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Abstract—In this paper, we propose an autonomous radio
resource allocation and optimization scheme that chooseshe
transmit power and precoding vector among codebooks for
multiple antennas transmitters to improve spectral and pover
efficiency and provide user fairness. Network self-optimiation
is an essential feature for supporting the cell densificatio in
future wireless cellular systems. The proposed self-optiipation
is inspired by Gibbs sampler. We show that it can be imple-
mented in a distributed manner and nevertheless achieves sigm-
wide optimization which improves network throughput, power
utilization efficiency, and overall service fairness. In adition,
we extend the work and include power pricing to parametrize
and enhance energy efficiency further. Simulation results loow
that the proposed scheme can outperform today’s default moek
of operation in network throughput, energy efficiency, and wser
fairness.

Index Terms—Mobile cellular networks, interference manage-
ment, precoding, power control, Gibbs sampler, self-optinzation.

I. INTRODUCTION

to decide and conduct operations in a distributed manner
following the resource allocation policy, taking intedece
into account and automatically adapting to the interactibn
neighbor cells.

It is well known that optimizing system throughput and
fairness through parameters such as transmit power, pregod
vector (when several transmit antennas are available) and
channel allocation is very effective in many wireless syse
including mobile cellular networks. However, the optintina
of multi-cell system over interfering links often leads to
non-convex optimization problems. The design of efficient
algorithms operating in a distributed manner and ensuring
global optimality in these networks is always very challieigg
[5, Chap. 7.5].

In this paper, we propose a distributed algorithm perfognin
self-optimization for cellular networks (e.g., LTE and fem
cell), focusing on multiple transmit antenna power condnudl
precoding. The objectives are to improve spectral effigienc

Today, it is commonly anticipated that cellular networkd wiuser fairness, and also power utilization efficiency. The- pr
further evolve to denser and smaller cells, with a strongi@pa posed solution is inspired by Gibbs sampler (see e.g., [6]).
frequency reuse, possibly with the whole spectrum resountds an extension of the work in [7] which only takes into
made available within each cell (reuse 1) [1]. Systems sschaccount user association and power control, and is limived t
LTE and LTE-Advanced [2] intend to use small cells in urbagingle antenna systems. In this paper, we generalize thasGib
environment to create local coverage to maximize spatieee sampler to include multiple transmit antennas and pregpdin
and support rapidly increasing data traffic. However, a denBurthermore, we present an extended cost function, canside
deployment of base stations (BS) with shorter coverageerarigg power pricing, to parametrize the power efficiency of the
will bring new challenges to inter-cell interference magag system. Results show that the solution can be implemented
ment (especially at the cell boundaries) and its complexity in a distributed manner and nevertheless improves system-

Such networks are characterized by an increasing numbemafie spectrum utilization efficiency. Finally, we invesitg the

distributed infrastructure elements and the unpredilitalmf

power and spectrum efficiency trade-off which can be aclieve

the base station and user patterns. Self-organizationelfid sfor different purposes.

optimization networks (SON) becomes necessary in order toThe rest of the paper is organized as follows. Section Il
prevent a huge increase of planning and optimization te3ks [presents the system model and problem formulation. Sec-
Autonomic management and configuration is highly desirabien Ill describes the proposed solution. Section IV corepar

in practice to reduce the system’s capital and operationhls solution to other approaches with numerical studiéss T

expenditure (CAPEX/OPEX) [4].

work is concluded in section V.

Radio resource management (RRM) has the fundamental

role of sharing power and resource slots among users tdysatis

their service requirements. Therefore, in this contextefiin

Il. SYSTEM MODEL
We here consider that downlink and uplink channels are or-

cient mechanism should allow a base station or the traremitthogonal. This paper deals with the downlink resource sigari



problem. We consider a reuse-1 mobile cellular network withe terminology of Gibbs sampler, which is given by:
a set of base statiorns serving a set of useig. A 1

We first assume each useiis associated to the base station €= Z SINR,, ®)
b, € Bthat has the smallest pathloss, which can be determined o ooued ) )
from the pilots, for example. LTE and LTE-A systems divide |N€ Optimization aims at finding a configuration, also
the available bandwidth into multiple orthogonal resourd&ferred to as astate of precoding vectorsw, and power
blocks (RB). In each cell, a single user is allocated pdlocation?, for all u, which minimizest. _
RB, from a pure local decision. For the sake of simplicity,. This cost function provides by itself a fairness constraint

we focus in this paper on a given RB simultaneously us&'c€ @ user with a low SINR will lead to a high penalty (and
by all BS. Therefore, for this RB, this is equivalent to yice versa). Meanwhile, it will balance the interferencenge

single resource full-reuse system. Note that this approagited from a BS to other users, since for example increasing
is suboptimal and a more complete optimization could gae power for a user will increase its SINR but decrease the

achieved by a joint optimization of the RB selection, powe$”\”:‘)”s Of othgrs. he alobal b , ]
control, and precoder. The more general case considering!jz0 owing (2), the global energg can be written as:

multiple-resource allocation is a subject of on-going work Nu+ > Py, ulhp, wwol?
In this paper, we will only focus on the power and precode = Z veU vz ~
optimization. = Puly, ulhp, Wl

N, antennas are assumed at base stations and single antenna Z <Pvlbu wlhy, w2 Pulbu.u|hbu.ku|2)
at users. At user, served by a BS,,, the received signal is Pulp, ulhy, wWu|?>  Puly, o|hp, oW, |2

given by: {uvpcu N
t . 4
Yu = V4 Pulbu,uhbu,uwuxu + ;/l Pulbu,u|hbu,uwu|2 ( )
+ Z VPl why, oWy + 24 1) The above minimization problem is clearly non-convex,
vEU, vF U with a high combinatorial complexity and is in general not

possible to solve analytically for large networks.
It is observed thaf derives from a potential functiol (V)
[6] as follows: for all subset® C U, (4) can be expressed as:

where P, denotes the transmission power used®pyo u, x,
is the transmitted symbol for user, z,, is the receiver noise
at u, considered white and Gaussian with variadég, [y, .,

denotes the distance dependent path loss, including sliaglow &= Z Vv, (5)
common to all antenna links, from, to u, hy, , € C*N vcu

denotes the specific channel state on tNe links, and where the potential functiof’(-) has the following form:
w, € CN+*1 denotes the unitary precoding vector used at N

the BS. Assuming coherent detection at receivers, the lsigna | V/(V) = = if V={u},

. . . P,l h 2
to-interference-plus-noise ratio (SINR) can be expressed ulbul b“’“W“|2
_ Pvlbu,u|hbu,vwv|

Vi) =
SINR, £ Pulp, o, uWul* 2 v Pylp, ulhe, uwal?
b Nu + Z Pvlbv 7u|hbv 7uW'U|2 . Pyl »|h v Woy 2 H
vellv#u + W if V= {u,v},
v(y) =0 it [V] >3,

In (2), we consider that adjacent-channel interferencess n

ligible compared to co-channel interference. (6)
Considering that some Channel State Information (CShhere|V| denotes the cardinality of.

are known at transmitter side, base stations can use transmA global energy which derives from the above potential

precoding vectors, to improve user signal quality. The itetafunction satisfying the condition that(V) = 0 for |V| > 3 is

of information required will be discussed in sub-sectidrBl amenable to a distributed optimization by Gibbs sampleln wit
Our work aims at achieving a global optimization of théhe followinglocal energy [7] at each::

network, in terms of user fairness, network throughput and £, = Z V). @)

power consumption, using appropriate precoding and power

. . . A ueV , YU
allocation to balance active signals and interference.

Following the above definition o (-) and (7), we have:

2
A. Problem Formulation Ny + vgu Pylo, ulhe, uwol
: : . . Eu =
To achieve this goal, we choose the harmonic-mean fairness, Pulp, u|he, wWul?

applied on user SINRs, for mathematical convenience (see
below). Note that this fairness is an surrogate of the notion 5
of minimal potential delay fairness proposed in [8]. We call + Z P“lbuW'hbuv”W“'Q . (8)
the globalenergy the cost function to be minimized, following vrtu Poly, o[hp, uWol

=1/SINRy,




Eq.(8) can be decomposed in two parts, one favoringe The set ofneighborsof a nodeu in the graph is the set of

the useru (“selfish”) and one evaluating the impact afs
transmission on the rest of the network (“altruistic”). Hahat
the selfish term /SINR, is directly linked to the performance

all usersv # u such that the power of the signal received
atu from a base station af is above a specific threshold,
say# (for practical consideration, we assume that it is the

of useru. On the other hand, the “altruistic” part of the local same for all).

energy measures the interference generated on other users, Note that for practical reason, power level is discretized i

v # u, compared to the power of signal received from thelych a way thatP, € {Puin, .., Punax}. Precoding vectors

own base stations. The Optimization then has a trade-off dfe N,;-dimensional, Comp|ex unitary vectors. A Samp”ng of
perform among all the users. this subspace has to be made in order to reduce the high
number of potential vectors and so to create a codebook. Some
codebooks already exist, such as the Grassmannian Subspace

th Inttumvely_,tone can guesds thtaggls opélmlzatlon will blfm Packing [9] that is optimally sampled. Initial setup is adam
e transmit powers used a , and so an overa pom% ecoding vector and maximum power.

reduction (compared to the maximum power) will be observed.
This phenomenon is due to the fact of the selfish and alteuisfi. Gibbs Sampler

parts in (8): a high transmit power level for a given user will In the following, we describe the distributed algorithm.
interfere too much the neighbouring users while a too low ’
power will not provide this user high enough SINR. Numerical
studies in Section IV will illustrate the power consumption
aspects.

Notice that the minimization of (3) does not offer a direct
control and optimization of the power utilization efficignc
of the system. We therefore generalize (3) so as to explicitl
relate the transmission power consumption, by introduttiieg
following power pricing setup:

LY it Y AP, ©)

ueU uelU

B. Extension to Power Price

« Each coordinator BS separately triggers a stitmsition
for its useru, using a local random timer. This transition
is based on the local enerdy,. It selects a state with a
probability which is proportional texp(—&,(s € S)/T),
whereT" is a parameter called the temperature ahd
refers to the finite set of allowable choices. A transition
occurs by which the state of this user is updated itera-
tively.

« The dynamics by the above state transitions will drive the
network to a steady state which is tfébbs distribution
associated with the global energyand temperaturé’,
and has the following distribution:

where )\, is the price parameter for each user.

Note that (9) is equivalent to (3) when, = 0,Vu.
Without loss of generality, we consider in the following tha . .
all transmissions have an identical pricing, i.&, = A, Vu. with ¢ a normalizing constant. .

A high value of \ favors low power consumptions but will * This dlstrlbuthn W|Il_put more mass on low energy (i.e.,
decrease the throughputs. Notice that one can see that cost I0W COSt) configurations. Whei# — 0 in a proper way
functions which explicitly maximize power efficiency in aya (e.g., in logarithmic scale), the distributiony(-) will
such asnin ", % could tend to a zero capacity for all the converge to a.Dlrac mass at the optimal state of minimal
users and so are not practical. cost if it is unique.

Following the same reasoning as in sub-section II-A, the |nformation Exchange
local energy with power pricing is expressible as:

2
Ep = Nu + Zv;ﬁu Pvlbmu'hbu,uwvl
“ Pulbu,u|hbu7uwu|2

Pulb .'u|hb .'uWu|2
L e AP,. 10
P o (0

IIl. SELF OPTIMIZATION BY GIBBS SAMPLER

The following presents the system setup and optimizations the receiver noisen,,,
procedure. Note that this is a distributed algorithm thattoa  * the received interferencer, , Poly, u|hy, o wo|*, that
be performed for each mobile independently. The minimiza- C€an be measured directly at the mobile, and
tion of £ can be conducted by Gibbs sampler ographof ¢ the pathloss,, ., and link gainhy, .
the network defined below: For evaluating the second term in (8), all userg v esti-
« The set ofnodesof the graph is the set of users, denotefnate the following information and report to their coordora
by v e U. BS, which then shares the information to the coordinator BS
« Each node is given statevariables belonging to a finite Of u via the back-haul (usually wired) network:
setS. Here, the state of a node is the transmit power « the received signal power from its serving B§ :
allocated to it,P, and the precoding vector usewdt,,. P,ly, »|hs, »W,|?, which is a scalar, and

mr(s,u elUd) =c-e €/

To compute the probability distributiasxp(—&,(s)/T) for
a Gibbs sampler, we need to evaludlg(s) for eachs €
S. Some measurements and information exchanges between
neighbouring base stations and users are required. Falipwi
the explicit definition in (8), we consider that for evalumgfi
the first term, a user. will estimate the following data and
report to its coordinator BS:




« the pathlosg,, , and link gainh;, ,. Parameter Value

Note that the pathloss and link gains from a B® a user '\:ﬂﬂ?;e{e?nfpaeﬁzﬂ?g? 0‘81
u can be obtained using pilots signals or by feeding back the Inter-site distance 1000 meters
received power té: sinceb knows the transmit power used, Nolijsehfl)owe[d(ér;ctlr;?:ise figurey, -957dB{n @
; ; ; athloss in meter —15.3 — 37.6log;q
it can deduce the actual link gain and pathloss. Shadowing standard dev. 8 dB

Neighbor threshold N, — 3dB

C. Convergence Precoding codebook [9], 16 vectors

It is worth noting that the setting of temperatufein the Power set Lin, Pmax, Step) | (-19dBm, 43dBm, 2dB)
algorithm will impact the limiting distribution of the syamn. TABLE |
There is a trade-off between the convergence time and strict SIMULATION PARAMETERS

optimality of the limiting distribution. For a fixed topolgg
(i.e., base station, user population, signal attenuatitriy

known [6, pp. 311-313] that if one decreasé&s properly « No precoding (i.eYu, wy, » = [1111]/2), P, =

for. exa.mple in a Iogarit_hmic scale, the network W,i" F’e considered as a baseline, used when no CSI is known, to
guided into a state of minimal energy, regardless of théainit exploit transmit diversity.

configuration. In this paper, we s&t= T,/ In(1 + ¢), where The Deterministicoptimizati b imolif
t is time. Section IV will illustrate the convergence with, e beterministicopltimization can be seen as a simpitica-
: tion of the Gibbs sampling, by only focusing the allocation
numerical examples. . : :
choice on the instantaneous and best local solution. When
V. SIMULATION AND NUMERICAL RESULTS T — 0, a Gibbs sampler will act in a similar way. Note

A performance investigation of the proposed solution fgat for a large network with many minimum points, this

conducted below. We simulated a cellular network, composg(rjeedy approagh may only converge .to a local minimum and
consequently yields sub-optimal solution.

of 61 cells (5-tiers), on the classical hexagonal grid layou " _: . -
. . Simulation result shows that the system spectral efficiency
To avoid border effects, we only take the 19 center (tier 1, 2. . :
Ag. 1) and so the network throughput obtained performs in-

and 3) cells into account to compute the system performal ! o
. : . ; etween those of theelfishSINR maximization and the base-
metrics. We focus on a given downlink RB. On this resourc ihe. On the other hand. the difference between the Gibbs

each cell is serving a mobile, randomly located inside thle ce, . L - .
) . ) . gongmal) optimization and the deterministic (greedy)eois
h; ,,’s re complex circular Gaussian random variable vectorn(.)t significant

We consider that the channels are fixed during the S|m-At th i the total d has d d
ulation. This is not a strong assumption for pathloss and € same time, the lotal power consumed has droppe

shadowing variation, since scheduling can be updated ev ! r;: 379'& \é\f’gsxo:tSekl)flsr:hancé%ise-lmz EethOdS)Jo 524
1 msin LTE (if all required information have been exchanged S an -0 Walls Dy the 15Ibbs an € greedy one,
For the channel statds however, a practical implementation. espectlvely.. Th's IS reflect_ed n F'g.' 2 by.asubstanjua.tiease
would have to take the channel coherence [10] time infg POWer efficiency. The Gibbs optimization (the originalgn
account to tune appropriately the optimization (i.e., oapl °“tp_eff°_”T‘S all the other_m(_athods pre_sented here. :
temperature, scheduling, feedback frequency, etc.) sb thaVinimizing (3), by definition, also IMproves the fa|rnes§
convergence and stability is ensured. This simplificatien fmong the users of the system (see Fig. 3). Recall that Jain's

made to evaluate the approach at a first glance. DynarHﬁi| e><|_[11_|]_h|s boulndideg/bO anq 1 v_vher(ra] L m(:]anshf)b:rfect
channel and algorithm adaptation will be a part of futurekwor €qUaIIy- The result o IDDS _optlmlzatlon shows that thksce
The system performance is evaluated in terms of: manage to overcome high interference and do not allocate
. . ' power in a selfish way. Fig. 3 shows that both the Gibbs and
¢ 2?:§;rla;c)eﬁ;'ee?f9z,$25/ ?bzgjl-lz/%:v;;;&g /ES';R“)’ deterministic optimizations outperform the Selfish andebas
. Wi ICI 3% Z L= w L us

; o o line approaches.
» Faimess: using Jain's index [11]. It is observed that the convergence of the proposed algo-

Flg 1, Flg 2 and Flg 3 show the simulation results Obtaineﬁhm’ in the present network, appears in around one hun-
for these three metrics, respectively and using= 0. The dred iterations, starting from a random precoding vectat an
simulation parameters are provided in Table I. The present@aximum power. Considering LTE scheduling update time,
results are averaged over 500 runs of the simulations Witfis convergence is fast enough to compensate shadowing

1000 iterations each. variation.
We propose here the comparison between the following|n addition, we also show in Fig. 4 the impact of the power
methods: pricing A in terms of spectral efficiency and power efficiency.

« Optimization by Gibbs sampling, as detailed previouslyThere is a clear trade-off between the power efficiency and

« Deterministicoptimization: each user chooses the statgpectral efficiency. It is observed that the capacity ineeeia
that minimizes its local energy iteratively, logarithmic with respect to the power consumption; the less

« Selfish SINR, maximization: Vu,wy, , = hﬁu and power consumed the higher power efficiency is achieved. For
P, = Puoax, instance, comparing the results wher= 0 and A = 10, the
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