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Abstract— We investigate the security of wireless sensor dimensioning of memory sizes have been discussed in the
networks under the pairwise key distribution scheme of papers [9], [12]. In the present paper, we are interested in
Chan et al. [2]. We present conditions on how to scale the evaluating the resiliency of the pairwise scheme againdeno
model parameters so that the network is i) unassailable, capture attacks.
and ii) unsplittable, both with high probability, as the

number of sensor nodes becomes large. We show that the 1€ Setup is as follows: An extremely powerful and knowl-
required number of secure keys to be stored in the memory edgeable adversary captures a number of sensors with the goa

of each sensors is order of magnitudesmaller than what of severely impairing the functionality of the whole netkor
is required for the Eschenauer-Gligor scheme [5]. As was done in [7] for the EG scheme, the main question to

Keywords: Wireless sensor networks, Security, Key predi@e disgussed here is whether this objective can be achigved b
tribution, Unassailability, Unsplittability. capturing asmall number of sensors.

The analysis is given in the many node regime: We first look

. - ) i ) at the asymptotic behavior of tmeaximumnumberC,.(n; K)
It is envisioned that security will constitute a key chagen ¢ edges that can be compromised by capturingodes vs.

for wireless sensor networks (WSNs) deployed in hostile efya total number E(n; )| of edges in the network as the

vironments. Unfortunately, many security schemes demiopnumbem of sensors grows unboundedly large — Héfeis
for general network environments do not take into accoupy

) : : e parameter specifying the pairwise scheme; see Section
the unique features of WSNs: Public key cryptography is njt o etajs. Next, in the same regime we characterize

computationally feasible because of the severe limitatiom ., asymptotic behavior of the size(n; k) of the largest

posed on the physical memory and power consumption of tignqe(” of sensors whose communications with the rest of
individual sensors. Traditional key exchange and disti#u o atwork can be compromised by capturingodes. For

protocols are based on trusting third parties, and this Bakg,, quantities we give conditions on the scheme parameter

them inadequate for large-scale WSNs whose topologies arey o, that ensure that ifr, — o(n), then with high

unknowp prior. to deployment. We refer the rgader to [1]’_[5]probability C,. (n;K) (resp. I, (n; K)) grows sub-linearly

[8] for discussions of the security challenges in WSN sesling i, | (,.: 1)[ (resp.n). These conditions are highly desirable
Randomkey predistribution schemes were introduced Qg they imply that an adversary cannot impair a considerable

address some of these difficulties. The idea of randomly . of the network without capturing a considerable nunater

assigning secure keys to sensor nodes prior to network deges Both conditions were introduced in [7] under the reme

ployment was first introduced by Eschenauer and Gligor [8f nassailabilityand unsplittability, respectively, and used to
Since then, many competing alternatives to the Eschenader @, ,|ate the resiliency of the EG scheme; see Section Il for

Gligor (EG) scheme have been proposed; see [1] for a detailgd»jis as discussed in Sections IV and V, a comparison of
survey of various key distribution schemes for WSNs. In thig,, resyits with those of [7] shows that both properties can b
paper we consider the random pairwise key predistributioRpieved by the pairwise scheme with memory requirements

scheme of Chan et al. [2] and analyze its resiliency againgfich are order of magnitudemaller than that of the EG
sensor capture attacks. Interest in this scheme stems flemd .,ome. Proofs are available in Sections VI and VIL.

following advantages over the EG scheme: (i) Even if some

nodes are captured, the secrecy of the remaining nodes i& few words on notation and conventions in use: For

perfectlypreserved; and (ii) Both node-to-node authenticatisequences:,b : Ny — R, we write a,, = o(b,) as a

and quorum-based revocation are enabled. shorthand forlim,,_, ‘;—n = 0. On the other handg, =
Given these advantages, we have found it of interest &(b,) means that there exists > 0 such thata,, < C - b,

model the pairwise scheme and to assess its performanceoAall n sufficiently large, whereas we writg, = Q(b,,) if

number of issues related to secure connectivity and to tthere exists: > 0 such thata,, > ¢ - b,, for all n sufficiently

I. INTRODUCTION



large. Throughout, we make use of the standard bounds [1l. SECURITY METRICS AND RESILIENCY

ny (en)T r=1,...,n ) A. Measuring resiliency in WSNs
r) =~ \r/) 7 n=12... As we seek to understand the resiliency of the network
Il. THE MODEL against external attacks, we first specify the capabildfethe

The random pairwise key predistribution scheme of Ch(,jlargversary considered here. To do so we adopt the following

et al. is parametrized by two positive integersind K such model already used in [7]: The adversary (sometimes also

It 1. Therearsodes i e bel 1 °$1°0 1° Sacke whor inenig 2 otk s
with unique idsIdy, ..., Id,. Write A := {1,...n} and set » cap '

N = N — {i} for eachi — 1 . With nodei we it now owns the key rings stored at the captured nodes.

sssovte a subsl, (1) f K nodes seected abndo 0 06 Femeen o Hades 2 st v
from N_; — We say that each of th& nodes inl',, ;(K) is y y y 1ings.

paired to node. Thus, for any subset C A/_;, we require By the nature of the pairwise scheme this happens as soon
as any one of the nodes has been captured. The adversary is

P[T, 4 (K) = A = (”;(1)_1 if |[Al=K assumed to have unlimited computing power; in particular it
o S 0 otherwise ’ is expected to have sufficient knowledge of the network to

ensuring that the selection df,,(K) is done uniformly minimize the number of nodes that need to be captured in

. . order to compromise a given number of edges.
amongst all subsets @f_; which are of sizek. Also, the set- In many V\?SN applicgtions the networkgas a whole can
valued rvsl'y, 1 (K),..., I, »(K) are assumed to be mutually '

. still operate in a useful manner even thougknaall number
independent.

Once thisoffline random pairing has been created. we co of sensors have fallen under the control of the adversary [7]

struct the key ring&, 1 (K) P Eg (K), one for eacrlm node " such situations it might be more relevant to protect the
) YNNG 1 (), .. ., (st ), ON - ' global functionality of the network rather than a few indival

as follows: Assumed available is a collectionoK distinct - . .
cryptographic keyswip, i — 1 - K}. Fix communication edges. However, if the adversary is capable
. )iplg P andylebtuz&» l. _F ’-(.[.(.)’7: {1_ 7“1.()} dénote of capturing a large fraction of the nodes, then there is not
el Lo e I . much that can be done to salvage the network functionalities
a labeling ofI',, ;(K). For each node in T',; paired to

i, the cryptographic keyo,y,, .(;) is associated withy. For Hence, in evaluating the level of security provided by a key

. X . . . . predistribution scheme, it is natural to ask whetkignificant
instance, if the random s&t, ;(K) is realized agj1, ..., jx} . " oo .

. . o : ' damage to network functionalities can be inflicted by captur
with 1 < j; < ... < jg < n, then an obvious labeling

. . . . . i mall number of n . The next tw ions provi
consists int, ;(jx) = k with key w;;, associated with nodeJUSt a small number of nodes € next two sections provide

Jk for eachk = 1,..., K. Finally, the pairwise keyy, ;; = ways to quantify this issue.
(Id;|Id|wse, . ;)] is constructed and inserted in the memorf3. Unassailability

modules of both nodes and j. The keywr ;; is assigned  with A being the set of sensor nodes captured by the
exclusivelyto the pair of nodes and,j, hence the terminology adversary, let (n; K) denote the total number of edges that
pairwise distribution scheme. The key ring of nade the set zre compromised as a result of this attack. In other words,
Si(K) o= {w)y ;;(K), j € Tpi(K)}U{wr s, i € Ty (K. Ca(n; K) is the total number of edges (in the random graph
o o H(n; K)) with the property that at least one end of the edge
If two nodes, say and j, are within communication rangejs a node in4, i.e.,

of each other, they will be able to establish a secure edge .
if at least one of the eventsc I, ; or j € ', ; is taking Cy(n; K) = {(i,j) : 1= ) sn ,1€AVje AH
place — Both events may take place, in which case the memory b~
modules of node and;j both contain the distinct keys;, ;; The adversary under consideration is capable of maximizing
andw} ... Ca(n; K) for a given numbefA| of nodes to be captured. This
Under full visibility, namely when every pair of nodes argorompts us to introduce for eagh= 1, ..., n, the maximum
within transmission range of each other, the pairwise sehemumber C,.(n; K) of edges that can be compromised by
gives rise to the following class of random graphs: We saapturingr nodes, namely
that the distinct nodes and j are adjacent, written ~ j, if o o
and only if they have at least one key in common in their key Cr(n; K) = max (Ca(n; K) = A €Ny)
rings, namely, where,. denotes the collections of all subsets{df...,n}
. with exactlyr elements.
i g i S (K) 0 E 5 (K) # 0. 2) Under the assumptions made on its capabilities, the power-
We denote byH(n; K) the undirected random graph on thdul and knowledgeable attacker considered here will be &ble
vertex set{1,...,n} induced by the adjacency notion (2);compromiseC,(n; K) edges by capturing (the appropriate)
this corresponds to modeling the pairwise distributioneseld nodes — This reflects a worst case mindset from the perspectiv
under full visibility. Finally, let F(n; K) denote the (random) of the network. Given this definition, it is natural to ask how
set of edges iffl(n; K). the quantityC,.(n; K') behaves in relation to the total number




|E(n; K)| of edges as gets large (withX” andr also possibly the number of captured nodes is small. As in [7] this leads to
scaled withn). It is common practice [3], [7] to regard thethe condition
condition

Cy, (n; K)=o0(]E(n; K)|) whenever r, =o(n) (3)

n

I, (n; K) =o(n) whenever r, = o(n)

as our second characterization of resiliency. In this paper
as indicative of the resiliency of the network against nodgive conditions on how to scal€ with the number of nodes
capture attacks. A crucial implication of the condition {8) such that for any) < v < 1, we have

that in the many node regime, it implies that an adversary )

will not compromiseQ(|E(n; K,,)|) edges by taking over(n) Jim P[I, (n; Kp) 2 yn] =0 ™

nodes. We_sha}l_l use cond|t.|on. (3) as a basis for chara_tqtgnzwheneverr” -0
the unassailabilityof the pairwise scheme. More specifically
we shall give conditions o’ andn such that for any > 0,

(n) — From these definitions it follows that
(7) holds trivially wheny > % The operational usefulness of
(7) derives from the fact that it ensures that for any sulsset

we have of N, with |S| = Q(n), an adversary must captuet least

lim P[C,, (n; K) >e-|E(n; K)|]=0 (4) €(n) nodes in order to compromisal edges fromS to S°.
wheneverr,, = o(n). When the parameteK is also scaled IV. RELEVANT PRIOR WORK
with n, the condition (4) will be used witlk" replaced byk,,. The resiliency of WSNs against node capture attacks was

C. Unsplittability also investigated by Mei et al. [7]: They considered the EG
: scheme as the underlying security mechanism and obtained
The metric (4) checks whether an adversary can compignditions on the scheme parameters to ensure the apgeopria

mise a considerable fraction of edges by launching an attagkalogs of (4) and (7). We now summarize their findings in

on few sensors. But, it does not tell anything about thet&biliorder to identify the number of keys (to be kept in the memory
of the adversary talisconnectthe network. To explore this of each sensor) that is required to ensure the desired ammslit

issue further, withA still acting as the set of nodes takena) and (7).

over by the attacker, we say that the subSeif nodes isA- Let K(TL, 9) denote the random key graph on the vertex

splittableif the adversary can compromise all the edges froget{1,...,»} induced by the EG scheme under full visibility

S to ¢ =N — S by capturing the nodes idl. To be more [13]; heref = (Sgq, P) collectively stands for the parameters

precise, for any subset of nodes letE(n; K)(S) denote the that specify the EG scheme, namely the (fixed) size;

set of edges irfl(n; K) with one end inS and the other in of the key ring of each sensor node and the sizef the

S¢. Then, theA-splittability of S is characterized by key pool. Thus, let, 1 (6),...,%,..(0) denote the key rings
A N CcAvieA). 5 associated with nodss. . . , n, respectively, in the EG scheme.
(B K)(s) [ J ) ©) By construction,|2,,1(0)] = -+ = |Z,.(0)] = Zpg. We

This is because once the set of nodeslicaptured, an edge are now in a position to present the main result obtained in
i ~ j in H(n; K) will be compromised if either condition [7]. A scaling for the EG scheme is any pair of mappings
1€ Aorje Atakes place. YEa, P : Ny — Ny such that

Given the infinite computational power available to it, the
attacker can in principle minimize the number of nodes it

needs to capture in order teplit S from the rest of the  Theorem 4.1:Consider any scalingrc, P : Ny — Ny for

ZEG,nSPna n=23,...

network. Thus, for eaclh = 1,...,n — 1, we say that the the EG scheme which satisfies
setS of nodes isr-splittablewhenever therexistsa setA of
r nodes such tha$ is A-splittable. Ther-splittability of S is YEGn > Vnlogn. (8)
encoded through the conditions Then, (4) and (7) hold.
VAN, (/\(ij)eE(”,K)(S) (icAVje A)) . (6) In [7] it is claimed, but without proofs, that both propestie

) o ) ) hold also wherXgq ,, > logn. The condition (8) was derived
It is clear that if.S is r-splittable, then its complemerf® ¢4 a5 to also ensure th&t(n; 0,,) is asymptotically almost
(in V) is alsor-splittable. Finally, let/,(n; K') denote the grely (a.a.s) connected. Here, to comply with that practie
size of the largest subset (with size [S| < 5) that can yecal sufficient conditions foF(n; K) to be a.a.s. connected.
be disconnected from the rest of the network by capturing, fix the terminology, we refer to any mappirg : Ny — No

r nodes, namely as ascaling (for the pairwise scheme) provided
I,(n; K) = max {|S| S CN,|S| < g S'is r—splittable} . K, <n n—23.. .

It is natural to wonder as to the behavior Bin; K') asn In [11], the following was shown:
grows large — It is always the case that< I,.(n; K) < 3. Theorem 4.2:For any scalingk : Ny — Ny such
From the perspective of the network, it is desirable that thibat K, > 2 for all n sufficiently large, it holds that

largest subset which can be disconnected be small whenever,, .., P [H(n; K,,) is connecteld= 1.



V. MAIN RESULTS AND DISCUSSION | | Unassailability| Unsplittability |

The main result of the paper, given next, provides a version .EQ XEG {2(vnlogn) 2(vnlogn)
o Pairwise —|X|avg | 4 W,
of Theorem 4.1 for the pairwise scheme. S
Pairwise —|X|yax | O(logn) O(logn)

Theorem 5.1:Consider any scalingd : Ny — Ng. We
always have (4), whereas (7) is satisfied whenever

Fig. 1. A comparison of the EG scheme and the pairwise scheme in terms of
. the minimum number of keys required to achieve unassailakifity unsplit-
nh_{go K, = . ) tability. As beforeaw,, stands for any function satisfyingm, —. . wn, = oo.

) It is clear that pairwise scheme can ensure both of the degfazérties with
much less memory load on the sensors as compared to the EG scheme.

Theorem 5.1, which is established in Section VII, gives

conditions for unassailability and unsplittability undie pair- VI. A BASIC INEQUALITY
wise scheme. However, in contrast with the EG scheme and
its variants, the key ring&, 1(K),..., %, ,(K) produced  Both assertions in Theorem 5.1 are established in Section

by the pairwise scheme are of variable size betw&eand VII, and rely on a basic inequality discussed next. For every
K + (n—1). Therefore, in order to meaningfully compare oug > 0 and K = 1,2,. .., set
findings with those for the EG scheme from [7], we need to
understand how the sizéE,, 1 (K)|, ..., |2, (K)| of these x

. ) ? N = — — < <
key rings depend oii andn. He(w; K) = (¢ - 2)Klog2 + zlog (e) ; Osesl

To explore this issue further, observe that

n Proposition 6.1: With ¢ > 0, consider positive integers
1Sns(K)| = K + Z 1[i €T, ;(K)], i=1,...,n andn such thatil < n. Then, for each = 1,2,...,n, we
j=1, i | have
Xn,i(K)| =t K+Bin(n—1,K/(n-1)), (10)
whenever

whenceE[|X,,;(K)|] = 2K. Since every key appears in , -

exactly two different key rings it follows that £> — (1 + 2e 1> . (13)
n n —
St (K| 4 - 4 S (K
Sl g8 o= Lot BnalBO]_ ¢

by construction. Furthermore, in order to deal with worsteca ) .
scenarios, we introduce the maximal key ring size given byPr00f- Pick a subset! of nodes. The exact expression

1
|20, Max (K) == <1__nllé_x_>_<n |2n,i(K)> ;o m=23,.... CamK) = 5 SN 1 eTni(K) vieT, (K
iCAGEA
Next, upon using a standard Hoeffding bound [4, Thm. _ .
1.1, p. 6] for the binomial rvs (10), we obtain the following + g;‘k;c Lk € Dni(K) Vi € Do (K]

concentration result for the maximal key ring size. This
result can be established with the help of standard boundi
arguments, but is omitted here due to space limitations.

Theorem 5.2:Consider any scalingl : Ngo — Nq such that
K, = O(logn). Then, there exists> 0 such that

ﬂgeasily established but cumbersome to work with. Instead w
will rely on the bound

lim P |5 atax () > cK,] = 0. (11)

where we have set

In view of Theorem 4.1 and Theorem 5.1, we can now
compare the security properties of the pairwise scheme and E,a(K):= Z Zl [iel,;(K)].
of the EG scheme. It is clear from Theorem 5.1 and (11) jEAcicA
that the pairwise key distribution scheme can ensure (4) wit
all key rings being on the orddogn. Similarly, Theorem The validity of (14) can be seen as follows: There are at
5.1 and (11) show that to ensure unsplittability, the paievi most K|A| compromised edges originating out of nodes in
scheme requires key ring sizes Oflogn). As we compare A, while there are exactlyE, 4(K) compromised edges
these findings with Theorem 4.1, we see that the pairwiséginating out of nodes iM¢. To simplify the notation we
scheme can achieve both properties with much smaller k&lyall write £, 4(K) = E,, .(K) when A = {1,...,r} with
ring sizes than needed for the EG scheme; see Figure 1. r=1,...,n.



Now fix r = 1,...,n ande > 0. Using (14) we find follows sinceliminf, .., Hz (*2; K,,) > 0 under (20). The
P[C,(n; K) > enkK] desired conclusion (4) is obtained from (23) upon using.i9)

= P [ U [Ca(n; K) = EnK]] As we now turn to establishing (7), fix the positive integers
AEN: n and K such thatK' < n. The discussion starts with the
following observation: Consider an attack that succeeds in
= P [ U [En,a(K) > enK — TK}] capturing the nodes id, and letS denote an arbitrary subset
AEN; of nodes. IfS is A-splittable, then all the edges between the
< Z P[E, a(K) > enK — rK] set of nodesS and its complement“ are compromised by
AEN, the capture of nodes iA. Hence, the total numbeT 4 (n; K)
~(n of edges which are compromised by this attack must be at
- (T)P[E""‘(K) 2 enK —rK]. (15 \east|E(n; K)(S)|. Therefore, by the characterization (5) of

In [10] the rvs{1[i € Do (K)], j = r+1,....n: i = S being A-splittable we have the inclusion

1,...,r} were shown to be negatively associated [6]. As  [S is A-splittablé C [Cs(n; K) > |E(n; K)(S)]].

a result, the Chernoff-Hoeffding bound [4, Thm. 1.1, p. 6|]__ ) .
applies to the sunk,, (k) in the form or eachy in (0, 3], let \V,, , denote the collection of all
» subsetsS of NV such thatyn < [S| < Z. For eachr =
PlEn, (K) 2t <2 (18) 1,...,n, the definition of the count variablg (n; K) and this
whenevert > 0 satisfies last inclusion imply
t>2¢ BBy, (K) =2 r(n—r)—=  (17) P{L(n; K) 2 ]
n—
sinceE B, .(K)] = r(n —r)-%;. Note that (17) witht = = P| |J [9isr-splitabld
enK — rK is equivalent to (13), in which case (16) becomes | SEN ~
P[E,,(K) > enK — rk] < e"KEn-nlog2 (18 [
(B () 2 = (18) = P| |J U [SisA-splittabld
Reporting the bounds (1) and (18) into (15), the conclusion SEN.. AN,
(12) readily follows. [ | -

IN
~

U U [CatmiE)> IE(n;K)<S)I]]
SENn,~ AEN,
VIl. A PROOF OFTHEOREMb5.1 -

Consider the random grapgH(n; K) for positive integers - p U (O, (n; K) > |E(n; K)(S)]]
n and K such thatK < n. By construction each key is = ’

SEN 4
associated with one and only one edgetitn; K), whereas S
at most two keys can be associated with a given edge. Thus, < 2, P[Cr(n; K) > |E(n; K)(5)] (24)
for edgei ~ j, the upper bound is reached when both events SENn
i €T (K)andj € I', ;(K) take place. As a result, we haveypon using a union bound argument in the last step.
Next, picke > 0 and¢ in (0,1) such that
S S (19) Pieks 0.1
, , 2¢ < (1—0). (25)
Now consider any scalindgd : Ny — Ny and assume that
the condition The need for doing so will become apparent below. For each
7 = o(n) (20) S in N, ., conditioning on|E(n; K)(S)| > enK yields
holds. Givene > 0, the condition P[C,(n; K) > |E(n; K)(9)|] (26)
§>r_n <1+26n—rn> 1) < P[Cr(n;K) > enK] +P[|E(n; K)(S)| < enK].
n—

_ B If condition (13)were to hold, then Proposition 6.1 would
will be met for all n sufficiently large. On that range, Pr°po1mply

sition 6.1 (withe replaced bys) yields
Z P[C,(n; K) > enK]

Kn —nHe (I
P [C’Tn (n; Kp) > Bk ] < o M5 (GiKn) (22) SEN.~
d th < Wyl e
an € convergence
g < 6—n(H5(£;K)—log 2) (27)

' nky| -
nlin;OP [Cm (n; Kn) > € D) ] =0 (23) since|N,, | < 2™



As we consider the second term in the right handside of
(26), pick S in \V,, , and observe that

[Em; K)(S)] = > Y 1[j €Tpi(K) VieT, ;(K)
jESe ieS 1]

> By s(K). (28)
As before, the negative association of the rvs

{1[ie T, ;(K)], i € S,j € 5S¢}, shown in [10], validates [?]

the Chernoff-Hoeffding bound for the suf, (k) [4, Thm. 3]

1.1, p. 6] in the form
P[E,.s(K) < (1 - 0)E[E, (K)|| < e~ FEEns] (29) 4]
Note also that . [5]
E [Bys(K)] = S| (n—|S])- —— 2 2 -nK 0

sinceyn < |S| < & by membership of in \V,, .. From (25)
we automatically have (8]

enK < (1= 8)E[E,,s(K)] (30) 9

for all n =1,2,.... Using the bounds (28) and (30) together
with (29), we conclude [10]

>° PlIE@ K)(S) < enk)

11
SENn ~ [
< ) P[E,s(K) <enK] [12]
SEN ~
< Z P[En,S(K) < (1 - 6)E [En,S(K)]]
SEN .+ [13]
< Y e FEEus)
SeEN, ~
SEN ~

< (31)

(2677%4{)" .

Consider now a scalindg( : Ny — N satisfying (9) and
replace K by K, for all n = 1,2,..., possibly makingr
depend onn as well. As in the earlier part of the proof,
under (20) the condition (21) (with replaced byr,,) holds
for all n = 1,2,... sufficiently large, whence (27) holds on
that range. It is now plain that

lim Y P[C,, (1 K,) > enK,] =0
" SEN -

sincelim,, o (He(22; K,,) — log2) = oo under the condi-

tions (9) and (20). Similarly it is plain from (31) that
lim 3" PE(n; K,)(S)| < enk,] = 0.

n—oo

SeNn ~

The desired conclusion (7) is now an easy consequence of
the last two convergence statements when coupled with the
bounds (24) and (26). [ |
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