
ar
X

iv
:1

11
2.

15
84

v3
 [

cs
.IT

]
29

 M
ar

 2
01

2

Wireless Network-Coded Three-Way Relaying
Using Latin Cubes

Srishti Shukla†, Vijayvaradharaj T Muralidharan# and B. Sundar Rajan†

Email: {srishti, tmvijay, bsrajan} @ece.iisc.ernet.in
†IISc Mathematics Initiative (IMI), Dept. of Mathematics and Dept. of Electrical Comm. Engg., IISc, Bangalore

Dept. of Electrical Comm. Engg., IISc, Bangalore

Abstract—The design of modulation schemes for the physical
layer network-coded three-way wireless relaying scenariois
considered. The protocol employs two phases: Multiple Access
(MA) phase and Broadcast (BC) phase with each phase utilizing
one channel use. For the two-way relaying scenario, it was
observed by Koike-Akino et al. [4], that adaptively changing
the network coding map used at the relay according to the
channel conditions greatly reduces the impact of multiple access
interference which occurs at the relay during the MA phase and
all these network coding maps should satisfy a requirement called
exclusive law. This paper does the equivalent for the three-way
relaying scenario. We show that when the three users transmit
points from the same 4-PSK constellation, every such network
coding map that satisfies the exclusive law can be represented by
a Latin Cube of Second Order. The network code map used by
the relay for the BC phase is explicitly obtained and is aimedat
reducing the effect of interference at the MA stage.

I. BACKGROUND AND PRELIMINARIES

The concept of physical layer network coding has
attracted a lot of attention in recent times. The idea of
physical layer network coding for the two-way relay channel
was first introduced in [1], where the multiple access
interference occurring at the relay was exploited so that the
communication between the end nodes can be done using
a two stage protocol. Information theoretic studies for the
physical layer network coding scenario were reported in [2],
[3]. The design principles governing the choice of modulation
schemes to be used at the nodes for uncoded transmission
were studied in [4]. An extension for the case when the
nodes use convolutional codes was done in [5]. A multi-level
coding scheme for the two-way relaying was proposed in [6].

We consider the three-way wireless relaying scenario
shown in Fig. 1, where three-way data transfer takes place
among the nodes A, B and C with the help of the relay
R. It is assumed that the three nodes operate in half-duplex
mode. The relaying protocol consists of two phases,multiple
access(MA) phase, consisting of one channel use during
which A, B and C transmit to R; andbroadcast (BC)
phase, in which R transmits to A, B and C in a single
channel use. Network Coding is employed at R in such a
way that A(/B/C) can decode B’s and C’s(/A’s and C’s /A’s
and B’s) messages, given that A(/B/C) knows its own message.

Fig. 1. A three-way relay channel

For a two-way wireless relay channel, it was observed in
[4] for 4-PSK, that for uncoded transmission, the network
coding map used at the relay needs to be changed adaptively
according to the channel fade coefficient, in order to minimize
the impact of multiple access interference. In other words,
the set of all possible channel realizations is quantized into
a finite number of regions, with a specific network coding
map giving the best performance in a particular region. It is
shown in [7] for every M-PSK constellation used by both
the users, that every such network coding map that satisfies
the exclusive lawis representable as a Latin square and this
relationship can be used to get the network coding maps
satisfying the exclusive law. A Latin Square of orderM is
defined to be anM × M array in which each cell contains
a symbol fromZt = {0, 1, ...t− 1} such that each symbol
occurs at most once in each row and column [8].

While most of the research has been done for two-way relay
channels, some work has been done for the relay channels
with three or more user nodes as well. Liu and Arapostathis
[9], proposed a joint network coding and superposition coding
for three user relay channels, and claim that the results can
be easily extended to information relaying cases with more
than three relay nodes. In this scheme, two stage operations
are required for encoding and decoding, and four channel
uses are required for the information exchange, three channel
uses for the MA phase, and one channel use for the BC
phase, while for our scheme totally two channel uses suffice.
In [9], the first three channel uses are utilized by each user
node transmitting its packet to the relay node. Then the relay

http://arxiv.org/abs/1112.1584v3

makes two XOR-ed packets and superimposes them together
for broadcast. The relay makes two XOR-ed packets, the
packet from the node with the worse channel gain is XOR-ed
respectively with the other two packets. Pischella and Ruyet
[10] also discuss the three-way wireless relaying scenario,
and propose a method of information exchange among the
users composed of alternate MA and BC phases. The physical
layer network coding strategy for this relaying protocol isa
lattice-based coding scheme combined with power control,
so that the relay receives an integer linear combination of
the symbols transmitted by the user nodes. This scheme
also, however, consists of four channel uses. Park and Oh,
in [11], propose a network coding scheme for the three-way
relay channels and present a ‘Latin square-like condition’for
the three-way network code. They also discuss schemes in
order to improve these codes using cell swapping techniques.
In this work, though Latin Cubes have been suggested as
being equivalent to the map used by the relay, the number of
channel uses the scheme uses is five, and the work doesn’t
deal with the channel gains associated with the channels
explicitly. In [12], authors Jeon et al. adopt an ‘opportunistic
scheduling technique’ for physical network coding where
users in the MA as well as the BC phase are selected on the
basis of instantaneous SNR using a channel norm criterion
and a minimum distance criterion and plot graphs to show
that the proposed scheme outperforms systems without this
selection. Their approach, however, utilizes six channel uses.

For our physical layer network coding strategy, we use a
mathematical structure called a Latin Cube, that has three
dimensions out of which one is represented along the rows,
one along the columns, and the third dimension is represented
along ‘files’. In our case, we have A’s transmitted symbol
along the files, B’s symbol along the rows, and C’s symbol
along the columns. For our purposes, we define Latin Cubes
as follows:

Definition 1: A Latin Cube L of second order of side M
on the symbols from the setZt = {0, 1, 2, ..., t− 1} is an
M×M×M array, in which each cell contains one symbol and
each symbol occurs at most once in each row, column and file.

The above definition, is given in [13] witht = M2.

A. Signal Model

Multiple Access Phase:
Let S denote the symmetric 4-PSK constellation

{±1, ± j} as shown in Fig. 2, used at A, B and C. Assume
that A(/B/C) wants to send a 2-bit binary tuple to B and C(/A
and C/A and B). Letµ : F2

2 → S denote the mapping from bits
to complex symbols used at A, B and C whereF2 = {0, 1}.
Let xA = µ (sA) , xB = µ (sB) , xC = µ (sC) ∈ S denote
the complex symbols transmitted by A, B and C respectively,
wheresA, sB, sC ∈ F2

2. It is assumed that the channel state
information is not available at the transmitting nodes A, B
and C during the MA phase. The received signal at R in the

Fig. 2. 4-PSK constellation

MA phase is given by

YR = HAxA +HBxB +HCxC + ZR (1)

whereHA, HB andHC are the fading coefficients associated
with the A-R, B-R and C-R link respectively. The additive
noise ZR is assumed to beCN

(

0, σ2
)

, where CN
(

0, σ2
)

denotes the circularly symmetric complex Gaussian random
variable with varianceσ2.

Let SR (HA, HB, HC) denote the effective constellations
seen at the relay during the MA phase channel use, i.e.,

SR (HA, HB, HC) = {HAxi +HBxj +HCxk|xi, xj , xk ∈ S} .

Let dmin (HA, HB, HC) denote the minimum distance
between the points in the constellationSR (HA, HB, HC) as
given in (2), whereSn = S × S × .. × S (n times).
From (2), it is clear that there exists values of
(HA, HB, HC), for which dmin (HA, HB, HC) = 0.
Let H =

{

(HA, HB, HC) ∈ C3|dmin (HA, HB , HC) = 0
}

.
The elements ofH are called singular fade states. For singular
fade states,|SR (HA, HB, HC)| < 43.

Definition 2: A fade state(HA, HB, HC) is defined to be
a singular fade statefor the MA phase of three-way relaying,
if the cardinality of the signal setSR (HA, HB, HC) is less
than 43. Let H denote the set of all singular fade states for
the three-way data transfer among A, B and C.

Let (x̂A, x̂B , x̂C) ∈ S3 denote the Maximum Likelihood
(ML) estimate of (xA, xB, xC) at R based on the received
complex numberYR, i.e.,

(x̂A, x̂B, x̂C) = arg min
(xA,xB,xC)∈S3

‖YR −HX‖ (9)

where,

H = [HA HB HC]

X =

xA

xB

xC

.

Broadcast (BC) Phase:
The received signals at A, B and C during the BC phase

2

dmin(HA,HB ,HC) = min
(xA,xB ,xC),(x′

A,x′

B,x′

C)∈S3

(xA,xB ,xC) 6=(x′

A,x′

B ,x′

C)

|HA

(

xA − x′
A

)

+HB

(

xB − x′
B

)

+HC

(

xC − x′
C

)

| (2)

d
Li,Lj

min (HA,HB ,HC) = min
(xA,xB ,xC)∈Li,

(x′

A,x′

B ,x′

C)∈Lj

∣

∣HA

(

xA − x′
A

)

+HB

(

xB − x′
B

)

+HC

(

xC − x′
C

)
∣

∣ (3)

dmin

(

CHA,HB ,HC

)

= min
(xA,xB ,xC),(x′

A,x′

B,x′

C)∈S3,

MHA,HB,HC (xA,xB ,xC) 6=MHA,HB,HC (x′

A,x′

B ,x′

C)

∣

∣HA

(

xA − x′
A

)

+HB

(

xB − x′
B

)

+HC

(

xC − x′
C

)
∣

∣ . (4)

Mz1,z2 (xA, xB , xC) 6= Mz1,z2
(

xA, x′
B, x′

C

)

,∀xA, xB, x′
B , xC , x′

C ∈ S, whenever (xB, xC) 6=
(

x′
B, x′

C

)

(5)

Mz1,z2 (xA, xB , xC) 6= Mz1,z2
(

x′
A, xB, x′

C

)

,∀xA, x′
A, xB, xC , x′

C ∈ S, whenever (xA, xC) 6=
(

x′
A, x′

C

)

(6)

Mz1,z2 (xA, xB , xC) 6= Mz1,z2
(

x′
A, x′

B, xC

)

,∀xA, x′
A, xB, x′

B, xC ∈ S, whenever (xA, xB) 6=
(

x′
A, x′

B

)

(7)

dmin

(

ChA,hB ,hC ,HA,HB ,HC

)

= min
(xA,xB ,xC),(x′

A,x′

B ,x′

C)∈S3,

MhA,hB,hC (xA,xB,xC) 6=MhA,hB,hC (x′

A,x′

B ,x′

C)

∣

∣HA

(

xA − x′
A

)

+HB

(

xB − x′
B

)

+HC

(

xC − x′
C

)
∣

∣ . (8)

are respectively given by,

YA = H
′

AXR+ZA, YB = H
′

BXR+ZB, YC = H
′

CXR+ZC

(10)
where XR = MHA,HB ,HC ((x̂A, x̂B, x̂C)) ∈ S

′

is the
complex number transmitted by R. The fading coefficients
corresponding to the R-A, R-B and R-C links are given
by H

′

A, H
′

B, and H
′

C respectively and the additive noises
ZA, ZB and ZC are CN

(

0, σ2
)

. Depending on the values
of HA, HB and HC , R chooses a many to one map
MHA,HB ,HC : S3 → S

′

where S
′

is a signal set of size
between42 and 43 used by R duringBC phase. Notice that
the minimum required size forS

′

is 16, since 4 bits about the
other two users needs to be conveyed to each of A, B and C.

The elements inS3 which are mapped to the same signal
point in S

′

by the mapMHA,HB ,HC are said to form a
cluster. Let{L1,L2, ..,Ll} denote the set of all such clusters.
The formation of clusters is called clustering, denoted by
CHA,HB ,HC .

Definition 3: The cluster distance between a pair of clusters
Li andLj is the minimum among all the distances calculated
between the points(xA, xB , xC) ∈ Li and(x́A, x́B , x́C) ∈ Lj

in the effective constellation seen at the relay node R, as
given in (3) above.

Definition 4: The minimum cluster distanceof the
clusteringCHA,HB ,HC is the minimum among all the cluster
distances, as given in (4) at the top of this page.

In order to ensure that A(/B/C) is able to decode B’s and
C’s(/A’s and C’s /A’s and B’s) message, the clusteringC
should satisfy the exclusive law, as given in (5), (6), (7) above.

The minimum cluster distance determines the performance
during the MA phase of relaying. The performance during the
BC phase is determined by the minimum distance of the signal
set S

′

. For values of(HA, HB, HC) in the neighborhood
of the singular fade states, the value ofdmin

(

CHA,HB ,HC
)

is greatly reduced, a phenomenon referred to asdistance
shortening[4]. To avoid distance shortening, for each singular
fade coefficient, a clustering needs to be chosen such that the
minimum cluster distance at the singular fade state is non
zero and is also maximized.

A clustering CHA,HB ,HC is said to remove singular fade
state(HA, HB, HC) ∈ H, if dmin

(

CHA,HB ,HC
)

> 0. For a
singular fade state(HA, HB , HC) ∈ H, let C{(HA,HB ,HC)}

denote the clustering which removes the singular fade state
(HA, HB, HC) (if there are multiple clusterings which
remove the same singular fade state(HA, HB, HC), consider
a clustering which maximizes the minimum cluster distance).
Let CH =

{

C{(HA,HB ,HC)} : (HA, HB, HC) ∈ H
}

denote
the set of all such clusterings.

Definition 5: The minimum cluster distance of
the clustering ChA,hB ,hC , when the fade state
(HA, HB, HC) occurs in the MA phase, denoted by
dmin

(

ChA,hB ,hC , HA, HB, HC

)

, is the minimum among all
its cluster distances, as given in (8).

For (HA, HB, HC) /∈ H, the clustering
CHA,HB ,HC is chosen to be C{(hA,hB ,hC)}, which
satisfies dmin

(

C{(hA,hB ,hC)}, HA, HB, HC

)

≥

dmin

(

C{(h
′

A,h′

B ,h′

C)}, HA, HB, HC

)

, ∀ (hA, hB, hC) 6=

(h′
A, h

′
B, h

′
C) ∈ H. In [7], such clusterings that remove

singular fade states are obtained with the help of Latin
Squares while concentrating only on the first minimum
cluster distance. The clustering used by the relay is indicated
to A, B and C using overhead bits.

The contributions of this paper are as follows:

• Using our proposed scheme, exchange of information in
the wireless three-way relaying scenario is made possible
with totally two channel uses.

• It is shown that if the three users A, B, C transmit points
from the same 4-PSK constellation, the requirement of
satisfying the exclusive law is same as the clustering

3

Fig. 3. The mapping observed at the Relay can be viewed as a Latin Cube of Second Order

being represented by a Latin Cube of second order of
side 4. To the best of our knowledge, this is the first work
with only two channel uses for the three-way relaying
scenario.

• The singular fade states for the three user case are
identified.

• Clusterings that removes these singular fade states are
obtained, that result in the size of the constellation used
by the relay node R in the BC phase to lie between 16
to 23.

• Simulation results are provided to verify that the adaptive
clustering as obtained in the paper indeed performs better
than non-adaptive clustering.

The remaining content is organized as follows: Section II
demonstrates how a Latin Cube of Second Order and side
4 can be utilized to represent the network code for three
user communication. In Section III the singular fade states
are specified and in Section IV, clusterings corresponding
to removal of each singular fade state are obtained using
Latin Cubes of Second Order. Simulation results are shown
in Section V. Section VI concludes the paper.

II. T HE EXCLUSIVE LAW AND LATIN CUBES

The nodes A, B and C transmit symbols from the same
constellation, viz., 4-PSK. Our aim is to find the map that
relay node R should use in order to cluster the43 possibilities
of (xA, xB, xC) such that the exclusive law (given by (5),
(6), (7)) is satisfied. The size of the constellation, or the
number of clusters of the clustering that the relay utilizeshas
to be at least 16, since each user needs the 4 bit information
corresponding to the other two users. Consider a4 × 4 × 4
array, whose 64 entries are indexed by(xA, xB, xC), i.e. the
three messages that A, B and C send in the MA phase. Each
file of this 4 × 4 × 4 array, is indexed by a single value of
xA. Each row (column) of each file is indexed by a value
of xB (xC), for a fixed value ofxA. Now, a repetition of a
symbol in a file results in the failure of exclusive law given
by (5). Consider the4 × 4 array with its rows being the
first(/second/third/forth) rows of the4 × 4 × 4 array. Each
4× 4 array so obtained, corresponds to a single value ofxB.
A repetition of a symbol in this array will result in the failure
of exclusive law given by (6). Similarly, consider the4 × 4
array with its columns being the first(/second/third/forth)

columns of the4× 4× 4 array. Each4× 4 array so obtained,
corresponds to a single value ofxC . A repetition of a symbol
in this array will result in the failure of exclusive law given
by (7). Hence, if the exclusive law needs to be satisfied,
then the cells of this array should be filled such that the
4× 4× 4 array so obtained, is a Latin cube of second order,
for t ≥ 16 (Definition 1). The clusters are obtained by putting
together all the tuples(i, j, k) , i, j, k ∈ 0, 1, ...t − 1 such
that the entry in the(i, j, k)-th slot is the same entry from
Zt. From above, we can say that all the relay clusterings
that satisfy the mutually exclusive law forms Latin Cubes of
second order of side 4 fort ≥ 16, when the end nodes use
4-PSK constellations. Hence, now onwards, we consider the
network code used by the relay node in the BC phase to be
a 4 × 4 × 4 array with files(/rows/columns) being indexed
by the constellation point used by A(/B/C), symbols from
the setZ4 (Fig. 3). The cells of the array will be filled with
elements ofZt in such a way, that the resulting array is
a Latin Cube of Second Order of side 4 andt ≥ 16. Any
arbitrary but unique symbol fromZt denotes a unique cluster
of a particular clustering.

III. SINGULAR FADE SUBSPACES

We earlier stated in Section II, that a clusteringCHA,HB ,HC

is said to remove singular fade state(HA, HB, HC) ∈ H,
if dmin

(

CHA,HB ,HC
)

> 0. Alternatively, removing singular
fade states for a three-way relay channel can also be defined
as follows:

Definition 6: A clustering CHA,HB ,HC is said to
remove the singular fade state(HA, HB, HC) ∈ H, if
any two possibilities of the messages sent by the users
(xA, xB, xC) , (x

′
A, x

′
B , x

′
C) ∈ S3 that satisfy

HAxA +HBxB +HCxC = HAx
′
A +HBx

′
B +HCx

′
C

are placed together in the same cluster by the clustering.

Definition 7: A set {(xA, xB, xC)} ∈ S3 consisting of
all the possibilities of(xA, xB , xC) that must be placed
in the same cluster of the clustering used at relay node
R in the BC phase in order to remove the singular fade

4

state(HA, HB, HC) is referred to as aSingularity Removal
Constraint for the fade state(HA, HB, HC) for three-way
relaying scenario.

Let (HA, HB, HC) be the fade coefficient in the MA
phase. The work in [4] and [7] shows that for the two-way
relaying scenario, the42 possible pairs of symbols from
4-PSK constellation sent by the two users in the MA
phase, can be clustered into a clustering dependent on a
singular fade coefficient, of size 4 or 5 in a manner so
as to remove this singular fade coefficient. In the case
of three users, at the end of MA phase, relay receives a
complex number, given by (1). Instead of R transmitting
a point from the43 point constellation resulting from all
the possibilities of(xA, xB, xC), the relay R can choose to
group these possibilities into clusters represented by a smaller
constellation. We describe one such clustering in the following.

Let Γ denote a singularity removal constraint corre-
sponding to the singular fade state(HA, HB, HC) and let
(xA, xB, xC), (x

′
A, x

′
B , x

′
C) ∈ C. Then,

HAxA +HBxB +HCxC = HAx
′
A +HBx

′
B +HCx

′
C

⇒HA(xA − x′
A) +HB(xB − x′

B) +HC(xC − x′
C) = 0

⇒(HA, HB, HC) ∈

〈

xA − x′
A

xB − x′
B

xC − x′
C

〉

⊥

(11)

where for a3× 1 non-zero vectorv overC,

〈v〉⊥ = {w = (w1, w2, w3) | w1v1 + w2v2 + w3v3 = 0} .

Clearly, 〈v〉⊥ is a two-dimensional vector space ofC3.
These values ofxA, xB, xC , x

′
A, x

′
B, x

′
C ∈ S result in only

finitely many possibilities for the right-hand side, sinceS is
finite. Thus the singular fade states(HA, HB, HC), which
are uncountably infinite, are points in a finite number of
vector subspaces ofC3. Henceforth, we shall refer to these
finite number of vector subspaces as theSingular Fade
Subspaces. More precisely, there are three possibilities of
singular fade subspaces for the three-way relaying as we
explain individually in the following three cases.

Case 1:One of the following subcases arise:

1) xA = x′
A, xB = x′

B andxC 6= x′
C

2) xA = x′
A, xB 6= x′

B andxC = x′
C

3) xA 6= x′
A, xB = x′

B andxC = x′
C

Case 2:One of the following subcases arise:

1) xA = x′
A, xB 6= x′

B andxC 6= x′
C

2) xA 6= x′
A, xB = x′

B andxC 6= x′
C

3) xA 6= x′
A, xB 6= x′

B andxC = x′
C

Case 3:xA 6= x′
A, xB 6= x′

B andxC 6= x′
C

Case 1: Without loss of generality, we discuss
the third subcase of Case 1, i.e., the case when

xA 6= x′
A, xB = x′

B andxC = x′
C . The singular fade

subspace in this case is given byS ′ =

〈

xA − x′
A

0

0

〉

⊥

.

The set of differences of the points ofS is given by,

D = {xi − xj | xi, xj ∈ S} = {0,±1± j,±2j,±2} .

Let D1 = {±1± j} andD2 = {±2j,±2}. Then,

D = {0} ∪ D1 ∪D2.

Thus, xA − x′
A ∈ D can take eight non-zero values. As

a result, there are eight total possibilities for the vector
[xA − x′

A, 0, 0]
t, wherevt denotes the transpose of a vector

v. Also, each one of±1± j, ±2j and±2 can be obtained as
scalar multiples of1 + j (overC). Thus,

〈

1 + j

0

0

〉

=

〈

±1± j

0

0

〉

=

〈

±2j

0

0

〉

=

〈

±2

0

0

〉

.

So,∃ only one singular fade subspace for the subcase, viz.,

S ′ =

〈

1 + j

0

0

〉

⊥

.

Similarly, for the other two subcases, there is one singular
fade subspace, resulting in a total of 3 singular fade subspaces
for the case.

Case 2: Without loss of generality, we discuss
the third subcase of Case 2, i.e., the case when
xA 6= x′

A, xB 6= x′
B andxC = x′

C . The singular fade

subspace in this case is given byS ′′ =

〈

xA − x′
A

xB − x′
B

0

〉

⊥

.

HerexA − x′
A andxB − x′

B ∈ D can take eight non-zero
values each. There are therefore, 64 total possibilities for the
vector [xA − x′

A, xB − x′
B, 0]t.

Lemma 1:For the case whenxA − x′
A 6= 0, xB −

x′
B 6= 0 andxC − x′

C = 0, for a given vectorv =
[xA − x′

A, xB − x′
B , 0]

t over D1 ∪ D2, there are precisely
4 or 8 vectors (includingv) over D1 ∪ D2 that generate the
same vector space overC asv.

Proof: As given in Section II of [7], for the 4-PSK
constellationS, the difference constellationD = ∆S =
{s− s′ : s, s′ ∈ S} is of the form,

∆S = {0} ∪
{

2sin (πn/4) ejkπ/2|n odd
}

∪
{

2sin (πn/4) ej(kπ/2+π/4)|n even
}

,

5

where1 ≤ n ≤ 2 and0 ≤ k ≤ 3. Therefore, we can write,

v =

xA − x′
A

xB − x′
B

0

=

2sinπk1

4 ejφ1

2sinπk2

4 ejφ2

0

whereφi = kiπ/2 if ki is odd andφi = kiπ/2+ π/4 if ki is
even.

A vector w over D1 ∪ D2 shall generate the same vector
space overC iff w is a scalar multiple ofv, i.e. for some
complex numberrejθ ∈ C,

v = rejθw ⇒

2sinπk1

4 ejφ1

2sinπk2

4 ejφ2

0

= rejθ

2sinπk3

4 ejφ3

2sinπk4

4 ejφ4

0

where for i = 3, 4 φi = kiπ/2 if ki is odd and
φi = kiπ/2 + π/4 if ki is even.

Then,

2sin
πk1
4

ejφ1 = rejθ × 2sin
πk3
4

ejφ3 (12)

and

2sin
πk2
4

ejφ2 = rejθ × 2sin
πk4
4

ejφ4 . (13)

Dividing (12) by (13) and taking modulus of both sides, we
get

sinπk1

4

sinπk2

4

=
sinπk3

4

sinπk4

4

(14)

As shown in [7], this is possible only ifk1 = k3 andk2 = k4.
Also, from (12) and (13) we have

sinπk1

4

sinπk2

4

ej(φ1−φ2) =
sinπk3

4

sinπk4

4

ej(φ3−φ4) (15)

From (14) and (16), we have

ej(φ1−φ2) = ej(φ3−φ4) (16)

Note that here, the LHS is fixed. It therefore suffices to
compute that for the fixed value of the LHS, the number of
values that RHS takes. It can be verified, that for a fixed value
of φ1 − φ2, there are precisely four pair of values ofφ3 and
φ4 that result in the same value ofφ3 − φ4. We now look at
the following possibilities:
Case 1:k1 = k2. Then,k3 = k4, i.e., there are exactly two
possibilities fork1 andk2, viz.,k1 = k2 = 1 andk1 = k2 = 2.
With two pairs of values fork3 andk4 and four pairs of values
for φ3 andφ4, we have a total of eight set of values thatw
can take. Hence, in this case, the vector space generated byv
can be generated by exactly eight other vectors overD1 ∪D2.
Case 2:k1 6= k2. Then,k3 6= k4, i.e., there is precisely one
possibility for k1 and k2, viz., k1 = k3 and k1 = k4. With
only one possible set of values fork3 andk4 and four pairs of
values forφ3 andφ4, we have a total of four set of values that

w can take. Hence, in this case, the vector space generated by
v can be generated by exactly four other vectors overD1∪D2.

In this case we end up with 12 singular fade subspaces
given by the null spaces of the space given on the next page
in Figure III.

So, ∃ 12 singular fade subspaces for the subcase each
being the null space of the above 12 spaces. Similarly, for
each of the other two subcases, there are 12 singular fade
subspaces, resulting in a total of 36 singular fade subspaces
for the case.

Case 3: In this case,xA 6= x′
A, xB 6= x′

B andxC 6= x′
C . The

singular fade subspace in this case is given by

S ′′′ =

〈

xA − x′
A

xB − x′
B

xC − x′
C

〉

⊥

. (17)

Here each ofxA − x′
A, xB − x′

B andxC − x′
C ∈ D can

take eight non-zero values. There are therefore, 512 total
possibilities for the vector[xA − x′

A, xB − x′
B , xC − x′

C]
t.

In this case we end up with 112 singular fade subspaces. We
now explain this.

Lemma 2:For the case whenxA − x′
A 6= 0, xB −

x′
B 6= 0 andxC − x′

C 6= 0, for a given vectorv =
[xA − x′

A, xB − x′
B , xC − x′

C]
t over D1 ∪ D2, there are

precisely 4 or 8 vectors (includingv) over D1 ∪ D2 that
generate the same vector space overC asv.

Proof: As mentioned in the proof of Lemma 1, from [7],

D = ∆S = {0} ∪
{

2sin (πn/4) ejkπ/2|n odd
}

∪
{

2sin (πn/4) ej(kπ/2+π/4)|n even
}

,

where1 ≤ n ≤ 2 and0 ≤ k ≤ 3. Therefore, we can write,

v =

xA − x′
A

xB − x′
B

xC − x′
C

=

2sinπk1

4 ejφ1

2sinπk2

4 ejφ2

2sinπk3

4 ejφ3

whereφi = kiπ/2 if ki is odd andφi = kiπ/2+ π/4 if ki is
even.

A vector w over D1 ∪ D2 shall generate the same vector
space overC iff w is a scalar multiple ofv, i.e. for some
complex numberrejθ ∈ C,

v = rejθw ⇒

2sinπk1

4 ejφ1

2sinπk2

4 ejφ2

2sinπk3

4 ejφ3

= rejθ

2sinπk4

4 ejφ4

2sinπk5

4 ejφ5

2sinπk6

4 ejφ6

where for i = 4, 5, 6 φi = kiπ/2 if ki is odd and
φi = kiπ/2 + π/4 if ki is even.

6

1.

〈

1 + j

1 + j

0

〉

=

〈

−1 − j

−1 − j

0

〉

=

〈

1 − j

1 − j

0

〉

=

〈

−1 + j

−1 + j

0

〉

=

〈

2j

2j

0

〉

=

〈

−2j

−2j

0

〉

=

〈

2

2

0

〉

=

〈

−2

−2

0

〉

2.

〈

1 + j

−1 − j

0

〉

=

〈

−1 − j

1 + j

0

〉

=

〈

−1 + j

1 − j

0

〉

=

〈

1 − j

−1 + j

0

〉

=

〈

2j

−2j

0

〉

=

〈

−2j

2j

0

〉

=

〈

2

−2

0

〉

=

〈

−2

2

0

〉

3.

〈

1 + j

1 − j

0

〉

=

〈

−1 − j

−1 + j

0

〉

=

〈

−1 + j

1 + j

0

〉

=

〈

1 − j

−1 − j

0

〉

=

〈

2j

2

0

〉

=

〈

−2j

−2

0

〉

=

〈

−2

2j

0

〉

=

〈

2

−2j

0

〉

4.

〈

1 + j

−1 + j

0

〉

=

〈

−1 − j

1 − j

0

〉

=

〈

−1 + j

−1 − j

0

〉

=

〈

1 − j

1 + j

0

〉

=

〈

2j

−2

0

〉

=

〈

−2j

2

0

〉

=

〈

2

2j

0

〉

=

〈

−2

−2j

0

〉

5.

〈

1 + j

2j

0

〉

=

〈

−1 − j

−2j

0

〉

=

〈

−1 + j

2

0

〉

=

〈

1 − j

−2

0

〉

6.

〈

1 + j

−2j

0

〉

=

〈

−1 − j

2j

0

〉

=

〈

−1 + j

−2

0

〉

=

〈

1 − j

2

0

〉

7.

〈

1 + j

2

0

〉

=

〈

−1 − j

−2

0

〉

=

〈

−1 + j

2j

0

〉

=

〈

1 − j

−2j

0

〉

8.

〈

1 + j

−2

0

〉

=

〈

−1 − j

2

0

〉

=

〈

−1 + j

−2j

0

〉

=

〈

1 − j

2j

0

〉

9.

〈

2j

1 + j

0

〉

=

〈

−2j

−1 − j

0

〉

=

〈

2

−1 + j

0

〉

=

〈

−2

1 − j

0

〉

10.

〈

−2j

1 + j

0

〉

=

〈

2j

−1 − j

0

〉

=

〈

−2

−1 + j

0

〉

=

〈

2

1 − j

0

〉

11.

〈

2

1 + j

0

〉

=

〈

−2

−1 − j

0

〉

=

〈

2j

−1 + j

0

〉

=

〈

−2j

1 − j

0

〉

12.

〈

−2

1 + j

0

〉

=

〈

2

−1 − j

0

〉

=

〈

−2j

−1 + j

0

〉

=

〈

2j

1 − j

0

〉

.

Fig. 4. Null Spaces of the Singular Fades Spaces for the casexA 6= x′
A
, xB 6= x′

B
andxC = x′

C
.

Then,

2sin
πk1
4

ejφ1 = rejθ × 2sin
πk4
4

ejφ4 , (18)

2sin
πk2
4

ejφ2 = rejθ × 2sin
πk5
4

ejφ5 (19)

and,

2sin
πk3
4

ejφ3 = rejθ × 2sin
πk6
4

ejφ6 (20)

Dividing (18) by (19) and taking modulus of both sides, we
get

sinπk1

4

sinπk2

4

=
sinπk4

4

sinπk5

4

(21)

As shown in [7], this is possible only ifk1 = k4 andk2 = k5.
Similarly, dividing (18) by (20) and taking modulus of both
sides, we get

sinπk1

4

sinπk3

4

=
sinπk4

4

sinπk6

4

(22)

As shown in [7], this is possible only ifk1 = k4 andk3 = k6.
Also, from (18) and (19) we have

sinπk1

4

sinπk2

4

ej(φ1−φ2) =
sinπk4

4

sinπk5

4

ej(φ4−φ5) (23)

From (21) and (23), we have

ej(φ1−φ2) = ej(φ4−φ5) (24)

Similarly,
ej(φ1−φ3) = ej(φ4−φ6) (25)

In (24) and (25), the LHS is fixed. It therefore suffices to
compute the number of values that RHS takes for fixed LHS
in the two equations. It can be verified, that for a fixed value
of φ1, φ2 andφ3, there are precisely four set of values of
φ4, φ5 andφ6 that result in the same value ofφ1 − φ2 and

φ1 − φ3. We now look at the following possibilities:
Case 1:k1 = k2 = k3. Then,k4 = k5 = k6, i.e., there are
exactly two possibilities fork4, k5 and k6, viz., k4 = k5 =
k6 = 1 and k4 = k5 = k6 = 2. With two sets of values for
k4, k5 andk6 and four sets of values forφ4, φ5 andφ6, we
have a total of eight set of values thatw can take. Hence, in
this case, the vector space generated byv can be generated by
exactly eight other vectors overD1 ∪D2. Case 2:Atleast one
of k1 6= k2, k1 6= k3, or k2 6= k3. Then,k4 6= k5, k4 6= k6,
or k5 6= k6, so that, using (21) and (22), there is precisely
one possibility fork4, k5, k6, viz., k4 = k1, k5 = k2 and
k6 = k3. With only one possible set of values fork4, k5 and
k6 and four sets of values forφ4, φ5 andφ6, we have a total
of four set of values thatw can take. Hence, in this case, the
vector space generated byv can be generated by exactly four
other vectors overD1 ∪ D2.

Since all ofxA − x′
A, xB − x′

B andxC − x′
C ∈ D are

non-zero, we can say that

xA − x′
A, xB − x′

B andxC − x′
C ∈ D1 ∪ D2.

As a result, we have the following three subcases:
1) One ofxA − x′

A, xB − x′
B andxC − x′

C ∈ D1

2) Two of xA − x′
A, xB − x′

B andxC − x′
C ∈ D1

3) All of xA − x′
A, xB − x′

B andxC − x′
C ∈ D1

We deal with each one of the subcases one-by-one.

Subcase 1:One ofxA − x′
A, xB − x′

B andxC − x′
C ∈ D1.

Without loss of generality, we assume thatxA − x′
A ∈ D1

and xB − x′
B, xC − x′

C ∈ D2. The singular fade subspace
for the case is given by (17). There are 64 possibilities for
the vectorv′ = [xA − x′

A, xB − x′
B , xC − x′

C]
t. But some

of the possibilities may generate the same vector space over
C. There are precisely 4 vectors of length 3 overD1 ∪ D2,
the {±1,±j} scalar multiples of the vector. As a result,

7

the casexA − x′
A ∈ D1 and xB − x′

B , xC − x′
C ∈ D2

leads to 16 singular fade subspaces as shown in Figure III.
The same holds for the case whenxB − x′

B ∈ D1 and
xA − x′

A, xC − x′
C ∈ D2, or whenxC − x′

C ∈ D1 and
xA − x′

A, xB − x′
B ∈ D2. This subcase therefore results in

48 singular fade subspaces.

Subcase 2:Two of xA−x′
A, xB −x′

B andxC −x′
C ∈ D1.

Without loss of generality, we assume thatxA−x′
A, xB−x′

B ∈
D1 and xC − x′

C ∈ D2. The singular fade subspace for the
case is given by (17) and again there are 64 possibilities
for the vectorv′′ = [xA − x′

A, xB − x′
B , xC − x′

C]
t. For

a given v′′, possibilities of other 3 length vectors over
D1 ∪ D2 that generate the same vector space overC are
the {±1,±j} scalar multiples ofv′′. As a result, the case
xA − x′

A ∈ D1 andxB − x′
B , xC − x′

C ∈ D2 also leads to
16 singular fade subspaces as shown for this case in Figure
(III). The same holds for the case whenxB − x′

B ∈ D2 and
xA − x′

A, xC − x′
C ∈ D1, or whenxA − x′

A ∈ D2 and
xB − x′

B , xC − x′
C ∈ D1 resulting in therefore 48 singular

fade subspaces.

Subcase 3:All of xA − x′
A, xB − x′

B andxC − x′
C ∈

D1. There are 64 possibilities for the vector
[xA − x′

A, xB − x′
B, xC − x′

C]
t over D1. For a given

such vector, possibilities of other 3 length vectors over
D1 ∪ D2 that generate the same vector space overC are the
{±1,±j,±1± j} scalar multiples of the vector. The case
xA − x′

A, xB − x′
B , xC − x′

C ∈ D1 leads to a total of 16
singular fade subspaces as shown in Figure (III).

The three cases result in a total of 3+36+48+48+16=151
singular fade subspaces. We now discuss how these singular
fade subspaces can be removed using Latin Cubes of Second
order.

IV. REMOVING SINGULAR FADE SUBSPACES AND

CONSTRAINED LATIN CUBES

In the previous section, we classify the set of singular fade
subspaces into three cases. We now cluster the possibilities
of (xA, xB, xC) into a clustering using Latin Cubes. This
clustering is represented by a constellation given byS ′, which
is utilized by the relay node R in the BC phase. The objective
is to minimize the size of this constellation used by R.

The clustering to be used at R, first constrains the
possibilities of(xA, xB, xC) received at the MA phase, with
the objective of removing the singular fade subspaces, and
fills the entries of a4 × 4 × 4 array representing the map
to be used at the relay using these constraints, and then
completes the partially empty array obtained to form a Latin
cube of second order. The mapping to be used at R can be
obtained from the complete Latin cube keeping in mind the
equivalence between the relay map with the Latin Cube of
second order as shown in Section III.

In order to to obtain the constraints on the4 × 4 × 4
array representing the map at the relay node R during BC
phase for a singular fade state, we utilize the vectors of
differences, viz.,[xA − x′

A xB − x′
B , xC − x′

C] contributing
to that particular singular fade state. During MA phase for
the three-way relaying scenario, nodes A, B and C transmit
to the relay R. As shown in the previous section, there is
a total of 151 singular fade subspaces. Let(hA, hB, hC)
denote a point in one of the 151 singular fade subspaces.
Then, there exist(xA, xB , xC) , (x

′
A, x

′
B, x

′
C) ∈ S3 that satisfy

hAxA + hBxB + hCxC = hAx
′
A + hBx

′
B + hCx

′
C . In

order to remove the singular fade state(hA, hB, hC), the pair
(xA, xB, xC) , (x

′
A, x

′
B , x

′
C) must be kept in the same cluster

in the clustering. For instance, if

(hA, hB, hC) ∈

〈

xA − x′
A

xB − x′
B

xC − x′
C

〉

⊥

,

then the pair(xA, xB , xC) , (x
′
A, x

′
B, x

′
C) must be kept in the

same cluster in the clustering, i.e., the entry corresponding
to (xA, xB , xC) in the 4 × 4 × 4 array must be the same
as the entry corresponding to(x′

A, x
′
B, x

′
C). Similarly, every

other such pair inS3 contributing to the same singular fade
subspace must be kept in the same cluster. Apart from all such
pairs inS3 being kept in the same cluster of the clustering,
in order to remove this particular fade state, there are no
other constraints. Upon filling up the4 × 4 × 4 array with
these constraints, the entire Latin Cube does not get filled up,
but can be completed as we show later in this section. It is
important to note that, this clustering cannot be utilized to
remove the singular fade subspaces of Case 1 and Case 2 of
the previous section, as shown in the following lemma.

Lemma 3:The clustering map used at the relay node R
cannot remove a singular fade state corresponding to the Case
1 and Case 2 of the previous section and simultaneously satisfy
the mutually exclusive law.

Proof: Let S ′ =

〈

xA − x′
A

xB − x′
B

xC − x′
C

〉

⊥

be a singular

fade state for Case 1, and without loss of generality, assume
that xB = x′

B andxC = x′
C . Then, in order to removeS ′,

(xA, xB, xC) and (x′
A, xB, xC) must be kept in the same

cluster. This is impossible, since this clearly violates the
mutually exclusive law as if the pair is placed in the same
cluster, the users B and C will not be able to distinguish
between the messagesxA andx′

A sent by the user A.

Let S ′ be a singular fade state for Case 2, and without loss
of generality, assume thatxC = x′

C . Then, in order to remove
S ′, (xA, xB, xC) and (x′

A, x
′
B, xC) must be kept in the same

cluster. This also clearly violates the mutually exclusivelaw
since if the pair is placed in the same cluster, the user C will
not be able to distinguish between the messagesxA, xB and

8

1.

〈

1 + j

2j

2j

〉

=

〈

−1 − j

−2j

−2j

〉

=

〈

−1 + j

−2

−2

〉

=

〈

1 − j

2

2

〉

2.

〈

1 + j

2j

−2j

〉

=

〈

−1 − j

−2j

2j

〉

=

〈

−1 + j

−2

2

〉

=

〈

1 − j

2

−2

〉

3.

〈

1 + j

2j

2

〉

=

〈

−1 − j

−2j

−2

〉

=

〈

−1 + j

−2

2j

〉

=

〈

1 − j

2

−2j

〉

4.

〈

1 + j

2j

−2

〉

=

〈

−1 − j

−2j

2

〉

=

〈

−1 + j

−2

−2j

〉

=

〈

1 − j

2

2j

〉

5.

〈

1 + j

−2j

2j

〉

=

〈

−1 − j

2j

−2j

〉

=

〈

−1 + j

2

−2

〉

=

〈

1 − j

−2

2

〉

6.

〈

1 + j

−2j

−2j

〉

=

〈

−1 − j

2j

2j

〉

=

〈

−1 + j

2

2

〉

=

〈

1 − j

−2

−2

〉

7.

〈

21 + j

−2j

2

〉

=

〈

−1 − j

2j

−2

〉

=

〈

−1 + j

2

2j

〉

=

〈

1 − j

−2

−2j

〉

8.

〈

1 + j

−2j

−2

〉

=

〈

−1 − j

2j

2

〉

=

〈

−1 + j

2

−2j

〉

=

〈

1 − j

−2

2j

〉

.

9.

〈

1 + j

2

2j

〉

=

〈

−1 − j

−2

−2j

〉

=

〈

−1 + j

2j

−2

〉

=

〈

1 − j

−2j

2

〉

10.

〈

1 + j

2

−2j

〉

=

〈

−1 − j

−2

2j

〉

=

〈

−1 + j

2j

2

〉

=

〈

1 − j

−2j

−2

〉

11.

〈

1 + j

2

2

〉

=

〈

−1 − j

−2

−2

〉

=

〈

−1 + j

2j

2j

〉

=

〈

1 − j

−2j

−2j

〉

12.

〈

1 + j

2

−2

〉

=

〈

−1 − j

−2

2

〉

=

〈

−1 + j

2j

−2j

〉

=

〈

1 − j

−2j

2j

〉

13.

〈

1 + j

−2

2j

〉

=

〈

−1 − j

2

−2j

〉

=

〈

−1 + j

−2j

−2

〉

=

〈

1 − j

2j

2

〉

14.

〈

1 + j

−2

2j

〉

=

〈

−1 − j

2

−2j

〉

=

〈

−1 + j

−2j

−2

〉

=

〈

1 − j

2j

2

〉

15.

〈

1 + j

−2

2

〉

=

〈

−1 − j

2

−2

〉

=

〈

−1 + j

−2j

2j

〉

=

〈

1 − j

2j

−2j

〉

16.

〈

1 + j

−2

−2

〉

=

〈

−1 − j

2

2

〉

=

〈

−1 + j

−2j

−2j

〉

=

〈

1 − j

2j

2j

〉

.

Fig. 5. Null Spaces of the Singular Fades Spaces for the casexA − x′
A

∈ D1 andxB − x′
B
, xC − x′

C
∈ D2.

1.

〈

1 + j

1 + j

2j

〉

=

〈

−1 − j

−1 − j

−2j

〉

=

〈

−1 + j

−1 + j

−2

〉

=

〈

1 − j

1 − j

2

〉

2.

〈

1 + j

1 + j

−2j

〉

=

〈

−1 − j

−1 − j

2j

〉

=

〈

−1 + j

−1 + j

2

〉

=

〈

1 − j

1 − j

−2

〉

3.

〈

1 + j

1 + j

2

〉

=

〈

−1 − j

−1 − j

−2

〉

=

〈

−1 + j

−1 + j

2j

〉

=

〈

1 − j

1 − j

−2j

〉

4.

〈

1 + j

1 + j

−2

〉

=

〈

−1 − j

−1 − j

2

〉

=

〈

−1 + j

−1 + j

−2j

〉

=

〈

1 − j

1 − j

2j

〉

5.

〈

1 + j

−1 − j

2j

〉

=

〈

−1 − j

1 + j

−2j

〉

=

〈

−1 + j

1 − j

−2

〉

=

〈

1 − j

−1 + j

2

〉

6.

〈

1 + j

−1 − j

−2j

〉

=

〈

−1 − j

1 + j

2j

〉

=

〈

−1 + j

1 − j

2

〉

=

〈

1 − j

−1 + j

−2

〉

7.

〈

1 + j

−1 − j

2

〉

=

〈

−1 − j

1 + j

−2

〉

=

〈

−1 + j

1 − j

2j

〉

=

〈

1 − j

−1 + j

−2j

〉

8.

〈

1 + j

−1 − j

−2

〉

=

〈

−1 − j

1 + j

2

〉

=

〈

−1 + j

1 − j

−2j

〉

=

〈

1 − j

−1 + j

2j

〉

.

9.

〈

1 + j

1 − j

2j

〉

=

〈

−1 − j

−1 + j

−2j

〉

=

〈

−1 + j

1 + j

−2

〉

=

〈

1 − j

−1 − j

2

〉

10.

〈

1 + j

1 − j

−2j

〉

=

〈

−1 − j

−1 + j

2j

〉

=

〈

−1 + j

1 + j

2

〉

=

〈

1 − j

−1 − j

−2

〉

11.

〈

1 + j

1 − j

2

〉

=

〈

−1 − j

−1 + j

−2

〉

=

〈

−1 + j

1 + j

2j

〉

=

〈

1 − j

−1 − j

−2j

〉

12.

〈

1 + j

1 − j

−2

〉

=

〈

−1 − j

−1 + j

2

〉

=

〈

−1 + j

1 + j

−2j

〉

=

〈

1 − j

−1 − j

2j

〉

13.

〈

1 + j

−1 + j

2j

〉

=

〈

−1 − j

1 − j

−2j

〉

=

〈

−1 + j

−1 − j

−2

〉

=

〈

1 − j

1 + j

2

〉

14.

〈

1 + j

−1 + j

−2j

〉

=

〈

−1 − j

1 − j

2j

〉

=

〈

−1 + j

−1 − j

2

〉

=

〈

1 − j

1 + j

−2

〉

15.

〈

1 + j

−1 + j

2

〉

=

〈

−1 − j

1 − j

−2

〉

=

〈

−1 + j

−1 − j

2j

〉

=

〈

1 − j

1 + j

−2j

〉

16.

〈

1 + j

−1 + j

−2

〉

=

〈

−1 − j

1 − j

2

〉

=

〈

−1 + j

−1 − j

−2j

〉

=

〈

1 − j

1 + j

2j

〉

.

Fig. 6. Null Spaces of the Singular Fades Spaces for the casexA − x′
A, xB − x′

B ∈ D1 andxC − x′
C ∈ D2.

messagesx′
A, x′

B sent by the users A and B.
The singular fade subspaces given in Case 1 ans Case 2 of the
previous section, whose harmful effects cannot be removed by
a proper choice of the clustering are referred to as thenon-
removable singular fade subspaces. The rest of the singular
fade subspaces, given in Case 3 of the previous section, are
referred as theremovable singular fade subspaces.

We now illustrate the removal of a Case 3 singular fade
state with the help of examples.

Example 1:Let the singular fade subspace be

S
′
=

〈

1 + j

2j

−2j

〉

⊥

=

〈

−1 − j

−2j

2j

〉

⊥

=

〈

−1 + j

−2

2

〉

⊥

=

〈

1 − j

2

−2

〉

⊥

Consider the first vector[1 + j, 2j, − 2j]
t. Here, 1 + j

can be obtained as a difference ofxA = 1 andx′
A = −j or as

a difference ofxA = j andx′
A = −1; 2j can be obtained as a

difference ofxB = j andx′
B = −j; and−2j can be obtained

as a difference ofxC = −j and x′
C = j. Thus, the entries

corresponding to(1, j,−j) and(−j,−j, j) must be the same
and the entries corresponding to(j, j,−j) and (−1,−j, j)
must be the same in the4 × 4 × 4 array representing the
clustering, i.e., entries(0, 1, 3) and(3, 3, 1) must be the same
and entries(1, 1, 3) and (2, 3, 1) must be the same.

The second vector[−1− j, − 2j, 2j]
t where,−1− j can

be obtained as a difference ofxA = −1 andx′
A = j or as a

difference ofxA = −j andx′
A = 1; −2j can be obtained as

a difference ofxB = −j andx′
B = j; and2j can be obtained

as a difference ofxC = j and x′
C = −j. Thus, the entries

9

1.

〈

1 + j

1 + j

1 + j

〉

=

〈

−1 − j

−1 − j

−1 − j

〉

=

〈

−1 + j

−1 + j

−1 + j

〉

=

〈

1 − j

1 − j

1 − j

〉

=

〈

2j

2j

2j

〉

=

〈

−2j

−2j

−2j

〉

=

〈

2

2

2

〉

=

〈

−2

−2

−2

〉

2.

〈

1 + j

1 + j

−1 − j

〉

=

〈

−1 − j

−1 − j

1 + j

〉

=

〈

−1 + j

−1 + j

1 − j

〉

=

〈

1 − j

1 − j

−1 + j

〉

=

〈

2j

2j

−2j

〉

=

〈

−2j

−2j

2j

〉

=

〈

2

2

−2

〉

=

〈

−2

−2

2

〉

3.

〈

1 + j

1 + j

1 − j

〉

=

〈

−1 − j

−1 − j

−1 + j

〉

=

〈

−1 + j

−1 + j

1 + j

〉

=

〈

1 − j

1 − j

−1 − j

〉

=

〈

2j

2j

2

〉

=

〈

−2j

−2j

−2

〉

=

〈

2

2

−2j

〉

=

〈

−2

−2

2j

〉

4.

〈

1 + j

1 + j

−1 + j

〉

=

〈

−1 − j

−1 − j

1 − j

〉

=

〈

−1 + j

−1 + j

−1 − j

〉

=

〈

1 − j

1 − j

1 + j

〉

=

〈

2j

2j

−2

〉

=

〈

−2j

−2j

2

〉

=

〈

2

2

2j

〉

=

〈

−2

−2

−2j

〉

5.

〈

1 + j

−1 − j

1 + j

〉

=

〈

−1 − j

1 + j

−1 + j

〉

=

〈

−1 + j

1 − j

−1 + j

〉

=

〈

1 − j

−1 + j

1 − j

〉

=

〈

2j

−2j

2j

〉

=

〈

−2j

2j

−2j

〉

=

〈

2

−2

2

〉

=

〈

−2

2

−2

〉

6.

〈

1 + j

−1 − j

−1 − j

〉

=

〈

−1 − j

1 + j

1 + j

〉

=

〈

−1 + j

1 − j

1 − j

〉

=

〈

1 − j

−1 + j

−1 + j

〉

=

〈

2j

−2j

−2j

〉

=

〈

−2j

2j

2j

〉

=

〈

2

−2

−2

〉

=

〈

−2

2

2

〉

7.

〈

1 + j

−1 − j

−1 + j

〉

=

〈

−1 − j

1 + j

1 − j

〉

=

〈

−1 + j

1 − j

−1 − j

〉

=

〈

1 − j

−1 + j

1 + j

〉

=

〈

2j

−2j

−2

〉

=

〈

−2j

2j

2

〉

=

〈

2

−2

2j

〉

=

〈

−2

2

−2j

〉

8.

〈

1 + j

−1 − j

1 − j

〉

=

〈

−1 − j

1 + j

−1 + j

〉

=

〈

−1 + j

1 − j

1 + j

〉

=

〈

1 − j

−1 + j

−1 − j

〉

=

〈

2j

−2j

2

〉

=

〈

−2j

2j

−2

〉

=

〈

2

−2

−2j

〉

=

〈

−2

2

2j

〉

9.

〈

1 + j

1 − j

1 + j

〉

=

〈

−1 − j

−1 + j

−1 − j

〉

=

〈

−1 + j

1 + j

−1 + j

〉

=

〈

1 − j

−1 − j

1 − j

〉

=

〈

2j

2

2j

〉

=

〈

−2j

−2

−2j

〉

=

〈

2

−2j

2

〉

=

〈

−2

−2

2j

〉

10.

〈

1 + j

1 − j

−1 − j

〉

=

〈

−1 − j

−1 + j

1 + j

〉

=

〈

−1 + j

1 + j

1 − j

〉

=

〈

1 − j

−1 − j

−1 + j

〉

=

〈

2j

2

−2j

〉

=

〈

−2j

−2

2j

〉

=

〈

2

−2j

−2

〉

=

〈

−2

2j

2

〉

11.

〈

1 + j

1 − j

1 − j

〉

=

〈

−1 − j

−1 + j

−1 + j

〉

=

〈

−1 + j

1 + j

1 + j

〉

=

〈

1 − j

−1 − j

−1 − j

〉

=

〈

2j

2

2

〉

=

〈

−2j

−2

−2

〉

=

〈

2

−2j

−2j

〉

=

〈

−2

2j

2j

〉

12.

〈

1 + j

1 − j

−1 + j

〉

=

〈

−1 − j

−1 + j

1 − j

〉

=

〈

−1 + j

1 + j

−1 − j

〉

=

〈

1 − j

−1 − j

1 + j

〉

=

〈

2j

2

−2

〉

=

〈

−2j

−2

2

〉

=

〈

2

−2j

2j

〉

=

〈

−2

2j

−2j

〉

13.

〈

1 + j

−1 + j

1 + j

〉

=

〈

−1 − j

1 − j

−1 − j

〉

=

〈

−1 + j

−1 − j

−1 + j

〉

=

〈

1 − j

1 + j

1 − j

〉

=

〈

2j

−2

2j

〉

=

〈

−2j

2

−2j

〉

=

〈

2

2j

2

〉

=

〈

−2

−2j

−2

〉

14.

〈

1 + j

−1 + j

−1 − j

〉

=

〈

−1 − j

1 − j

1 + j

〉

=

〈

−1 + j

−1 − j

1 − j

〉

=

〈

1 − j

1 + j

−1 + j

〉

=

〈

2j

−2

−2j

〉

=

〈

−2j

2

2j

〉

=

〈

2

2j

−2

〉

=

〈

−2

−2j

2

〉

15.

〈

1 + j

−1 + j

1 − j

〉

=

〈

−1 − j

1 − j

−1 + j

〉

=

〈

−1 + j

−1 − j

1 + j

〉

=

〈

1 − j

1 + j

−1 − j

〉

=

〈

2j

−2

2

〉

=

〈

−2j

2

−2

〉

=

〈

2

2j

−2j

〉

=

〈

−2

−2j

2j

〉

16.

〈

1 + j

−1 + j

−1 + j

〉

=

〈

−1 − j

1 − j

1 − j

〉

=

〈

−1 + j

−1 − j

−1 − j

〉

=

〈

1 − j

1 + j

1 + j

〉

=

〈

2j

−2

−2

〉

=

〈

−2j

2

2

〉

=

〈

2

2j

2j

〉

=

〈

−2

−2j

−2j

〉

.

Fig. 7. Null Spaces of the Singular Fades Spaces for the casexA − x′
A, xB − x′

B andxC − x′
C ∈ D1.

corresponding to(−1,−j, j) and (j, j,−j) must be the same
and the entries corresponding to(−j,−j, j) and (1, j,−j)
must be the same in the4 × 4 × 4 array representing the
clustering, i.e., entries(2, 3, 1) and(1, 1, 3) must be the same
and entries(3, 3, 1) and(0, 1, 3) must be the same. Similarly,
the constraints resulting from the third and forth vector cabe
obtained. The constrained array is shown in Figure 8.

We choose to fill the constrained array to form a Latin cube
of second order as shown in adjoining Algorithm 1, which
simply fills the empty cells of the partially filled4 × 4 × 4
array withLi, i ≥ 1 in increasing order ofi keeping in mind
that the resulting array must be a Latin cube of second order.
The top-most and the left-most empty cell in the earliest file
is filled at every iteration. The completed Latin cube is shown
in Figure 9.

Example 2:Consider another example for which the singu-

lar fade subspace is given by

S
′′

=

〈

1 + j

1 + j

−1 − j

〉

⊥

=

〈

−1 − j

−1 − j

1 + j

〉

⊥

=

〈

−1 + j

−1 + j

1 − j

〉

⊥

=

〈

1 − j

1 − j

−1 + j

〉

⊥

=

〈

2j

2j

−2j

〉

⊥

=

〈

−2j

−2j

2j

〉

⊥

=

〈

−2

−2

2

〉

⊥

=

〈

2

2

−2

〉

⊥

.

The first vector is[1 + j, 1 + j, − 1− j]. Here, 1 + j
can be obtained as a difference ofxA = 1 and x′

A = −j
or as a difference ofxA = j and x′

A = −1; −1 − j
can be obtained as a difference ofxC = −1 and
x′
C = j or as a difference ofxC = −j and x′

C = 1.
Thus, the entries corresponding to{(1, 1,−1), (−j,−j, j)},

{(1, 1,−j), (−j,−j, 1)},{(1, j,−1), (−j,−1, j)},{(1, j,−j), (−j,−1, 1)},

{(j, 1,−1), (−1,−j, j)},{(j, 1,−j), (−1,−j,1)},{(j, j,−1), (−1,−1, j)},

{(j, j,−j), (−1,−1, 1)} must be the same in the4× 4× 4 array
representing the clustering, i.e., entries{(0, 0, 2), (3, 3, 1)},

10

xA = 0 0 1 2 3

0 L3
1 L2
2
3

xA = 1 0 1 2 3

0
1 L1
2 L3
3

xA = 2 0 1 2 3

0
1
2 L4
3 L1

xA = 3 0 1 2 3

0 L4
1
2
3 L2

Fig. 8. Constraints for Example 1, with B’s transmitted symbols along the rows and C’s transmitted symbols along the columns

xA = 0 0 1 2 3

0 L1 L5 LLL333 L6
1 L7 L4 L8 LLL222
2 L9 L10 L11 L12
3 L13 L14 L15 L16

xA = 1 0 1 2 3

0 L2 L7 L9 L8
1 L5 L6 L10 LLL111
2 LLL333 L13 L14 L15
3 L11 L12 L17 L4

xA = 2 0 1 2 3

0 L10 L11 L12 L13
1 L14 L3 L16 L9
2 LLL444 L8 L2 L5
3 L6 LLL111 L7 L18

xA = 3 0 1 2 3

0 L15 L16 LLL444 L14
1 L12 L17 L13 L11
2 L18 L19 L1 L7
3 L8 LLL222 L5 L3

Fig. 9. Latin Cube for Example 1, with B’s transmitted symbols along the rows and C’s transmitted symbols along the columns

Algorithm 1 : Obtaining the Latin Cube of Second Order
from the constrained4× 4× 4 array
Input : The constrained4× 4× 4 array
Output : A Latin Cube of Second Order representing the

clustering map at the relay
Start with the constrained4× 4× 4 array1

Initialize all empty cells ofX to 02

Let Y denote the4× 16 matrix obtained by3

concatenatingX row-wise, and letZ denote the16× 4
matrix obtained by concatenatingX column-wise
The (i, j, k)th element ofX is the ith file, the jth row4

and thekth column cell.
for 1 ≤ i ≤ 4 do5

for 1 ≤ j ≤ 4 do6

for 1 ≤ k ≤ 4 do7

if cell (i, j, k) of X is NULL then8

Initialize c=19

if Lc does not occur in theith file of X ,10

the jth row of Y and thekth column of
Z then

replace 0 at cell(i, j, k) of X with11

Lc;
replaceY with the 4× 16 matrix12

obtained by concatenatingX
row-wise, andZ by the16× 4 matrix
obtained by concatenatingX
column-wise;

else13

c=c+1;14

end15

end16

end17

end18

end19

{(0, 0, 3), (3, 3, 0)}, {(0, 1, 2), (3, 2, 1)}, {(0, 1, 3), (3, 2, 0)},
{(1, 0, 2), (2, 3, 1)}, {(1, 0, 3), (2, 3, 0)}, {(1, 1, 2), (2, 2, 1)},
{(1, 1, 3), (2, 2, 0)} must be the same. Similarly the other
constraints can be obtained. The constrained array is shown
in Figure 10, and the clustering is as shown in Figure 11.

For each of the 112 possibilities of singular fade subspaces

of Case 3of the previous section, a clustering of size between
16 to 23 can be achieved by first constraining the array
representing the relay map in order to remove the singular
fade state and then completing the constrained array using
the provided algorithm.

V. SIMULATION RESULTS

The proposed scheme is based on the removal of singular
fade states for the three-way relaying sccenario. A minimum
cluster distance greater than zero is ensured for all the fade
states, excluding a subset of singular fade states, which are
shown to be non-removable. It is attempted to ensure that in
the given scenario, the number of clusters in the clustering,
which is the same as the size of the signal set used during
the BC phase is minimized. Simulation results presented in
this section identify some cases where the proposed scheme
outperforms the naive approach that uses the same map for
all fade states and vice verse All the simulation results shown
in this section are for the case when the end nodes use 4-PSK
signal set. The simulation results for the end to end BER as
a function of SNR are presented in this section for different
fading scenarios.

Consider the case whenHA, HB, HC , H
′
A, H

′
B and H ′

C

are distributed according to Rician distribution and channel
variances equal to 0 dB. The SNR vs BER curve for this
case, for a frame length of 256 bits. The plots for the cases
with a Rician Factors of 5 dB, 10 dB, 15 dB and 20 dB are
as shown in Fig. 13, Fig. 14, Fig. 15 and Fig. 16 respectively.
The figures show the SNR vs bit-error-rate curves for the
following schemes: adaptive clustering given in the paper,
and non-adaptive clustering. For non-adaptive clustering, the
relay node uses the same map given by Figure 12 for all the
channel realisations, we refer to this map as the non-adaptive
map. It can be seen from Fig. 14 that the schemes based
on the adaptive clustering relaying perform better than the
schemes based on non-adaptive clustering at low SNR, since
adaptive clustering removes 112 singular fade states.

It can be seen from the simulation results presented that
the non-adaptive network coding performs better than the
proposed scheme above a certain SNR when there is a
dominant line of sight component, as in the case of Rician

11

xA = 0 0 1 2 3

0 L5 L1 L2
1 L3 L4
2
3 L6 L7

xA = 1 0 1 2 3

0 L4 L3
1 L5 L2 L1
2 L6 L7
3

xA = 2 0 1 2 3

0
1 L7 L6
2 L1 L2 L5
3 L3 L4

xA = 3 0 1 2 3

0 L7 L6
1
2 L4 L3
3 L2 L1 L5

Fig. 10. Constraints for Example 1, with B’s transmitted symbols along the rows and C’s transmitted symbols along the columns

xA = 0 0 1 2 3

0 L8 LLL555 LLL111 LLL222
1 L9 L10 LLL333 LLL444
2 L11 L12 L13 L14
3 L15 LLL666 LLL777 L16

xA = 1 0 1 2 3

0 L10 L9 LLL444 LLL333
1 LLL555 L8 LLL222 LLL111
2 LLL666 L15 L16 LLL777
3 L12 L11 L14 L13

xA = 2 0 1 2 3

0 L13 L14 L11 L12
1 LLL777 L16 L15 LLL666
2 LLL111 LLL222 L8 LLL555
3 LLL333 LLL444 L9 L10

xA = 3 0 1 2 3

0 L16 LLL777 LLL666 L15
1 L14 L13 L12 L11
2 LLL444 LLL333 L10 L9
3 LLL222 LLL111 LLL555 L8

Fig. 11. Clustering for Example 2

15 20 25 30 35

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No, dB

B
it
 E

rr
o

r
R

a
te

Adaptive Network Coding
Non−Adaptive Network Coding

Fig. 13. SNR vs ber curves for different schemes for 4-PSK signal set when
the Rician Factors is 5 dB

fading scenario. The reason for this is as follows: The end
to end SNR vs BER as well as the throughput performance
depend on the performance during the MA phase as well
as the BC phase. As the line of sight component becomes
more and more predominant, the performance during the BC
phase gets better and better, but the effect of multiple access
interference which occurs during the MA phase remains the
same. Hence, for the cases when line of sight component is
predominant, the performance degradation due to the MA
interference predominates over the degradation occurring
during the BC phase. The case of non-adaptive network
coding, the relay utilizes a constellation of least possible
size, whereas in adaptive network coding, the relay attempts
at removing singular fade states, thereby optimizing the
performance during MA phase to the fullest extent possible,
at the cost of degraded performance during the BC phase.
Hence, the non-adaptive network coding performs better than
the proposed scheme at high SNR.

15 20 25 30 35 40

10
−3

10
−2

10
−1

Eb/No, dB

B
it

E

r
r
o

r

R

a
t
e

Adaptive Network Coding
Non−Adaptive Network Coding

Fig. 14. SNR vs ber curves for different schemes for 4-PSK signal set when
the Rician Factors is 10 dB

12 14 16 18 20 22 24 26 28 30 32

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No, dB

B
it
 E

rr
o

r
R

a
te

Adaptive Network Coding
Non−Adaptive Network Coding

Fig. 15. SNR vs ber curves for different schemes for 4-PSK signal set when
the Rician Factors is 15 dB

12

xA = 0 0 1 2 3

0 L1 L2 L3 L4
1 L5 L6 L7 L8
2 L9 L10 L11 L12
3 L13 L14 L15 L16

xA = 1 0 1 2 3

0 L6 L5 L8 L7
1 L2 L1 L4 L3
2 L14 L13 L16 L15
3 L10 L9 L12 L11

xA = 2 0 1 2 3

0 L11 L12 L9 L10
1 L15 L16 L13 L14
2 L3 L4 L1 L2
3 L7 L8 L5 L6

xA = 3 0 1 2 3

0 L16 L15 L14 L13
1 L12 L11 L10 L9
2 L8 L7 L6 L5
3 L4 L3 L2 L1

Fig. 12. Non-Adaptive map

15 20 25 30 35

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/No, dB

B
it
 E

rr
o

r
R

a
te

Adaptive Network Coding
Non−Adaptive Network Coding

Fig. 16. SNR vs ber curves for different schemes for 4-PSK signal set when
the Rician Factors is 20 dB

VI. CONCLUSION

Our paper deals with the three-way wireless relaying
scenario, assuming that the three nodes operate in half-duplex
mode and that they transmit points from the same 4-PSK
constellation. It is shown that it is possible for information
exchange to take place using just two channels uses, unlike
the other work done for the case, to the best of our knowledge.
The Relay node clusters the43 possible transmitted tuples
(xA, xB, xC) into various clusters such thatthe exclusive
law is satisfied. This necessary requirement of satisfying
the exclusive law is shown to be the same as the clustering
being represented by a Latin Cube of second order. Using the
proposed schemes, not only is the exchange of information
between the three nodes made possible using three channel
uses, the size of the resulting constellation used by the relay
node R in the BC phase is reduced from43 to lie between 16
to 23. Note that we do not claim that the size of the clustering
utilizing modified clustering is the best that can be achieved,
since our method of filling the Latin Cube of Second Order of
side 4 may not be the most optimal process of doing so, and
it might be possible to fill the array with less than 23 symbols.

ACKNOWLEDGEMENT

This work was supported partly by the DRDO-IISc program
on Advanced Research in Mathematical Engineering through

a research grant as well as the INAE Chair Professorship
grant to B. S. Rajan.

REFERENCES

[1] S. Zhang, S. C. Liew and P. P. Lam, “Hot topic: Physical-layer Network
Coding”, ACM MobiCom ’06, pp. 358–365, Sept. 2006.

[2] S. J. Kim, P. Mitran and V. Tarokh, “Performance Bounds for Bidirec-
tional Coded Cooperation Protocols”, IEEE Trans. Inf. Theory, Vol. 54,
pp. 5235–5241, Nov. 2008.

[3] P. Popovski and H. Yomo, “Physical Network Coding in Two-Way
Wireless Relay Channels”, IEEE ICC, Glasgow, Scotland, pp.707–712,
June 2007.

[4] T. Koike-Akino, P. Popovski and V. Tarokh, “Optimized constellation for
two-way wireless relaying with physical network coding”, IEEE Journal
on selected Areas in Comm., Vol.27, pp. 773–787, June 2009.

[5] T. Koike-Akino, P. Popovski and V. Tarokh, “Denoising strategy for
convolutionally-coded bidirectional relaying”, IEEE ICC2009, Dresden,
Germany, June 2009.

[6] B. Hern and K. Narayanan, “Multilevel Coding Schemes forCompute-
and-Forward”, IEEE ISIT, St. Petersburg, Russia, pp. 1-5, July 2011.

[7] Vishnu Namboodiri, Vijayvaradharaj T Muralidharan andB. Sundar
Rajan, “Wireless Bidirectional Relaying and Latin Squares”, available
online at arXiv:1110.0084v2 [cs.IT], 1 Oct. 2011.

[8] Chris A. Rodger, “Recent Results on The Embedding of Latin Squares and
Related Structures, Cycle Systems and Graph Designs”, Le Matematiche,
Vol. XLVII - Fasc. II, pp. 295–311, 1992.

[9] C.H. Lui and A. Arapostathis, “Joint network coding and superposition
coding for multi-user information exchange in wireless relaying networks”,
in Proc. of IEEE-Globecom, pp. 1–6, Dec. 2008.

[10] Mylene Pischella and Didier Le Ruyet, “Lattice based coding scheme
for MIMO bi-directional relaying with three nodes”, 22nd IEEE Personal
Indoor Mobile Radio Communications, Toronto, Canada, pp. 1459–1463,
Sept. 2011.

[11] Moonseo Park and Seong Keun Oh, “An Iterative Network Code
Optimization for Three-Way Relay Channels”, Vehicular Technology Con-
ference Fall (VTC 2009-Fall), 2009 IEEE 70th, pp. 1–5, Sept.2009.

[12] Youngil Jeon, Young-Tae Kim, Moonseo Park, Inkyu Lee, “Opportunis-
tic Scheduling for Three-way Relay Systems with Physical Layer Network
Coding”, Vehicular Technology Conference (VTC Spring) 2011, Budapest,
Hungary, IEEE 73rd, pp. 1–5, May 2011.

[13] K. Kishen, “On Latin and Hyper-Graeco-Latin Cubes and Hyper Cubes”,
Current Science, Vol. 11, pp. 98–99, 1942.

[14] Vijayvaradharaj T Muralidharan, Vishnu Namboodiri and B. Sundar
Rajan, “Channel Quantization for Physical-Layer Network Coded Two-
Way Relaying”, available online at arXiv:1109.6101v1 [cs.IT], 28 Sept.
2011.

13

http://arxiv.org/abs/1110.0084
http://arxiv.org/abs/1109.6101

	I Background And Preliminaries
	I-A Signal Model

	II The Exclusive Law and Latin Cubes
	III singular fade subspaces
	IV Removing singular fade subspaces and Constrained Latin Cubes
	V SIMULATION RESULTS
	VI Conclusion
	References

