists inℓn,i(jk) = k with key ωi|k associated with node
jk for eachk = 1, . . . ,K. Finally, the pairwise keyω⋆

n,ij =
[Idi|Idj |ωi|ℓn,i(j)] is constructed and inserted in the memory
modules of both nodesi and j. The key ω⋆

n,ij is assigned
exclusivelyto the pair of nodesi andj, hence the terminology
pairwise distribution scheme. The key ring of nodei is the set

Σn,i(K) := {ω⋆
n,ij(K), j ∈ Γn,i(K)}∪{ω⋆

n,ji, i ∈ Γn,j(K)}.
If two nodes, sayi andj, are within communication range

of each other, they will be able to establish a secure edge
if at least one of the eventsi ∈ Γn,j or j ∈ Γn,j is taking
place – Both events may take place, in which case the memory
modules of nodei and j both contain the distinct keysω⋆

n,ij

andω⋆
n,ji.

Under full visibility, namely when every pair of nodes are
within transmission range of each other, the pairwise scheme
gives rise to the following class of random graphs: We say
that the distinct nodesi and j are adjacent, writteni ∼ j, if
and only if they have at least one key in common in their key
rings, namely,

i ∼ j iff Σn,i(K) ∩ Σn,j(K) 6= ∅. (2)

We denote byH(n;K) the undirected random graph on the
vertex set{1, . . . , n} induced by the adjacency notion (2);
this corresponds to modeling the pairwise distribution scheme
under full visibility. Finally, letE(n;K) denote the (random)
set of edges inH(n;K).

III. SECURITY METRICS AND RESILIENCY

A. Measuring resiliency in WSNs

As we seek to understand the resiliency of the network
against external attacks, we first specify the capabilitiesof the
adversary considered here. To do so we adopt the following
model already used in [7]: The adversary (sometimes also
called the attacker), upon launching an attack against the
network, captures some of its nodes, as a result of which
it now owns the key rings stored at the captured nodes.
An edge between two nodes is deemedcompromisedif the
adversary owns a key which is stored inboth their key rings.
By the nature of the pairwise scheme this happens as soon
as any one of the nodes has been captured. The adversary is
assumed to have unlimited computing power; in particular it
is expected to have sufficient knowledge of the network to
minimize the number of nodes that need to be captured in
order to compromise a given number of edges.

In many WSN applications, the network as a whole can
still operate in a useful manner even though asmall number
of sensors have fallen under the control of the adversary [7].
In such situations it might be more relevant to protect the
global functionality of the network rather than a few individual
communication edges. However, if the adversary is capable
of capturing a large fraction of the nodes, then there is not
much that can be done to salvage the network functionalities.
Hence, in evaluating the level of security provided by a key
predistribution scheme, it is natural to ask whethersignificant
damage to network functionalities can be inflicted by capturing
just a small number of nodes. The next two sections provide
ways to quantify this issue.

B. Unassailability

With A being the set of sensor nodes captured by the
adversary, letCA(n;K) denote the total number of edges that
are compromised as a result of this attack. In other words,
CA(n;K) is the total number of edges (in the random graph
H(n;K)) with the property that at least one end of the edge
is a node inA, i.e.,

CA(n;K) =

∣

∣

∣

∣

{

(i, j) :
1 ≤ i < j ≤ n

i ∼ j
, i ∈ A ∨ j ∈ A

}∣

∣

∣

∣

.

The adversary under consideration is capable of maximizing
CA(n;K) for a given number|A| of nodes to be captured. This
prompts us to introduce for eachr = 1, . . . , n, the maximum
number Cr(n;K) of edges that can be compromised by
capturingr nodes, namely

Cr(n;K) := max (CA(n;K) : A ∈ Nr)

whereNr denotes the collections of all subsets of{1, . . . , n}
with exactlyr elements.

Under the assumptions made on its capabilities, the power-
ful and knowledgeable attacker considered here will be ableto
compromiseCr(n;K) edges by capturing (the appropriate)r
nodes – This reflects a worst case mindset from the perspective
of the network. Given this definition, it is natural to ask how
the quantityCr(n;K) behaves in relation to the total number



|E(n;K)| of edges asn gets large (withK andr also possibly
scaled withn). It is common practice [3], [7] to regard the
condition

Crn
(n;K) = o(|E(n;K)|) whenever rn = o(n) (3)

as indicative of the resiliency of the network against node
capture attacks. A crucial implication of the condition (3)is
that in the many node regime, it implies that an adversary
will not compromiseΩ(|E(n;Kn)|) edges by taking overo(n)
nodes. We shall use condition (3) as a basis for characterizing
the unassailabilityof the pairwise scheme. More specifically,
we shall give conditions onK andn such that for anyε > 0,
we have

lim
n→∞

P [Crn
(n;K) ≥ ε · |E(n;K)|] = 0 (4)

wheneverrn = o(n). When the parameterK is also scaled
with n, the condition (4) will be used withK replaced byKn.

C. Unsplittability

The metric (4) checks whether an adversary can compro-
mise a considerable fraction of edges by launching an attack
on few sensors. But, it does not tell anything about the ability
of the adversary todisconnectthe network. To explore this
issue further, withA still acting as the set of nodes taken
over by the attacker, we say that the subsetS of nodes isA-
splittable if the adversary can compromise all the edges from
S to Sc = N − S by capturing the nodes inA. To be more
precise, for any subsetS of nodes letE(n;K)(S) denote the
set of edges inH(n;K) with one end inS and the other in
Sc. Then, theA-splittability of S is characterized by

∧(i,j)∈E(n;K)(S) (i ∈ A ∨ j ∈ A) . (5)

This is because once the set of nodes inA captured, an edge
i ∼ j in H(n;K) will be compromised if either condition
i ∈ A or j ∈ A takes place.

Given the infinite computational power available to it, the
attacker can in principle minimize the number of nodes it
needs to capture in order tosplit S from the rest of the
network. Thus, for eachr = 1, . . . , n − 1, we say that the
setS of nodes isr-splittablewhenever thereexistsa setA of
r nodes such thatS is A-splittable. Ther-splittability of S is
encoded through the conditions

∨A∈Nr

(

∧(i,j)∈E(n;K)(S) (i ∈ A ∨ j ∈ A)
)

. (6)

It is clear that if S is r-splittable, then its complementSc

(in N ) is also r-splittable. Finally, letIr(n;K) denote the
size of the largest subsetS (with size |S| ≤ n

2 ) that can
be disconnected from the rest of the network by capturing
r nodes, namely

Ir(n;K) = max
{

|S| : S ⊆ N , |S| ≤ n

2
, S is r-splittable

}

.

It is natural to wonder as to the behavior ofIr(n;K) asn
grows large – It is always the case thatr ≤ Ir(n;K) ≤ n

2 .
From the perspective of the network, it is desirable that the
largest subset which can be disconnected be small whenever

the number of captured nodes is small. As in [7] this leads to
the condition

Irn
(n;K) = o(n) whenever rn = o(n)

as our second characterization of resiliency. In this paper, we
give conditions on how to scaleK with the numbern of nodes
such that for any0 < γ ≤ 1

2 , we have

lim
n→∞

P [Irn
(n;Kn) ≥ γn] = 0 (7)

wheneverrn = o(n) – From these definitions it follows that
(7) holds trivially whenγ > 1

2 . The operational usefulness of
(7) derives from the fact that it ensures that for any subsetS
of N , with |S| = Ω(n), an adversary must captureat least
Ω(n) nodes in order to compromiseall edges fromS to Sc.

IV. RELEVANT PRIOR WORK

The resiliency of WSNs against node capture attacks was
also investigated by Mei et al. [7]: They considered the EG
scheme as the underlying security mechanism and obtained
conditions on the scheme parameters to ensure the appropriate
analogs of (4) and (7). We now summarize their findings in
order to identify the number of keys (to be kept in the memory
of each sensor) that is required to ensure the desired conditions
(4) and (7).

Let K(n; θ) denote the random key graph on the vertex
set{1, . . . , n} induced by the EG scheme under full visibility
[13]; hereθ = (ΣEG, P ) collectively stands for the parameters
that specify the EG scheme, namely the (fixed) sizeΣEG

of the key ring of each sensor node and the sizeP of the
key pool. Thus, letΣn,1(θ), . . . ,Σn,n(θ) denote the key rings
associated with nodes1, . . . , n, respectively, in the EG scheme.
By construction,|Σn,1(θ)| = · · · = |Σn,n(θ)| := ΣEG. We
are now in a position to present the main result obtained in
[7]. A scaling for the EG scheme is any pair of mappings
ΣEG, P : N0 → N0 such that

ΣEG,n ≤ Pn, n = 2, 3, . . .

Theorem 4.1:Consider any scalingΣEG, P : N0 → N0 for
the EG scheme which satisfies

ΣEG,n ≥
√

n log n. (8)

Then, (4) and (7) hold.
In [7] it is claimed, but without proofs, that both properties
hold also whenΣEG,n ≥ log n. The condition (8) was derived
so as to also ensure thatK(n; θn) is asymptotically almost
surely (a.a.s) connected. Here, to comply with that practice, we
recall sufficient conditions forH(n;K) to be a.a.s. connected.
To fix the terminology, we refer to any mappingK : N0 → N0

as ascaling (for the pairwise scheme) provided

Kn < n, n = 2, 3, . . .

In [11], the following was shown:
Theorem 4.2:For any scalingK : N0 → N0 such

that Kn ≥ 2 for all n sufficiently large, it holds that
limn→∞ P [H(n;Kn) is connected] = 1.



V. M AIN RESULTS AND DISCUSSION

The main result of the paper, given next, provides a version
of Theorem 4.1 for the pairwise scheme.

Theorem 5.1:Consider any scalingK : N0 → N0. We
always have (4), whereas (7) is satisfied whenever

lim
n→∞

Kn = ∞. (9)

Theorem 5.1, which is established in Section VII, gives
conditions for unassailability and unsplittability underthe pair-
wise scheme. However, in contrast with the EG scheme and
its variants, the key ringsΣn,1(K), . . . ,Σn,n(K) produced
by the pairwise scheme are of variable size betweenK and
K +(n−1). Therefore, in order to meaningfully compare our
findings with those for the EG scheme from [7], we need to
understand how the sizes|Σn,1(K)|, . . . , |Σn,n(K)| of these
key rings depend onK andn.

To explore this issue further, observe that

|Σn,i(K)| = K +

n
∑

j=1, j 6=i

1 [i ∈ Γn,j(K)] , i = 1, . . . , n

so that

|Σn,i(K)| =st K + Bin (n − 1,K/(n − 1)) , (10)

whence E [|Σn,i(K)|] = 2K. Since every key appears in
exactly two different key rings it follows that

|Σ|n,Avg(K) :=
|Σn,1(K)| + · · · + |Σn,n(K)|

n
= 2K

by construction. Furthermore, in order to deal with worst case
scenarios, we introduce the maximal key ring size given by

|Σ|n,Max(K) :=

(

max
i=1,...,n

|Σn,i(K)|
)

, n = 2, 3, . . . .

Next, upon using a standard Hoeffding bound [4, Thm.
1.1, p. 6] for the binomial rvs (10), we obtain the following
concentration result for the maximal key ring size. This
result can be established with the help of standard bounding
arguments, but is omitted here due to space limitations.

Theorem 5.2:Consider any scalingK : N0 → N0 such that
Kn = O(log n). Then, there existsc > 0 such that

lim
n→∞

P [|Σ|n,Max(Kn) > cKn] = 0. (11)

In view of Theorem 4.1 and Theorem 5.1, we can now
compare the security properties of the pairwise scheme and
of the EG scheme. It is clear from Theorem 5.1 and (11)
that the pairwise key distribution scheme can ensure (4) with
all key rings being on the orderlog n. Similarly, Theorem
5.1 and (11) show that to ensure unsplittability, the pairwise
scheme requires key ring sizes ofO(log n). As we compare
these findings with Theorem 4.1, we see that the pairwise
scheme can achieve both properties with much smaller key
ring sizes than needed for the EG scheme; see Figure 1.

Unassailability Unsplittability

EG – ΣEG Ω(
√

n log n) Ω(
√

n log n)
Pairwise –|Σ|Avg 4 wn

Pairwise –|Σ|Max O(log n) O(log n)

Fig. 1. A comparison of the EG scheme and the pairwise scheme in terms of
the minimum number of keys required to achieve unassailabilityand unsplit-
tability. As before,wn stands for any function satisfyinglimn→∞ wn = ∞.
It is clear that pairwise scheme can ensure both of the desiredproperties with
much less memory load on the sensors as compared to the EG scheme.

VI. A BASIC INEQUALITY

Both assertions in Theorem 5.1 are established in Section
VII, and rely on a basic inequality discussed next. For every
ε > 0 andK = 1, 2, . . ., set

Hε(x;K) = (ε − x)K log 2 + x log
(x

e

)

, 0 ≤ x ≤ 1

Proposition 6.1:With ε > 0, consider positive integersK
andn such thatK < n. Then, for eachr = 1, 2, . . . , n, we
have

P [Cr(n;K) ≥ εnK] ≤ e−nHε( r
n

;K) (12)

whenever

ε >
r

n

(

1 + 2e
n − r

n − 1

)

. (13)

Proof. Pick a subsetA of nodes. The exact expression

CA(n;K) =
1

2

∑

i∈A

∑

j∈A

1 [j ∈ Γn,i(K) ∨ i ∈ Γn,j(K)]

+
∑

i∈A

∑

k∈Ac

1 [k ∈ Γn,i(K) ∨ i ∈ Γn,k(K)]

is easily established but cumbersome to work with. Instead we
will rely on the bound

CA(n;K) ≤ |A|K + En,A(K) (14)

where we have set

En,A(K) :=
∑

j∈Ac

∑

i∈A

1 [i ∈ Γn,j(K)] .

The validity of (14) can be seen as follows: There are at
most K|A| compromised edges originating out of nodes in
A, while there are exactlyEn,A(K) compromised edges
originating out of nodes inAc. To simplify the notation we
shall write En,A(K) = En,r(K) when A = {1, . . . , r} with
r = 1, . . . , n.



Now fix r = 1, . . . , n andε > 0. Using (14) we find

P [Cr(n;K) ≥ εnK]

= P

[

⋃

A∈Nr

[CA(n;K) ≥ εnK]

]

≤ P

[

⋃

A∈Nr

[En,A(K) ≥ εnK − rK]

]

≤
∑

A∈Nr

P [En,A(K) ≥ εnK − rK]

=

(

n

r

)

P [En,r(K) ≥ εnK − rK] . (15)

In [10] the rvs{1 [i ∈ Γn,j(K)] , j = r + 1, . . . , n; i =
1, . . . , r} were shown to be negatively associated [6]. As
a result, the Chernoff-Hoeffding bound [4, Thm. 1.1, p. 6]
applies to the sumEn,r(K) in the form

P [En,r(K) ≥ t] ≤ 2−t (16)

whenevert > 0 satisfies

t > 2e · E [En,r(K)] = 2e · r(n − r)
K

n − 1
(17)

sinceE [En,r(K)] = r(n − r) K
n−1 . Note that (17) witht =

εnK − rK is equivalent to (13), in which case (16) becomes

P [En,r(K) ≥ εnK − rK] ≤ e−K(εn−r) log 2. (18)

Reporting the bounds (1) and (18) into (15), the conclusion
(12) readily follows.

VII. A PROOF OFTHEOREM 5.1

Consider the random graphH(n;K) for positive integers
n and K such thatK < n. By construction each key is
associated with one and only one edge inH(n;K), whereas
at most two keys can be associated with a given edge. Thus,
for edgei ∼ j, the upper bound is reached when both events
i ∈ Γn,i(K) andj ∈ Γn,i(K) take place. As a result, we have

Kn

2
≤ |E(n;K)| ≤ Kn. (19)

Now consider any scalingK : N0 → N0 and assume that
the condition

rn = o(n) (20)

holds. Givenε > 0, the condition

ε

2
>

rn

n

(

1 + 2e
n − rn

n − 1

)

(21)

will be met for all n sufficiently large. On that range, Propo-
sition 6.1 (withε replaced byε

2 ) yields

P

[

Crn
(n;Kn) ≥ ε

nKn

2

]

≤ e
−nH ε

2

( rn
n

;Kn) (22)

and the convergence

lim
n→∞

P

[

Crn
(n;Kn) ≥ ε

nKn

2

]

= 0 (23)

follows sincelim infn→∞ H ε
2

(

rn

n
;Kn

)

> 0 under (20). The
desired conclusion (4) is obtained from (23) upon using (19).

As we now turn to establishing (7), fix the positive integers
n and K such thatK < n. The discussion starts with the
following observation: Consider an attack that succeeds in
capturing the nodes inA, and letS denote an arbitrary subset
of nodes. IfS is A-splittable, then all the edges between the
set of nodesS and its complementSc are compromised by
the capture of nodes inA. Hence, the total numberCA(n;K)
of edges which are compromised by this attack must be at
least |E(n;K)(S)|. Therefore, by the characterization (5) of
S beingA-splittable we have the inclusion

[S is A-splittable] ⊆ [CA(n;K) ≥ |E(n;K)(S)|].

For eachγ in
(

0, 1
2

]

, let Nn,γ denote the collection of all
subsetsS of N such thatγn ≤ |S| ≤ n

2 . For eachr =
1, . . . , n, the definition of the count variableIr(n;K) and this
last inclusion imply

P [Ir(n;K) ≥ γn]

= P





⋃

S∈Nn,γ

[S is r-splittable]





= P





⋃

S∈Nn,γ

⋃

A∈Nr

[S is A-splittable]





≤ P





⋃

S∈Nn,γ

⋃

A∈Nr

[CA(n;K) ≥ |E(n;K)(S)|]





= P





⋃

S∈Nn,γ

[Cr(n;K) ≥ |E(n;K)(S)|]





≤
∑

S∈Nn,γ

P [Cr(n;K) ≥ |E(n;K)(S)|] (24)

upon using a union bound argument in the last step.
Next, pick ε > 0 andδ in (0, 1) such that

2ε < (1 − δ)γ. (25)

The need for doing so will become apparent below. For each
S in Nn,γ , conditioning on|E(n;K)(S)| ≥ εnK yields

P [Cr(n;K) ≥ |E(n;K)(S)|] (26)

≤ P [Cr(n;K) ≥ εnK] + P [|E(n;K)(S)| < εnK] .

If condition (13) were to hold, then Proposition 6.1 would
imply

∑

S∈Nn,γ

P [Cr(n;K) ≥ εnK]

≤ |Nn,γ | · e−nHε( r
n

;K)

≤ e−n(Hε( r
n

;K)−log 2) (27)

since|Nn,γ | ≤ 2n.



As we consider the second term in the right handside of
(26), pick S in Nn,γ and observe that

|E(n;K)(S)| =
∑

j∈Sc

∑

i∈S

1 [j ∈ Γn,i(K) ∨ i ∈ Γn,j(K)]

≥ En,S(K). (28)

As before, the negative association of the rvs
{1 [i ∈ Γn,j(K)] , i ∈ S, j ∈ Sc}, shown in [10], validates
the Chernoff-Hoeffding bound for the sumEn,S(K) [4, Thm.
1.1, p. 6] in the form

P [En,S(K) ≤ (1 − δ)E [En,S(K)]] ≤ e−
δ2

2
E[En,S(K)]. (29)

Note also that

E [En,S(K)] = |S| (n − |S|) · K

n − 1
≥ γ

2
· nK

sinceγn ≤ |S| ≤ n
2 by membership ofS in Nn,γ . From (25)

we automatically have

εnK < (1 − δ)E [En,S(K)] (30)

for all n = 1, 2, . . .. Using the bounds (28) and (30) together
with (29), we conclude

∑

S∈Nn,γ

P [|E(n;K)(S)| < εnK]

≤
∑

S∈Nn,γ

P [En,S(K) < εnK]

≤
∑

S∈Nn,γ

P [En,S(K) < (1 − δ)E [En,S(K)]]

≤
∑

S∈Nn,γ

e−
δ2

2
E[En,S(K)]

≤
∑

S∈Nn,γ

e−
δ2

2
· γ
2

nK

≤
(

2e−γ δ2

4
·K

)n

. (31)

Consider now a scalingK : N0 → N0 satisfying (9) and
replaceK by Kn for all n = 1, 2, . . ., possibly makingr
depend onn as well. As in the earlier part of the proof,
under (20) the condition (21) (withr replaced byrn) holds
for all n = 1, 2, . . . sufficiently large, whence (27) holds on
that range. It is now plain that

lim
n→∞

∑

S∈Nn,γ

P [Crn
(n;Kn) ≥ εnKn] = 0

since limn→∞

(

Hε(
rn

n
;Kn) − log 2

)

= ∞ under the condi-
tions (9) and (20). Similarly it is plain from (31) that

lim
n→∞

∑

S∈Nn,γ

P [|E(n;Kn)(S)| < εnKn] = 0.

The desired conclusion (7) is now an easy consequence of
the last two convergence statements when coupled with the
bounds (24) and (26).
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