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Abstract—We propose a novel joint decoding technique for dis-
tributed source-channel (DSC) coded systems for transmission of
correlated binary Markov sources over additive white Gaussian
noise (AWGN) channels. In the proposed scheme, relatively short-
length, low-density parity-check (LDPC) codes are independently
used to encode the bit sequences of each source. To reconstruct
the original bit sequence, a joint source-channel decoding(JSCD)
technique is proposed which exploits the knowledge of both
temporal and source correlations. The JSCD technique is com-
posed of two stages, which are iteratively performed. First, a
sum-product (SP) decoder is serially concatenated with a BCJR
decoder, where the knowledge of source memory is utilized during
local (horizontal) iterations. Then, the estimate of correlation
between the sources is used to update the concatenated decoder
during global (vertical) iterations. Therefore, the correlation of
the sources is assumed as side information in the subsequent
global iteration of each concatenated decoder. From the simu-
lation results of frame/bit error rate (FER/BER), we note that
significant gains are achieved by the proposed decoding scheme
with respect to the case where the correlation knowledge is not
completely utilized at the decoder.

I. INTRODUCTION

In distributed source coding problem, Slepian-Wolf (SW)
theorem states that using joint decoding achieves higher com-
pression rates compared to separate decoding of correlated
sources [1]. Numerous distributed compression methods have
been developed for non-uniform sources or sources with
memory during recent years in the context of sensor networks,
e.g., [2], [3], and references therein.

Although there are many efficient coding methods for
lossless compression, transmission of correlated sourcesover
noisy channels based on the SW cooperation has been inves-
tigated quite recently [4]–[7]. To exploit the benefit of the
SW cooperation over the relay channels,joint source-channel
decoding (JSCD) techniques have been recently proposed
based on turbo coding with significant bit error rate (BER)
performance gain [8], [9]. Turbo-like codes which are used
for encoding of correlated sources are assumed, having long
block-lengths and hence the decoding latency is a problem.
Thus, these codes are not suitable in certain practical appli-
cations due to decoding latency and/or power consumption
limitations.

Furthermore, most of the research results on transmission of
correlated bit sequences over noisy channels focus on sources
without temporal correlation (source memory), and hence

the sources are assumed to be independent and identically
distributed (i.i.d) in the time domain. In [5] and [6], turboand
low-density generator-matrix (LDGM) codes were proposed
for transmission of correlated binary i.i.d sources over additive
white Gaussian noise (AWGN) channel, respectively. Also in
[7], a joint iterative decoder of LDPC codes was introduced for
correlated sources without memory. The decoding technique
proposed in [7] employs a two-stage iterative decoder, between
which local and global iterations are performed. In the local
iterations, decoding is performed using the sum-product (SP)
algorithm [10], while in the global iterations the estimateof
correlation between the sources is passed on to the SP decoder
to improve the decoding performance in the subsequent round
of local iterations.

The main objective of this paper is to propose a novel tech-
nique for the transmission of two correlated binary sequences
following a first order Markov process, in contrast to [5]–
[7] where the sources are i.i.d. Relatively short-length (length
< 10000) LDPC codes with systematic parity-check matrices
are used for the encoding of bit sequences to be transmitted
because efficient performance improvement can be expected
with the help of the correlation within and across the sequences
in both the waterfall and error floor regions.

At the decoder side, the joint decoder proposed in this
paper exploits the information related to the temporal and
source correlations in two stages. A standard BCJR decoder
[11] is serially concatenated to a SP decoder for the efficient
utilization of the temporal memory structure inherent within
the output sequences of the source. Additionally, to exploit
the source correlation, the method proposed in [7] is used,
where thelog-likelihood ratio (LLR) of the local iterations is
updated according to the knowledge about the source corre-
lation estimated in the previous global iteration. Numerical
results demonstrate that significant BER performance gains
are achieved by the proposed JSCD method for the correlated
binary sequences generated by a Markov source.

The organization of the paper is as follows. In Section II,
basic concepts and notations related to the proposed algorithm
are introduced. In Section III, the proposed joint decoder
structure is described in details. In Section IV, simulation
results and comparisons with decoders that do not exploit the
temporal and source correlations are provided. Finally, Section
V concludes the paper.
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II. PRELIMINARIES

A. Source Model

We consider two binary sources, one of them is modeled as
a binary Markov source whose sequences are denoted byb

1 =
{b11, b

1
2, . . .}, and the sequences of another source, denoted by

b
2 = {b21, b

2
2, . . .}, is assumed to be erroneous version ofb

1,
corrupted by a binary noise with occurrence probabilityp,
wherebqi ∈ {0, 1}, q = 1, 2. Therefore,b2i = b1i ⊕ zi, where
Zi and ⊕ denote a binary random variable with probability
pr(zi = 1) = p and a modulo-2 addition, respectively. The
probability1− p determines correlation ratio between the bit
sequences of the two sources, i.e., the smaller thep is, the
more correlated the sources are.

The binary Markov source considered in this paper is a
stationary, ergodic, state emitting Markov source{St}, whose
transition probabilities are described by the transition matrix

Π = [πij ] =

[

1− α α
β 1− β

]

,

where the transition probability is defined

πij , pr{St = j|St−1 = i}, i, j ∈ {0, 1}.

The stationary distribution of the source states is denoted
by (µ0, µ1) whereµ0 , pr{St = 0} , 1 − µ1. With the
stationarity assumption, it can be easily shown thatµ0 andµ1

areµ0 = 1−µ1 =
β

α+β
. If α 6= β, the source described above

is anasymmetric binary Markov source. Otherwise, whenα =
β 6= 1/2 the source is asymmetric Markov source with a
uniform stationary distribution, i.e.,µ0 = µ1 = 1/2.

Theentropy rate of stationary binary Markov source is given
by

H(s) = µ0h(α) + µ1h(β), (1)

whereh(p) = −p log2(p) − (1− p) log2(1 − p) is the binary
entropy function [12].

We will assume in this paper that the Markov source char-
acteristics, i.e.,α andβ, are known to the proposed decoder.
Estimation of Markov source parameters was discussed for
unknown temporal correlation parameters in [13].

B. LDPC Codes

Consider a binary LDPC codeC represented by a Tanner
graphG = (Vb ∪ Vc, E), whereVb = {v1, . . . , vn} andVc =
{c1, . . . , cm} are the sets of variable nodes and check nodes,
respectively, andE is the set of edges. Corresponding toG,
we have anm×n parity-check matrixH = [hij ] of C, where
hij = 1 if and only if (iff) the nodeci ∈ Vc is connected to
the nodevj ∈ Vb in G; or equivalently, iff{vj , ci} ∈ E. The
code rate ofC is Rc = 1− rank(H)

n
, whererank(.) is the rank

of its argument matrix inGF (2).
The degree of a variable or a check node is the number of

nodes connected to it. If the nodes in the setVb and/or the
nodes in the setVc have different degrees, the corresponding
LDPC code is calledirregular. For an irregular LDPC code,
the degree distribution of variable nodes is described by the
polynomial,λ(x) =

∑Dv

i=2 λix
i−1, whereDv is the maximum

variable node degree andλi is the fraction of the edges
connected to the variable nodes of degreei.

III. PROPOSED SYSTEM MODEL

A. LDPC Encoder

In our proposed scheme, two individual LDPC codes are
used for encoding of the correlated bits over independent
AWGN channels. The encoded bits are transmitted over the
channels by using binary phase-shift keying (BPSK) modula-
tion.

To have an efficient BER performance, two types of op-
timized degree distributions over AWGN channels with rates
0.5 and0.32 are used [14]. The corresponding variable node
degree distribution for code rate0.5 is given by [14, Table I]

λA(x) = 0.25105x+ 0.30938x2 + 0.00104x3 + 0.43853x9,
(2)

and for code rate0.32 is calculated as following

λB(x) = 0.3127x+ 0.3582x2 + 0.04x6 + 0.2891x9, (3)

both of which have maximum variable degree10. A modified
progressive edge growth (PEG) method is used to construct
relatively short-length parity-check matrices with very low
error-floor performance [15].

Just for the simplicity of the iterative decoders, we assume
the systematic parity-check matrices with equal rates for the
both channels.

B. Theoretical Bound

Let H(s1, s2) denote the joint entropy of the first and
the second sources. According to the SW bounds, the total
required rate to transmit the correlated information sequences
over the both channels is given by

R = H(s1, s2)/(1/Rc1 + 1/Rc2), (4)

whereRci for i ∈ {1, 2} is the code rate of thei-th channel,
where the terminologies and/or symbol notations follow [5]
and [6]. The energy per source bit,Eso, can then be related
to the energy per information bit,Eb, and the energyEs per
sent symbol to be sent over the channels is given by

2Eso = H(s1, s2)Eb = (1/Rc1 + 1/Rc2)Es, (5)

whereEs = 1 in BPSK modulation.
In general, the parity-check matrices of each channel can be

different in code rates. However, we only focus on the cases
that both channels use the same rate of the codes (symmetric
case), i.e., Rc1 = Rc2 , hence theShannon/SW limit for
calculation ofEso/N0 in the symmetric case is given by

(
Eso

N0
)|lim =

2H(s1,s2)Rc1 − 1

2Rc1

, (6)

whereσ2
n andN0 = 2σ2

n respectively denote the noise variance
of the two AWGN channels, which is also assumed to be equal,
and the noise power spectral density.

Moreover,H(s1, s2) = H(s1) + h(p) whereH(s1) is the
entropy rate of the binary Markov source andh(p) is the
entropy of the correlation parameter.



C. Joint Source-Channel Decoder

In the class of JSCD, which the proposed technique also
belongs to, the processing of correlation between the sources
is performed at the decoder side. Hence, the design of the
joint decoder that can best exploit the source-channel code
properties plays very important role. In the proposed de-
coder, the temporal and source correlations are exploited in
two consecutive iterations, these iterations are referredto
as local (horizontal) and global (vertical) iterations. During
the horizontal iterations, the systematic variable nodes have
LLR inputs from the received signals and a BCJR decoder
matched to the trellis diagram of the Markov source. The
LLRs are exchanged between variable and check nodes of
the LDPC code until either no more relevant improvement in
LLR is achieved or a maximum number of local iterations
is reached. Then, the correlation between two bit sequences
is estimated at the end of the horizontal iterations and the
LLR associated to the source correlation is passed on to the
systematic variable nodes of each channel via the vertical
iteration. For the initialization, the LLRs to be used in the
vertical iteration are first set zero for the both decoders.

In Fig. 1, the block diagram of the proposed JSCD structure
is presented.
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Fig. 1: Block diagram of the proposed JSCD technique for
correlated binary sequences generated by a Markov source.

Let us consider thej-th local and theℓ-th global iteration of
the proposed decoder. LetL(j)

v,c andL
(j)
c,v respectively denote

the LLR messages passed from a variable nodev to a check
nodec and from thec-th check node to thev-th variable node
at the j-th iteration. Also,Lcc

v represents the LLR obtained
from the received signal to be input to the variable nodev ∈
{1, . . . , n}. Thus,Lcc

v = 2rv/σ
2
n where rv is the received

noisy signal. The index of the channels is omitted for the
simplicity, so far as no ambiguity is expected in the notations.

The process for LLR message updating in the variable
nodes follows the standard SP decoding with additional LLRs
from the BCJR decoder with a modification due to the
source correlation, as detailed for the expressions of Eq. 7-
9. The information exchange between the SP and the Markov
decoders does not contain the information obtained by the
previous iterations, and hence isextrinsic information.

The LLR messages to be forwarded from thek systematic
variable nodes to the corresponding check nodes are given by

L(j)
v,c = Lcc

v +
∑

c′ 6=c

L
(j−1)
c′,v + L

(j−1)
M,v + L(ℓ−1)

v,up , (7)

wherev ∈ {1, . . . , k}, L(j)
M,v and L

(ℓ)
v,up denote the extrinsic

LLR, sent from the Markov decoder to the variable nodev
and the LLR already updated according to the correlation,
respectively, in thej-th and theℓ-th iterations. It is worth
mentioning that summation is performed only on the check
nodes connected to the variable nodev.

For parity variable nodes, the updated messages are obtained
in the same way as the standard SP decoder, and is represented
by

L(j)
v,c = Lcc

v +
∑

c′ 6=c

L
(j−1)
c′,v , (8)

wherev ∈ {k+1, . . . , n}. The messagesL(j)
c,v are also updated

in each local iteration exactly in the same way as the standard
SP decoder.

The input extrinsic LLR of the Markov decoder is calculated
by subtracting the extrinsic LLR of the Markov decoder,
obtained as the result of previous Markov decoding, from the
a posteriori LLR, obtained as the result of the current SP
decoding, in each local iteration. Thus, the sent LLR from a
variable nodev to the Markov decoder in thej-th iteration,
denoted asL(j)

v,M , is calculated as

L
(j)
v,M = Lcc

v +
∑

c′

L
(j−1)
c′,v + L(ℓ−1)

v,up , (9)

wherev ∈ {1, . . . , k}. Furthermore, the BCJR decoder which
uses the trellis diagram representing the Markov source is
applied to calculate the extrinsicL(j)

M,v values by the same
equations represented in [9].

During the vertical iterations, the LLRL(ẑv) of the binary
error sequence,zv, is estimated. The estimate of the binary
error, ẑ(ℓ)v , in the ℓ-th vertical iteration, is given by

ẑ(ℓ)v = b̂1,(ℓ)v ⊕ b̂2,(ℓ)v , (10)

whereb̂q,(ℓ)v , q = 1, 2, is the estimated source (systematic) bits
of the q-th channel obtained as the result of the horizontal
iterations. Hence,̂bq,(ℓ)v is calculated as

b̂q,(ℓ)v =

{

0 if L
q,(ℓ)
v ≥ 0

1 if L
q,(ℓ)
v < 0

, (11)

whereLq,(ℓ)
v = Lq,cc

v + L
q,(jt−1)
M,v + L

q,(ℓ−1)
v,up +

∑

c′ L
q,(jt−1)
c′,v

andjt is the terminated horizontal iteration. The LLRL(ẑ(ℓ)v )

of ẑ(ℓ)v is estimated using the method presented in [7], as

L(ẑ(ℓ)v ) = (1− 2ẑ(ℓ)v )
k −WH

WH

, (12)

where k and WH denote the length of the original source
packet and Hamming weight of estimated binary error vector
Ẑ
(ℓ) = {ẑ

(ℓ)
1 , . . . , ẑ

(ℓ)
k }.

Finally, according to the modulo-2 addition of the error
sequence, the updating LLRs of the first and the second
concatenated decoders are given by

L1,(ℓ)
v,up = 2 atanh(tanh(L(ẑ(ℓ)v )/2) tanh(L2,(ℓ)

v /2)), (13)

L2,(ℓ)
v,up = 2 atanh(tanh(L(ẑ(ℓ)v )/2) tanh(L1,(ℓ)

v /2)), (14)



where tanh(.) and atanh(.) denote, respectively, the hyper-
bolic and inverse hyperbolic tangent functions.

IV. SIMULATION RESULTS

In this section, we demonstrate the advantages characteris-
tics of the JSCD technique rather than using a single structure
which only exploits either the temporal or source correlations.
The distributed source-channel (DSC) coding was performed
for symmetric and asymmetric binary Markov sources with
different code rates over AWGN channels. In both examples,
the maximum number of local and global iterations for the
proposed JSCD technique was set at50 and15, respectively.

Example 1: In this example, a symmetric binary Markov
source with the state transition parametersα = β = 0.1
was considered. For DSC coding of the correlated transmitted
bits, two different irregular LDPC codes with the degree
distribution λA, the rateRc = 0.5, and the block-length
n = 4096 were constructed by using a modified PEG method
[15].

The FER/BER performances of the transmitted source bits
with different decodings are presented in Fig. 2, including
the proposed JSCD, the concatenated SP-BCJR decoding,
the decoding method proposed in [7], and the standard SP
decoding. It is found that roughly1.3 dB gain in terms
of Eso/N0 is achieved by the proposed decoder with the
correlation parameterp = 0.01 compared to the case where
only the temporal correlation of the source is used. The
gap between theoretical limits1 and our simulation results for
the standard SP decoder, the decoder proposed in [7], the
concatenated SP-BCJR decoder and the proposed decoder are
1.5 dB, 3.5 dB, 2.9 dB and4 dB, respectively.

The FER/BER curves of the JSCD method with different
correlation parameters and their respective Shannon/SW limits
are shown in Fig. 3. The gap between the theoretical limits and
the simulation results for the JSCD with different correlation
parametersp ∈ {0.01, 0.05, 0.1, 0.2} are {4, 2.9, 2.2, 1.5}
dB, respectively. It is found that the more the correlation
is between the sources, the more the gap is between the
theoretical limits and the simulation results. The gap indicates
that there will remain many open questions for the optimal
code design and decoding algorithm development which are
left as a future study.

Example 2: The proposed JSCD technique was also per-
formed for an asymmetric binary Markov source withα = 0.1
and β = 0.2. Two different irregular LDPC codes were
constructed by the modified PEG method for encoding of
correlated sources by using the degree distributionλB with
the rateRc = 0.32, and the block-lengthn = 6400.

The FER/BER performance of the proposed decoder with
the correlation parameterp = 0.01 is demonstrated in Fig.
4. In this figure, the FER/BER results of the SP decoder,
the decoder proposed in [7], and the concatenated SP-BCJR
decoder are also depicted. As shown in Fig. 4, more than

1The theoretical limits are obtained using the same techniques described in
[5], [16].
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Fig. 2: FER, BER, Shannon/SW limit performances of various
decoders for correlated bit sequences with Markov source
parametersα = β = 0.1, andp = 0.01 (Example 1).
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Fig. 3: FER, BER, and Shannon/SW limit performances of the
proposed decoder for different correlation values with Markov
source parametersα = β = 0.1 (Example 1).

1.4 dB gain in terms ofEso/N0 is achieved over the decoders
that only use either the temporal or source correlations. Inthis
case, the gap between the theoretical limits and the simulation
results for the SP decoder, the decoder presented in [7], the
concatenated SP-BCJR decoder, and the proposed decoder are
1.5 dB, 3.5 dB, 2.7 dB and3.95 dB, respectively.

Moreover, performances of the proposed decoder for differ-
ent correlation parameters,p ∈ {0.01, 0.05, 0.1, 0.2}, and their
corresponding limitations are demonstrated in Fig. 5. The gap
between the theoretical limits and the numerical results for
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Fig. 4: FER, BER, Shannon/SW limit performances of various
decoders for correlated bit sequences with Markov source
parametersα = 0.1, β = 0.2, andp = 0.01 (Example 2).
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Fig. 5: FER, BER, and Shannon/SW limit performances of the
proposed decoder for different correlation values with Markov
source parametersα = 0.1, β = 0.2 (Example 2).

the correlation parameters described above are, respectively,
{3.95, 2.9, 2.2, 1.5} dB. It is obvious that the more the cor-
relation is, the more the gap is between the theoretical limits
and the simulation results just like the example 1.

V. CONCLUSION

We have introduced an iterative joint source-channel de-
coding technique for the transmission of two correlated bi-
nary Markov sources. Each of the sources is independently
encoded by a relatively short-length irregular LDPC code.
The proposed decoder contains two concatenated SP-BCJR

decoders, each taking into account the temporal correlation
(Markov memory structure) over which extrinsic information
is exchanged. Moreover, the output of extrinsic LLRs from
the Markov decoders is updated by exploiting the source
correlation during the global iterations. The proposed JSCD
technique outperforms the other decoders that do not fully
utilize the correlation information. Even though the proposed
decoding effectively utilizes temporal and source correlations,
there still remains a gap between the thresholdEso/N0,
obtained by the simulations, and the theoretical limits. This
indicates that there are many open questions for the optimal
code design and decoding algorithm development which are
left as a future study.
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