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Abstract—The capacity region of the 3-user Gaussian Interfer-
ence Channel (GIC) with mixed strong-very strong interference
was established in [1]. The mixed strong-very strong interference
conditions considered in [1] correspond to the case where, at each
receiver, one of the interfering signals is strong and the other is
very strong. In this paper, we derive the capacity region ofK-user
(K ≥ 3) Discrete Memoryless Interference Channels (DMICs)
with a mixed strong-very strong interference. This corresponds
to the case where, at each receiver one of the interfering signals is
strong and the other (K− 2) interfering signals are very strong.
This includes, as a special case, the 3-user DMIC with mixed
strong-very strong interference. The proof is specializedto the
3-user GIC case and hence an alternative simpler derivationfor
the capacity region of the 3-user GIC with mixed strong-very
strong interference is provided.

I. INTRODUCTION

The capacity of a general K-user interference channel has
been open for decades. The capacity region for the 2-user
Gaussian Interference Channel (GIC) with strong interference
was established in [2] and the capacity region for the 2-user
discrete memoryless interference channel (DMIC) with strong
interference was derived in [3]. The sum-capacity of the 2-
user GIC was obtained for a noisy interference regime [4]–[6]
where, treating interference as noise at each receiver achieves
the sum-capacity. In general, for the 2-user GIC, the capacity
region is known within a gap of one bit [7].

Recently, there has also been some progress in characteriz-
ing the capacity region of the interference channel for more
than 2-users. In [8], lattice codes were used to achieve the
capacity region of the K-user symmetric Gaussian very strong
interference channel. In [9], a noisy interference regime of the
K-user IC was derived as an extension of the 2-user result.
In [10], the sum-capacity of K-user degraded GIC has been
derived and the scheme that achieves this sum-capacity is
shown to be successive interference cancellation.

This paper is based on the work in [1] where, the capacity
region of the 3-user GIC with mixed strong-very strong inter-
ference has been derived. This was defined as the condition
where, at each receiver, one of the interfering signals is strong
and the other interfering signal is very strong.

The contributions and organization of this paper are as
follows:

• The capacity region of the 3-user DMIC with mixed
strong-very strong interference is established (Theorem
1 and Theorem 2 in Section III).

• The capacity region of the 3-user GIC with mixed strong-
very strong interference is established (Corollary 1 in
Section IV). Our proof for this is much simpler than the
proof in [1].

• The capacity region for the 3-user DMIC with mixed
strong-very strong interference is generalized to theK-
user scenario(K ≥ 3) where, at each receiver, one of
the interfering signals is strong and the other(K − 2)
interfering signals are very strong1 (Theorem 3 in Section
V).

In the next section, we present the channel model.
Notations: Realization of an alphabetX is denoted asx.

The probability distribution on the alphabetX is denoted by
pX(x). CN (0, σ2) represents circularly symmetric complex
Gaussian noise with mean0 and varianceσ2. For a random-
variable Q, |Q| denotes the cardinality of the support-set
from whichQ can take values.C denotes the set of complex
numbers.

II. CHANNEL MODEL

The 3-user DMIC model considered in this paper is shown
in Fig. 1. The channel input from User-i is denoted byXi

andYi is the channel output at Receiver-i, i ∈ {1, 2, 3}, and
all of them take values from finite alphabets. User-i intends
to communicate with Receiver-i at rate Ri, i ∈ {1, 2, 3},
through a memoryless channel with transition probability
p(Y1, Y2, Y3|X1, X2, X3). User-i, i ∈ {1, 2, 3}, encodes its
independent messageWi into a codeword of lengthn, i.e.,Xn

i .
We assume that the messageWi, i ∈ {1, 2, 3}, is uniformly
distributed over a set of cardinality2nRi .

Receiver-i, i ∈ {1, 2, 3}, assigns an estimateW ′
i to each

received sequenceY n
i . The average probability of error is

1For K=2, the capacity region given in Theorem 3 reduces to the capacity
region of GIC with strong interference [2].
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Fig. 1. 3-User DMIC Model

defined byP (n)
e = P{(W ′

1,W
′
2,W

′
3) 6= (W1,W2,W3)}. A

rate triplet(R1, R2, R3) is said to be achievable for the DMIC
if there exists a sequence of(2nR1 , 2nR2 , 2nR3 , n) codes with
P

(n)
e → 0. The capacity region of the DMIC is the closure of

the set of all achievable rate triplets(R1, R2, R3).
The codes, achievable rates and average probability of error

can be similarly defined for theK-user case.

III. CAPACITY REGION OF3-USER DMIC WITH
MIXED STRONG-VERY STRONG INTERFERENCE

In this section, we derive the capacity region of the 3-user
DMIC with mixed strong-very strong interference, i.e., each
receiver is constrained to receive a strong interference and
a very strong interference. For the sake of clarity, we shall
consider2 cases of the 3-user DMIC with mixed strong-very
strong interference separately, as stated below (these arethe
only cases possible for the 3-user DMIC).

1) In the first case, each user causes a strong interference at
one of the unintended receivers and a very strong inter-
ference at the other unintended receiver while satisfying
the constraint that each receiver has to receive a strong
interference and a very strong interference.

2) In the second case, one of the three users produces
strong interference at both the unintended receivers, the
second user causes very strong interference at both the
unintended receivers and the remaining user produces
a strong interference at one of the unintended receivers
and a very strong interference at the other unintended
receiver while satisfying the constraint that each receiver
has to receive a strong interference and a very strong
interference.

Precise definitions for very strong interference and strong
interference for Case1 are given in (1)-(3) and (4)-(6) respec-
tively and for Case2 in (15)-(17) and (18)-(20) respectively.

The following lemma will be useful in proving the results.
Lemma 1 ( [3]): If I[X1;Y1|X2, X3] ≤ I[X1;Y2|X2, X3]

∀ pX1
(x1)pX2

(x2)pX3
(x3), then I[Xn

1 ;Y
n
1 |Xn

2 , X
n
3 ] ≤

I[Xn
1 ;Y

n
2 |Xn

2 , X
n
3 ] ∀ n ≥ 1.

Proof: This can be proved in the same way as Lemma 1
in [3].

Case 1:Without loss of generality, we assume that User-
1 causes a very strong interference at Receiver-2 and strong
interference at Receiver-3, User-2 causes a very strong inter-
ference at Receiver-3 and strong interference at Receiver-1,
and User-3 causes a very strong interference at Receiver-1
and strong interference at Receiver-2, i.e., the conditions

I [X1;Y2] ≥ I [X1;Y1|X2, X3] (1)

I [X2;Y3] ≥ I [X2;Y2|X3, X1] (2)

I [X3;Y1] ≥ I [X3;Y3|X1, X2] (3)

I [X1;Y1|X2, X3] ≤ I [X1;Y3|X2, X3] (4)

I [X2;Y2|X3, X1] ≤ I [X2;Y1|X3, X1] (5)

I [X3;Y3|X1, X2] ≤ I [X3;Y2|X1, X2] (6)

are satisfied∀ pX1
(x1)pX2

(x2)pX3
(x3). The equations (1)-(3)

represent the very strong interference conditions and (4)-(6)
represent the strong interference conditions. Now, we establish
the capacity region of this channel.

Theorem 1: The capacity region of the 3-user DMIC with
mixed strong-very strong interference, satisfying (1)-(6) is
given by

R1 < I [X1;Y1|X2, X3, Q] (7)

R2 < I [X2;Y2|X3, X1, Q] (8)

R3 < I [X3;Y3|X1, X2, Q] (9)

R1 +R2 < I [X1, X2;Y1|X3, Q] (10)

R2 +R3 < I [X2, X3;Y2|X1, Q] (11)

R3 +R1 < I [X3, X1;Y3|X2, Q] (12)

for some joint distribution pQ(q)pX1|Q(x1|q)pX2|Q(x2|q)
pX3|Q(x3|q), where,Q is the time-sharing random-variable
with |Q| ≤ 7.

Proof: We shall first prove the converse.
Converse: Equations (7)-(9) are the usual outer bounds.

Now,

n(R1 +R2)
(a)
< I [Xn

1 ;Y
n
1 ] + I [Xn

2 ;Y
n
2 ] + nǫn

< I [Xn
1 ;Y

n
1 , X

n
3 ] + I [Xn

2 ;Y
n
2 , X

n
1 , X

n
3 ] + nǫn

(b)
= I [Xn

1 ;Y
n
1 |Xn

3 ] + I [Xn
2 ;Y

n
2 |Xn

1 , X
n
3 ] + nǫn

(c)

≤ I [Xn
1 ;Y

n
1 |Xn

3 ] + I [Xn
2 ;Y

n
1 |Xn

1 , X
n
3 ] + nǫn

= I [Xn
1 , X

n
2 ;Y

n
1 |Xn

3 ] + nǫn

(d)
= h(Y n

1 |Xn
3 )−

n
∑

i=1

h(Y1i|X1i, X2i, X3i) + nǫn

(e)
<

n
∑

i=1

(h(Y1i|X3i)− h(Y1i|X1i, X2i, X3i))

+ nǫn

=
n
∑

i=1

I [X1i, X2i;Y1i|X3i] + nǫn

= n
1

n

n
∑

i=1

I [X1i, X2i;Y1i|X3i] + nǫn

⇒ R1 +R2 < I [X1, X2; Y1|X3, Q] + ǫn



where,(a) follows from Fano’s inequality,(b) follows from the
fact thatXn

1 , Xn
2 andXn

3 are independent,(c) follows from
(5) and Lemma 1,(d) follows from the memoryless property
of the channel and(e) follows from the fact that removing
conditioning increases entropy. Finally, taking the limitasn →
∞, P (n)

e → 0, we have

R1 +R2 < I [X1, X2;Y1|X3, Q].

Similarly, using (4) and (6), we can easily derive the outer
bounds in (11) and (12) respectively.

Achievability: Fix pQ(q)pX1|Q(x1|q)pX2|Q(x2|q)
pX3|Q(x3|q). At User-i, i ∈ {1, 2, 3}, generate 2nRi

independent codewordsXn
i (Wij), j ∈ {1, 2, 3, ..2nRi}, of

lengthn, generating each element i.i.d.∼
∏n

k=1 pXi|Q(xik|q),
where,Wij indicates message-j at User-i. First decode User-
1’s message at Receiver-2, User-2’s message at Receiver-3
and User-3’s message at Receiver-1 by the usual weak-typical
set decoding. They can be decoded with arbitrarily small
probability of error if

R1 < I [X1;Y2|Q]; R2 < I [X2;Y3|Q]; R3 < I [X3;Y1|Q]. (13)

Now, given that the messages of User-1, User-2 and User-3 are
known at Receiver-2, Receiver-3 and Receiver-1 respectively,
we perform the usual MAC-type decoding [16] on messages
of User-1 and User-2 at Receiver-1, User-2 and User-3 at
Receiver-2 and User-3 and User-1 at Receiver-3. They can be
decoded with arbitrarily small probability of error if (7)-(12)
and

R1 < I [X1;Y3|X2, X3, Q]

R2 < I [X2;Y1|X3, X1, Q] (14)

R3 < I [X3;Y2|X1, X2, Q]

are satisfied. The conditions in (13) and (14) are redundant be-
cause (1)-(6) are satisfied∀ pX1

(x1)pX2
(x2)pX3

(x3). The car-
dinality of Q follows from direct application of Caratheodory
Theorem [16].

Case 2:Without loss of generality, we assume that User-1
causes strong interference at both Receiver-2 and Receiver-
3, User-3 causes very strong interference at both Receiver-
1 and Receiver-2 while User-2 causes strong interference at
Receiver-1 and very strong interference at Receiver-3, i.e., the
conditions

I [X3;Y2] ≥ I [X3;Y3|X1, X2] (15)

I [X2;Y3] ≥ I [X2;Y2|X3, X1] (16)

I [X3;Y1] ≥ I [X3;Y3|X1, X2] (17)

I [X1;Y1|X2, X3] ≤ I [X1;Y3|X2, X3] (18)

I [X2;Y2|X3, X1] ≤ I [X2;Y1|X3, X1] (19)

I [X1;Y1|X2, X3] ≤ I [X1;Y2|X2, X3] (20)

are satisfied∀ pX1
(x1)pX2

(x2)pX3
(x3). The equations (15)-

(17) represent the very strong interference conditions and(18)-
(20) represent the strong interference conditions. Now, we
establish the capacity region of this channel.

Theorem 2: The capacity region of the 3-user DMIC with
mixed strong-very strong interference, satisfying (15)-(20) is
given by

R1 < I [X1;Y1|X2, X3, Q] (21)

R2 < I [X2;Y2|X3, X1, Q] (22)

R3 < I [X3;Y3|X1, X2, Q] (23)

R1 +R2 < min{I [X1, X2;Y1|X3, Q], I [X1, X2;Y2|X3, Q]}
(24)

R3 +R1 < I [X3, X1;Y3|X2, Q] (25)

for some joint distribution pQ(q)pX1|Q(x1|q)pX2|Q(x2|q)
pX3|Q(x3|q), where,Q is the time-sharing random-variable
with |Q| ≤ 7.

Proof: We shall first prove the converse.
Converse: Equations (21)-(23) are the usual outer bounds.

Note that the condition (5) of Case 1 holds here too (in (19)).
Hence, the bound

R1 +R2 < I[X1, X2;Y1|X3, Q]

is valid here too. Now,

n(R1 +R2)
(a)
< I [Xn

1 ;Y
n
1 ] + I [Xn

2 ;Y
n
2 ] + nǫn

< I [Xn
1 ;Y

n
1 , X

n
2 , X

n
3 ] + I [Xn

2 ;Y
n
2 , X

n
3 ] + nǫn

(b)
= I [Xn

1 ;Y
n
1 |Xn

2 , X
n
3 ] + I [Xn

2 ;Y
n
2 |Xn

3 ] + nǫn

(c)

≤ I [Xn
1 ;Y

n
2 |Xn

2 , X
n
3 ] + I [Xn

2 ;Y
n
2 |Xn

3 ] + nǫn

= I [Xn
1 , X

n
2 ;Y

n
2 |Xn

3 ] + nǫn

(d)
= h(Y n

2 |Xn
3 )−

n
∑

i=1

h(Y2i|X1i, X2i, X3i) + nǫn

(e)
<

n
∑

i=1

(h(Y2i|X3i)− h(Y2i|X1i, X2i, X3i))

+ nǫn

=
n
∑

i=1

I [X1i, X2i;Y2i|X3i] + nǫn

= n
1

n

n
∑

i=1

I [X1i, X2i;Y2i|X3i] + nǫn

⇒ R1 +R2 < I [X1, X2; Y2|X3, Q] + ǫn (26)

where,(a) follows from Fano’s inequality,(b) follows from
the fact thatXn

1 , Xn
2 and Xn

3 are independent,(c) follows
from (20) and Lemma 1,(d) follows from the memoryless
property of the channel and(e) follows from the fact that
removing conditioning increases entropy. Finally, takingthe
limit as n → ∞, P (n)

e → 0, we have

R1 +R2 < I [X1, X2;Y2|X3, Q].

Similarly, using (18), we can easily derive the outer bound in
(25).

Achievability: Fix pQ(q)pX1|Q(x1|q)pX2|Q(x2|q)
pX3|Q(x3|q). At User-i, i ∈ {1, 2, 3}, generate 2nRi

independent codewordsXn
i (Wij), j ∈ {1, 2, 3, ..2nRi}, of

lengthn, generating each element i.i.d.∼
∏n

k=1 pXi|Q(xik|q),



where,Wij indicates message-j at User-i. First decode User-
3’s message at Receiver-2, User-2’s message at Receiver-3
and User-3’s message at Receiver-1 by the usual weak-typical
set decoding. They can be decoded with arbitrarily small
probability of error if

R3 < I [X3;Y2|Q]; R2 < I [X2;Y3|Q]; R3 < I [X3;Y1|Q]. (27)

Now, given that the messages of User-3, User-2 and User-3
are known at Receiver-2, Receiver-3 and Receiver-1 respec-
tively, we perform the usual MAC-type decoding on messages
of User-1 and User-2 at Receiver-1, User-2 and User-1 at
Receiver-2 and User-3 and User-1 at Receiver-3. They can be
decoded with arbitrarily small probability of error if (21)-(25)
and

R1 < min{I [X1;Y2|X2, X3, Q], I [X1; Y3|X2, X3, Q]}

R2 < I [X2;Y1|X3, X1, Q] (28)

are satisfied. The conditions in (27) and (28) are redundant
because (15)-(20) are satisfied∀ pX1

(x1)pX2
(x2)pX3

(x3).
The cardinality of Q follows from direct application of
Caratheodory Theorem [16].

IV. CAPACITY REGION OF 3-USER GIC WITH
MIXED STRONG-VERY STRONG INTERFERENCE

Consider a 2-user GIC with the following input-output
equations

Yj =
2∑

i=1

hijXi +Nj

where, hij is the channel gain from User-i to Receiver-j,
hii=1, hij ∈ C (j 6= i), Nj ∼ CN (0, 1) and j ∈ {1, 2}.
User-i has a power constraintPi (i ∈ {1, 2}). We shall first
state a lemma from [11], which was mentioned in the context
of the 2-user GIC.

Lemma 2 ( [11]): 1) If I[X1;Y1|X2] ≤ I[X1;Y2|X2]
when Xi ∼ CN (0, Pi) (i ∈ {1, 2}), then
I[X1;Y1|X2] ≤ I[X1;Y2|X2] ∀ pX1

(x1)pX2
(x2).

Similarly, when I[X2;Y2|X1] ≤ I[X2;Y1|X1]
when Xi ∼ CN (0, Pi) (i ∈ {1, 2}), then
I[X2;Y2|X1] ≤ I[X2;Y1|X1] ∀ pX1

(x1)pX2
(x2).

2) If I[X1;Y1|X2] ≤ I[X1;Y2] when
Xi ∼ CN (0, Pi) (i ∈ {1, 2}), then
I[X1;Y1|X2] ≤ I[X1;Y2] ∀ pX1

(x1)pX2
(x2).

Similarly, when I[X2;Y2|X1] ≤ I[X2;Y1]
when Xi ∼ CN (0, Pi) (i ∈ {1, 2}), then
I[X2;Y2|X1] ≤ I[X2;Y1] ∀ pX1

(x1)pX2
(x2).

Note thatI[X1;Y1|X2] = I[X1;X1+N1] andI[X1;Y2] =
I[X1;X2 + h12X1 +N2].

Now, consider a 3-user Gaussian IC with the following
input-output equations

Yj =

3∑

i=1

hijXi +Nj

where, hij is the channel gain from User-i to Receiver-j,
hii=1, hij ∈ C (j 6= i), Nj ∼ CN (0, 1) and j ∈ {1, 2, 3}.
User-i has a power constraintPi (i ∈ {1, 2, 3}).

Let us consider the Case 1, where we assumed, without loss
of generality, that User-1 causes a very strong interference
at Receiver-2 and strong interference at Receiver-3, User-2
causes a very strong interference at Receiver-3 and strong
interference at Receiver-1, and User-3 causes a very strong
interference at Receiver-1 and strong interference at Receiver-
2.

Corollary 1: The capacity region of the 3-user GIC satis-
fying the conditions

|h12|
2 ≥ 1 + P2 + |h32|

2
P3 (29)

|h23|
2 ≥ 1 + P3 + |h13|

2
P1 (30)

|h31|
2 ≥ 1 + P1 + |h21|

2
P2 (31)

|h13| ≥ 1 (32)

|h21| ≥ 1 (33)

|h32| ≥ 1 (34)

is given by

R1 < I [X1G;Y1G|X2G, X3G] (35)

R2 < I [X2G;Y2G|X3G, X1G] (36)

R3 < I [X3G;Y3G|X1G, X2G] (37)

R1 +R2 < I [X1G, X2G;Y1G|X3G] (38)

R2 +R3 < I [X2G, X3G;Y2G|X1G] (39)

R3 +R1 < I [X3G, X1G;Y3G|X2G] (40)

where, X1G ∼ CN (0, P1), X2G ∼ CN (0, P2), X3G ∼
CN (0, P3).

Proof: Condition (29) implies that condition (1) is satis-
fied forXi ∼ CN (0, Pi) (i ∈ {1, 2, 3}). This, in turn, implies
that condition (1) is satisfied∀ pX1

(x1)pX2
(x2)pX3

(x3),
because we can treatX2 + h32X3 as a single channel
input and apply the second part of Lemma 2 (note that
I[X1;Y1|X2, X3] = I[X1;X1 + N1] and I[X1;Y2] =
I[X1;h12X1 +X2 + h32X3 +N2]). Similarly, the conditions
(30) and (31) imply that the conditions (2) and (3) are re-
spectively satisfied∀ pX1

(x1)pX2
(x2)pX3

(x3). The conditions
(32)-(34) imply that (4)-(6) are satisfied forXi ∼ CN (0, Pi)
(i ∈ {1, 2, 3}). By application of the first part of Lemma
2, the conditions (32)-(34) imply that (4)-(6) are satisfied
∀ pX1

(x1)pX2
(x2)pX3

(x3). Since Gaussian alphabets max-
imize the expressions in (7)-(12), the capacity region is as
given in (35)-(40).

Similarly, it can be easily shown that, for Case 2, when
(15)-(20) are satisfied forXi ∼ CN (0, Pi) (i ∈ {1, 2, 3}),i.e.,

|h32|
2 ≥ 1 + P2 + |h12|

2
P1 (41)

|h23|
2 ≥ 1 + P3 + |h13|

2
P1 (42)

|h31|
2 ≥ 1 + P1 + |h21|

2
P2 (43)

|h13| ≥ 1 (44)

|h21| ≥ 1 (45)

|h12| ≥ 1 (46)



the capacity region of the channel is given by

R1 < I [X1G;Y1G|X2G, X3G]

R2 < I [X2G;Y2G|X3G, X1G]

R3 < I [X3G;Y3G|X1G, X2G]

R1 +R2 < min{I [X1G, X2G;Y1G|X3G], I [X1G, X2G;Y2G|X3G]}

R3 +R1 < I [X3G, X1G;Y3G|X2G]

The above results for the GIC were independently proved in
[1], but our proof is simpler.

V. EXTENSION TO THEK -USER DMIC CASE

In this section, we generalize capacity region of the3-user
DMIC with mixed strong-very strong interference to theK-
user scenario(K ≥ 3). For theK-user case, each receiver
is constrained to receive one strong interference and(K − 2)
very strong interferences.

Let Xi = {Xj|j 6= i} (i, j ∈ {1, 2, ..K}). Let lj
(j ∈ {1, 2, ..K}, lj ∈ {1, 2, ..K}) denote the strong-interferer
at Receiver-j, i.e., one which satisfies the condition

I [Xlj ;Ylj |Xlj ] ≤ I [Xlj ;Yj |Xlj ] ∀ pX1
(x1) · · pXK

(xK) (47)

and, let lj denote the set of all very strong interferers at
Receiver-j, i.e., which includes each User-m, m ∈ {1, 2, ..K},
that satisfies the condition

I [Xm;Yj ] ≥ I [Xm;Ym|Xm] ∀ pX1
(x1) · · pXK

(xK). (48)

Let Xlj
= {Xi|i ∈ lj}.

Theorem 3: The capacity region of theK-user DMIC
(K ≥ 3), where, each receiver is constrained to receive one
strong interference and(K − 2) very strong interferences (the
conditions in (47) and (48) are satisfied at every Receiver-j)
is given by

Ri < I [Xi;Yi|Xi, Q] ∀ i ∈ {1, 2, ..K} (49)

Rj +Rlj < I [Xj , Xlj ;Yj |Xlj
, Q] ∀ j ∈ {1, 2, ..K} (50)

for some distributionpQ(q)pX1|Q · · pXK |Q(xK |q), where,Q
is the time-sharing random-variable with|Q| ≤ 2K + 1.

Proof: The converse and achievability are given in the
Appendix.

The extension of the capacity region of3-user GIC with
mixed strong-very strong interference to theK-user case
where each receiver receives one strong interference and
(K−2) very strong interferences is straight-forward from (47),
(48), Lemma 2 and Theorem 3.

VI. DISCUSSION

The capacity region of a Gaussian channel when the inputs
take values from finite complex constellations, with uniform
distribution over the constellation, is called the Constellation
Constrained (CC) capacity [12]. The CC capacity for the
Gaussian-MAC (G-MAC) was analyzed in [13], for the 2-
user GIC with strong interference in [14] and [15]. With finite
constellations, suboptimality of Frequency Division Multiple

Access (FDMA) scheme was shown for the G-MAC in [13]
and for the 2-user GIC with strong interference in [15]. A
similar analysis with finite constellations for the class ofK-
user GIC considered here is an interesting direction to pursue.
An important direction of future research is to design practical
schemes that would take us close to the CC capacity. This
problem has been open even for the2-user GIC with strong
interference.

ACKNOWLEDGEMENT

The authors wish to thank Dr. Rajesh Sundaresan and
T. Damodaram Bavirisetti for the useful discussions. This
work was supported partly by the DRDO-IISc program on
Advanced Research in Mathematical Engineering through a
research grant as well as the INAE Chair Professorship grant
to B. S. Rajan.

REFERENCES

[1] Anas Chaaban and Aydin Sezgin, “The Capacity Region of the 3-
User Gaussian Interference Channel with Mixed Strong-VeryStrong
Interference”, arXiv:1010.4911v1 [cs.IT], Submitted to WSA 2011,
Aachen, Germany, Feb. 24-25, 2011.

[2] H. Sato, “The Capacity of the Gaussian Interference Under Strong
Interference”, IEEE Transactions on Information Theory, vol. IT-27,
no.6, pp. 786-788, Nov. 1981.

[3] M. H. M. Costa and A. El Gamal, “The Capacity Region of the
Discrete Memoryless Interference Channel with Strong Interference”,
IEEE Transactions on Information Theory, vol. IT-33, no.5,pp. 710-
711, Sep. 1987.

[4] X. Shang, G. Kramer, and B. Chen, “A new outer bound and thenoisy-
interference sum-rate capacity for Gaussian interferencechannels”,
IEEE Transactions on Information Theory, vol. 55, no. 2, pp.689-699,
Feb. 2009.

[5] V. S. Annapureddy and V. V. Veeravalli, “Gaussian Interference Net-
works: Sum Capacity in the Low-Interference Regime and New Outer
Bounds on the Capacity Region”, IEEE Transactions on Information
Theory, Vol. 55, No. 7, pp. 3032-3050, Jul. 2009

[6] A. S. Motahari and A. K. Khandani, “Capacity Bounds for the Gaussian
Interference Channel”, IEEE Transactions on Information Theory, Vol.
55, No. 2, pp. 620-643, Feb. 2009.

[7] R. Etkin, D. Tse and H. Wang, “Gaussian Interference Channel Ca-
pacity to Within One Bit”, IEEE Transactions on InformationTheory,
Vol. 54, no. 12, pp. 5534-5562, Dec. 2008.

[8] S. Sridharan, A. Jafarian, S. Vishwanath, and S. A. Jafar, “Capacity
of Symmetric K-User Gaussian Very Strong Interference Channels”,
IEEE GLOBECOM 2008, Nov. 2008, pp. 1-5.

[9] X. Shang, G. Kramer, and B. Chen, “Throughput Optimization in
Multiuser Interference Channels”, MILCOM 2008, November 2008,
pp. 1-7.

[10] J. Jose and S. Vishwanath, “Sum Capacity of Degraded Gaussian In-
terference Networks”, submitted to IEEE Transactions on Information
Theory, Sep 2010.

[11] A. El Gamal and Young-Han Kim, “Lecture Notes on NetworkIn-
formation Theory”, arXiv:1001.3404v4 [cs.IT], pp. 6-12 – 6-21, Jan.
2010, Available at: http://arxiv.org/abs/1001.3404v4.

[12] Ezio Biglieri, Coding for wireless channels, Springer-Verlag New York,
Inc, 2005.

[13] J. Harshan and B. Sundar Rajan, “On the Two-User SISO-Gaussian and
MIMO-Fading MAC with Finite Input Alphabets”, IEEE Transactions
on Information Theory, (Accepted for publication).

[14] Frederic Knabe, Aydin Sezgin, “Achievable Rates in Two-user
Interference Channels with Finite Inputs and (Very) StrongIn-
terference”, arXiv:1008.3035v1 [cs.IT], Aug. 2010, Available at:
http://arxiv4.library.cornell.edu/abs/1008.3035.

[15] G. Abhinav and B. Sundar Rajan, “Two-User Gaussian Interference
Channel with Finite Constellation Input and FDMA”, IEEE WCNC
2011, Quintana-Roo, Mexico, Mar. 28-31, 2011.

[16] T. M. Cover and J. A. Thomas, “Elements of information theory”,
second edition - Wiley Series in Telecommunications, 2004.

http://arxiv.org/abs/1010.4911
http://arxiv.org/abs/1001.3404
http://arxiv.org/abs/1001.3404v4
http://arxiv.org/abs/1008.3035
http://arxiv4.library.cornell.edu/abs/1008.3035


APPENDIX

Proof of Theorem 3

Converse: Equation (49) is the usual outer bound. Now, at
each Receiver-j, the following steps hold good.

n(Rj +Rlj )
(a)
< I [Xn

j ;Y
n
j ] + I [Xn

lj
;Y n

lj
] + nǫn

< I [Xn
j ;Y

n
j , X

n

lj
] + I [Xn

lj
;Y n

lj
, X

n
j , X

n

lj
] + nǫn

(b)
= I [Xn

j ;Y
n
j |Xn

lj
] + I [Xn

lj
;Y n

lj
|Xn

j , X
n

lj
] + nǫn

(c)

≤ I [Xn
j ;Y

n
j |Xn

lj
] + I [Xn

lj
;Y n

j |Xn
j , X

n

lj
] + nǫn

= I [Xn
j , X

n
lj
; Y n

j |Xn

lj
] + nǫn

(d)
= h(Y n

j |Xn

lj
)−

n
∑

i=1

h(Yji|X1i, X2i · · XKi)

+ nǫn

(e)
<

n
∑

i=1

(

h(Yji|Xlj i
)− h(Yji|X1i, X2i, · · XKi)

)

+ nǫn

=
n
∑

i=1

I [Xji, Xlji;Yji|Xlj i
] + nǫn

= n
1

n

n
∑

i=1

I [Xji, Xlj i;Yji|Xlji
] + nǫn

⇒ Rj +Rlj < I [Xj , Xlj ;Yj |Xlj
, Q] + ǫn

where,(a) follows from Fano’s inequality,(b) follows from
the fact thatXn

j , Xn
lj

andXn

lj
are independent,(c) follows

from (47), Lemma 1 and the fact that(Xn
j , X

n

lj
) = Xlj

n
,

(d) follows from the memoryless property of the channel and
(e) follows from the fact that removing conditioning increases
entropy. Finally, taking the limit asn → ∞, P (n)

e → 0, we
have

Rj +Rlj < I [Xj , Xlj ;Yj |Xlj
, Q].

Achievability: Fix pQ(q)pX1|Q(x1|q) · · pXK |Q(xK |q). At
User-i, i ∈ {1, 2, ..K}, generate2nRi independent codewords
Xn

i (Wip), p ∈ {1, 2, 3, ..2nRi}, of lengthn, generating each
element i.i.d.∼

∏n

k=1 pXi|Q(xik|q), where,Wip indicates
message-p at User-i. Let lj = {lj(1), lj(2), ..lj(K − 2)},
where, lj(m) denotes themth very strong interferer. At
Receiver-j, decodelj(1), lj(2), ··, lj(K − 2) in succession
using the usual weak-typical set decoding. They can be
decoded with arbitrarily small probability of error if

Rlj(1) < I [Xlj(1);Yj |Q]

Rlj(2) < I [Xlj(2);Yj |Xlj (1), Q]

... (51)

Rlj(K−2) < I [Xlj(K−2);Yj |Xlj (1), Xlj(2), · · Xlj(K−3), Q]

where, I[Xlj(m);Yj |Xlj(1), Xlj(2), · · · Xlj(m−1), Q] >

I[Xlj(m);Yj |Q] ≥ I[Xlj(m);Ylj(m)|Xlj(m), Q] (from (48)),

for everym ∈ {1, 2, .. K − 2}. Now, given that the messages
of the very strong interferers are known at Receiver-j, we
perform the usual MAC-type decoding on messages of User-j

and User-lj at Receiver-j. They can be decoded with arbitrarily
small probability of error if (49), (50) and

Rlj < I [Xlj ;Yj |Xlj , Q] (52)

are satisfied. The conditions in (51) and (52)
are redundant because (47) and (48) are satisfied
∀ pX1

(x1)pX2
(x2) · · · pXK

(xK). The cardinality of Q
follows from direct application of Caratheodory Theorem
[16].
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