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Abstract—Energy efficiency (EE) is becoming an important
performance indicator for ensuring both the economical and envi-
ronmental sustainability of the next generation of communication
networks. Equally, cooperative communication is an effective way
of improving communication system performances. In this paper,
we propose a near-optimal energy-efficient joint resource al-
location algorithm for multi-hop multiple-input-multiple-output
(MIMO) amplify-and-forward (AF) systems. We first show how
to simplify the multivariate unconstrained EE-based problem,
based on the fact that this problem has a unique optimal solution,
and then solve it by means of a low-complexity algorithm. We
compare our approach with classic optimization tools in terms
of energy efficiency as well as complexity, and results indicate
the near-optimality and low-complexity of our approach. As an
application, we use our approach to compare the EE of multi-
hop MIMO-AF with MIMO systems and our results show that
the former outperforms the latter mainly when the direct link
quality is poor.

I. INTRODUCTION

Network operators not only require the next generation of

communication systems to be more spectrally efficient, which

has been the trend for the last decade, but also to be more

energy-efficient in order to ensure both the economical and

environmental sustainability of their activity. Consequently,

energy efficiency (EE) is gradually becoming an important

performance indicator, which is currently extensively studied

for both power-limited [1], [2], e.g. mobile device, and power-

unlimited [3], [4], e.g. cellular system, applications.

Cooperative communication has proved in the past to be an

effective solution for increasing the spectral efficiency (SE)

or/and the coverage of cellular networks [5] as well as reducing

the cost of network deployment [6]. More recently, it has

been indicated in [7] that cooperative communication can also

be deployed to improve EE by using relays for reducing the

transmit power at the base station (BS). Due to its simplicity,

amplify-and-forward (AF) remains one of the most popu-

lar schemes for implementing cooperative multi-input multi-

output (MIMO) communication. As far as resource (power

or/and rate) allocation for multi-hop MIMO-AF system is

concerned, most of the existing methods for jointly allocating

resources at the source node (SN) and relay nodes (RNs) are

based on SE maximization or mean square error minimization

[8], [9] and, thus, do not take into account the EE. With

the growing importance of EE in communication, EE-based

resource allocation is becoming popular such that EE-optimal

resource allocation schemes for the uplink and downlink of

MIMO systems over a frequency selective channel have been

recently proposed in [1], [2] and [4], respectively. Meanwhile,

energy-efficient resource allocation methods for the two-hop

MIMO-AF and multi-hop MIMO systems have been provided

in [10] and [11], respectively.

In this paper, we propose an energy-efficient joint resource

allocation method for the multi-hop MIMO-AF system by

a considering a realistic multi-hop MIMO power model.

Contrarily to [10], we propose a joint optimization of all

the transmitting nodes and generalize the problem to N hops

instead of two hops. In addition, contrarily to [11], we consider

AF relaying, a realistic multi-hop MIMO power model and our

objective function is the closed-form expression of the EE and

not an approximated bound of it. In Section II, we first describe

the multi-hop MIMO-AF system as well as power models and,

second, formulate the energy-per-bit consumption of the multi-

hop MIMO-AF system based on these models. Given that the

energy-per-bit consumption function has a unique minimum,

we simplify the unconstrained energy-efficient joint optimiza-

tion problem in Section III and provide a low-complexity

algorithm for solving this optimization problem. In Section IV,

we numerically show the near-optimality and low-complexity

of our approach in comparison with a traditional convex

optimization method. We then use our approach to compare

the EE of multi-hop MIMO-AF with MIMO systems and our

results show that multi-hop MIMO-AF can be beneficial for

reducing the energy-per-bit consumption when the direct link

quality is poor. Conclusions are drawn in Section V.

II. MULTI-HOP MIMO AF SYSTEM AND POWER MODELS

A. System model

We consider in this paper a N -hop MIMO AF system with

N + 1 nodes, i.e. including one SN with t1 antennas, N − 1
nonregenerative RN with ti antennas, i ∈ {2, . . . , N}, and one

destination node (DN) with tN+1 antennas, as it is depicted

in Fig. 1. Moreover, we assume that all the nodes operate in

half-duplex mode as in [11], such that all the transmission

phases have equal duration. In each transmission phase, the

transmit signal is linearly precoded at the i-th node by using a

precoding matrix Fi ∈ Cti×ti and is then transmitted towards

the i+ 1-th node such that yi = HiFiyi−1 + ni for any i ∈
N = {1, . . . , N}. Any matrix Hi ∈ Cti+1×ti represents the

MIMO channel between the i-th and i+1-th node. In addition,

ni ∈ Cti+1×1 is a vector of independent zero-mean complex

Gaussian noise entries with a variance of σ2
i . Accordingly, the
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Fig. 1. N -hop MIMO AF system model .

mutual information (bit/s) over N time slots of this N -hop

MIMO-AF system is straightforwardly given by

I(yN ;y0) = W log2

∣∣∣∣∣ItN+1
+

N∏

i=1

HiFiF
†
iH

†
iR

−1
N

∣∣∣∣∣ , (1)

where W is the channel bandwidth, Ri = σ2
i Iti+1

+

HiFiRi−1F
†
iH

†
i is the i-th noise covariance matrix, for any

i ∈ N , and R0 = 0t1 . In addition, Ix is a x×x identity matrix,

0x is a x × x matrix of zeros, |.| is the matrix determinant

and (.)† denotes the conjugate transpose.

The Hadamard determinant theorem [12] states that an

optimal precoder structure is the one that diagonalizes the

matrix within the determinant in (1). In the two-hop scenario,

such a structure has been proved to be optimal for maximizing

the SE, minimizing the transmit power, and optimizing the EE

in [13], [14] and [10], respectively. Assuming that each node

knows its previous and next links’ channel state information

(CSI) (only next link CSI for the SN), an optimal precoder

structure is of the form [15]

Fi = ViF̂iU
†
i−1, (2)

for any i ∈ N , where Vi and Ui−1 are unitary matrices that

contain the ti right-singular vectors of Hi and ti left-singular

vectors of Hi−1, respectively, with U0 = It1 . In addition

F̂i = diag(
√
pi,1, . . . ,

√
pi,ti) is a ti × ti diagonal matrix.

Inserting (2) into (1), the latter simplifies to I(yN ;y0) =

RΣ(P) = W
M∑

m=1

log2

(
1 +

N∏

i=1

pi,mλi,m(rN,m(P))−1

)
,

(3)

where λi,m denotes the non-zeros eigenvalues of Hi,

ri,m(P) = σ2
i + pi,mλi,mri−1,m(P) with r0,m(P) =

0, for any m ∈ M = {1, . . . ,M} and P =
[p1,1, . . . , pi−1,M , pi,1, . . . , pN,M ] � 0. Moreover, M is the

number of orthogonal subchannels, such that M = t or

M = Kt in a flat or frequency selective channel scenario,

respectively, where t , mini∈N {rk {Hi}} is the total number

of spatial subchannels with rk{.} being the rank operator and

K denotes the number of frequency-flat subchannels [16].

B. Power consumption model

Even though BS, relay and user equipment (UE) are quite

different in terms of architecture, it has been shown in [3], [17]

and [1], respectively, that their power consumption models

are similar, i.e. there exists a linear relation between their

respective consumed and transmit powers, such as

Pin = ∆P + PCi, (4)

where ∆ and PCi accounts for the radio frequency (RF) de-

pendent and circuit (fixed) power consumptions, respectively.

Given that each antenna has its own RF chain [3], this model

has been refined for the MIMO setting in [18] as

Pin = t(∆P + PCipA) + PCi, (5)

where PCipA is the circuit power per antenna and t is the

number of transmit antennas. In the N -hop MIMO-AF system

of Fig. 1, the total transmit power of the i-th node, Pi(P), can

be expressed as Pi(P) = E{‖Fiyi−1‖2F} [15], where E{.}
stands for the expectation and ‖.‖2F denotes the Frobenius

norm. Inserting (2) into Pi(P), the latter can be re-expressed

as

Pi(P) =

M∑

m=1

σ2
i λ

−1
i,m

(
ri,m(P)σ−2

i − 1
)
. (6)

According to Fig. 1, during the propagation of the signal

y0 from the SN to the DN via the N − 1 relays, each of

these nodes will either transmit, receive or be inactive, except

for the SN which does not receive and the DN which does

not transmit. Accordingly, these different types of power con-

sumptions should be reflected in the total power consumption

of the system. Let us define PTx
. , PRx

. , PSl
. as the transmit,

receive and sleep mode powers of the nodes, then, the total

power consumption over N time slots of the N -hop MIMO-

AF system of Fig. 1 can be expressed as

PΣ = PTx
SN + PRx

DN + t(N − 1)
(
PSl

SN + PSl
DN

)
+

N−1∑

i=1

PTx
RNi

+PRx
RNi

+ t(N − 2)PSl
RNi

,
(7)

when assuming that the N transmission phases have equal

duration. The power components PTx
RNi

and PRx
RNi

in (7) can be

further detailed as PTx
RNi

= ∆RNi
Pi(P) + tPCipA

RNi
+ PCi

RNi
and

PRx
RNi

= ς(tPCipA
RNi

+PCi
RNi

), respectively, according to equation

(5), where ς characterizes the ratio between transmission and

reception overhead powers with 0 ≤ ς ≤ 1. Intuitively, less

overhead power is necessary for receiving than transmitting

signals. Similarly, PTx
SN = ∆SNP1(P) + tPCipA

SN + PCi
SN and

PRx
DN = ς(tPCipA

DN + PCi
DN). Relying on these more detailed

expressions for PTx
SN , PRx

DN , PTx
RNi

and PRx
RNi

, PΣ in (7) can be

reformulated as

PΣ(P) =

N∑

i=1

∆iPi(P) + Pc, (8)

where ∆1 = ∆SN, ∆i = ∆RNi−1
, for any i ∈ {2, . . . , N},

and Pc = tPCipA
SN + PCi

SN + ς(tPCipA
DN + PCi

DN) + t(N −
1)
(
PSl

SN + PSl
DN

)
+
∑N−1

i=1 (1 + ς)(tPCipA
RNi

+ PCi
RNi

) + t(N −
2)PSl

RNi
.

C. EE formulation

The existence of a trade-off between EE and SE [19] implies

that these two quantities can only be jointly optimized by

using the explicit expression of this trade-off as an objective

function. In the general case, it has been shown in [19] that an



explicit expression of this trade-off can be obtained through

the ratio between the total rate and total consumed power,

which are respectively given in (3) and (8) as a function of

the transmit power. However, since this trade-off is between

EE and SE, it is generally defined as a function of the SE, C,

such that

Eb(C) =
PΣ(C)

RΣ(C)
, (9)

where Eb stands for the energy-per-bit, i.e. 1/EE, and C =
[C1,1, . . . , Ci−1,M , Ci,1, . . . , CN,M ] � 0 in the N -hop MIMO-

AF scenario. In addition, we define the SE of the m-th

subchannel of node i as Ci,m = log2(ri,m(P)σ−2
i ). We can

then reformulate (3) and (8) by inserting Ci,m into them, such

that

RΣ(C) = W

M∑

m=1

N∑

i=1

Ci,m − log2

(
N∏

i=1

2Ci,m

−
N∏

i=1

(
2Ci,m − 1

)
)

and (10a)

PΣ(C) = Pc +

N∑

i=1

M∑

m=1

Ai,m

(
2Ci,m − 1

)
, (10b)

respectively, where Ai,m , ∆iσ
2
i λ

−1
i,m.

III. MULTI-HOP MIMO-AF EE UNCONSTRAINED

OPTIMIZATION

In this section, we first demonstrate how to reformulate

the NM -variable function Eb(C) in (9) into a M -variable

function. We then rely on a one-dimensional root finding

method for obtaining the near-optimal energy-efficient joint

resource allocation in a low-complexity manner by solving

min
C

Eb(C)

s.t. C � 0.
(11)

Proposition 1: Assuming that E⋆
b , Eb(C = C

⋆) is the

unique minimum of Eb(C) in (9) over its domain, i.e. for any

C � 0, E⋆
b can be well-approximated by

E⋆
b ≈

ln(2)Ai,m(4z2m − α2
i,m)

4Wα2
i,m

(∏N
j=1(2zm + αj,m)

∏N
j=1(2zm − αj,m)

− 1

)
,

(12)

for any i ∈ N and m ∈ M⋆, where

zm ,
(
2Ck,m − 1/2

)
αk,m, (13)

for any i ∈ N and m ∈ M⋆. In addition, M⋆ = {m ∈
M|C⋆

m > 0} is the optimal set of allocated subchannel indices

and αk,m =
√
Ak,m

∑N
j=1

√
Aj,m. Thus, the NM -variable

function in (9) simplifies into a M -variable function in (12)

when C = C⋆.

Proof: The full proof for this proposition is detailed in

the Appendix.

Equation (12) not only shows that (9) can be simplified but

also indicates that any zm variables can be approximated as a

function of µ = E⋆
b by solving this polynomial equation

(
4z2m −

∑N
i=1 Ai,mα2

i,m∑N
i=1 Ai,m

)(
N∏

i=1

(2zm + αi,m)−
N∏

i=1

(2zm

−αi,m)

)
− 4Wµ

ln(2)

(
N∑

i=1

αi,m

)
N∏

i=1

(2zm − αi,m) = 0

(14)

such that zm = max{maxi∈N {αi,m/2}, z+m}, for any m ∈
M⋆, where z+m is the largest real root of (14). For instance,

z+m can be given in closed-form for N = 2 and N = 3 as

z+m = −a1,m +
√
a21,m − a0,m and (15a)

z+m = −b2,m
3

+
1− i

√
3

6
3

√
1

2

[
Θm+

√
−27Λm

]

+
1+ i

√
3

6
3

√
1

2

[
Θm −

√
−27Λm

]
, (15b)

respectively, witha0,m= Wµ
2ln(2)

∏
N
i=1

αi,m∑
N
i=1

Ai,m
,a1,m=

∑
N
i=1

Ai,mαi,m

4
∑

N
i=1

Ai,m

− Wµ
2 ln(2) , Θm = 2b32,m − 9b2,mb1,m + 27b0,m, and Λm =

18b2,mb1,mb0,m − 4b22,mb21,m − 4b31,m − 27b20,m. In addi-

tion, b0,m =
∏

N
i=1

√
Ai,m

∑
N
i=1

Ai,mα2
i,m−2Wµ/ ln(2)

∏
N
i=1

αi,m

8
∑

N
i=1

Ai,m
,

b1,m =
∏

N
i=1

αi,m

4
∑

N
i=1

Ai,m
+ Wµ

2 ln(2)

∑
N
i=1

α2
i,m

∑
N
j=1,j 6=i αj,m

(
∑

N
i=1

Ai,m)(
∑

N
i=1

αi,m)
and

b2,m = 2a1,m. For N ≥ 3, z+m can be obtained numerically by

using a classic root finding method, e.g. Laguerre’s method.

It can be remarked that Eb in (9) can be re-expressed as a

function of zm such that

Eb(z) ≈
Pc − 1

2

∑N
i=1

∑
m∈M⋆ Ai,m +

∑
m∈M⋆ zm

−W
∑

m∈M⋆ log2

(
1−

∏
N
j=1

(2zm−αj,m)
∏

N
j=1

(2zm+αj,m)

) (16)

by inserting (13) into RΣ and PΣ in (10). It can also be

observed that (12) and (16) must be approximately equal when

µ = E⋆
b . Given that Eb has a unique minimum over its

domain, we can apply a one-dimensional root finding method

for obtaining an approximation of this minimum based on

equations (14) and (16) as it is fully detailed in Algorithm

1. Indeed, we can first obtain zm by inserting µ > 0 in (14)

or (15), for any m ∈ M⋆; the latter is then used in (16) for

computing an updated version of µ, until |Eb(z)− µ| ≪ 1.

Our near-optimal energy-efficient joint resource allocation

algorithm for multi-hop MIMO-AF systems is based on a one-

dimensional root finding method, and, consequently, exhibits

by design a low-computational complexity. However, extra

computational complexity is required when N > 3 for com-

puting the roots of the N + 1 degree polynomial in (14). We

assume as in [10], [13] that the eigenvalues of each link, λi,m,

are sorted in descending order prior to using our algorithm.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Accuracy and complexity results

In order to demonstrate the accuracy and low-complexity of

our algorithm for jointly optimizing the unconstrained EE of

all the nodes in a multi-hop MIMO-AF systems, i.e. Algorithm



Algorithm 1

1: Inputs: Pc,W,N,M , αi,mand Ai,m, for any i ∈ N and m ∈ M
2: Set ε = 10−6, U = M,F = 1;

3: Set zm = max
{

∑N

i=1
Ai,m/2− Pc/M,maxi∈N {αi,m}

}

, for

any m ∈ M;
4: Compute ε = 10−10, U = K,F = 1;
5: while F > ε do
6: µ = Eb(z) in (16);
7: Set zm = α1,m/2, for any m ∈ M;
8: Obtain z+m via (15a) if N = 2, (15b) if N = 3 or by solving

(14) if N > 3, for any m ∈ {1, . . . , U};
9: Set zm = max{maxi∈N {αi,m/2}, z+m}, for any m ∈

{1, . . . , U};

10: Set U = M −
∑M

m=1
(zm == maxi∈N {αi,m/2});

11: Set F = |Eb(z)− µ|;
12: end while

13: Set C⋆
i,m ≈ W

(

log2

(

1 +
√

1 +
A1,m

Ai,m

(

−1 + 4z2mα−2

1,m

)

)

− 1
)

,

for any i ∈ N and m ∈ M
14: Obtain Σ⋆

Eb
by inserting C⋆

i,m in (9)
15: Outputs: C⋆

i,m and E⋆
b .

1, we compare it in Figs. 2 and 3 against the Matlab “fmincon”

function in terms of energy-per-bit performances (upper graph)

as well as relative computational complexity (lower graph).

We define the relative computational complexity between

these two methods as the ratio of “fmincon” to Algorithm 1

execution time. Both figures are plotted by assuming a MIMO

Rayleigh fading channel between each node, for W = 1,

ς = 1/2, various values of N , M as well as σ2
i = 0 and ±20

dB in Figs. 2 and 3, respectively, for any i ∈ {2, . . . , N}.

In addition, the values of Table I have been used for setting

the power parameters of Section II-C with PCi
RNi

= PCi
RN and

PSl
RNi

= PSl
RN, for any i ∈ {1, . . . , N − 1}.

The energy-per-bit results in both Figs. 2 and 3 clearly show

the tight match between our algorithm and the “fmincon” func-

tion performances in any scenario, which confirms the near-

optimality of our algorithm. Indeed, the “fmincon” function

returns optimal results since Eb is quasiconvex. In addition,

the relative computational complexity results show that our

algorithm can at least reduce the computational complexity by

two orders of magnitude, i.e. 100 times lower, in comparison

with “fmincon”. Moreover, the larger is M or N , the larger is

the relative reduction in complexity. For instance in Fig. 2, our

algorithm is more than 1000 times faster than the “fmincon”

method for N = 2 and M = 16.

B. Discussion

From an intuitive point of view, having extra nodes to con-

vey data is likely to increase the overall power consumption,

since it can easily be seen that the fixed power term, Pc, in

(8) increases linearly with N . Another drawback of multi-

hop communication in comparison with direct communication

is that the aggregate subchannel rate, Cm =
∑N

i=1 Ci,m −
log2

(∏N
i=1 2

Ci,m −∏N
i=1

(
2Ci,m − 1

))
, can only be as good

as the worst of the N links’ subchannel rate, i.e.

min
i∈N

{Ci,m} − 1 ≤ Cm ≤ min
i∈N

{Ci,m}. (17)

TABLE I
POWER PARAMETER VALUES

Parameters ∆ PCipA (W) PCi (W) PSl (W)

SN (BS) 4.7 [3] 100 180 75 [3]

RN 6.3 [20] 4 4.9 3.45

DN (UE) − 0.03 0.07 0.02
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Consequently, these two handicaps make a multi-hop com-

munication always surely less energy-efficient than a direct

communication if adding extra nodes does node improve the

channel quality. On the other hand, the inherent purpose of

having relays is to reduce the communication distance, which

in turn improves the channel quality. Let d be the distance be-

tween the SN and DN, having N−1 relays will reduce at best

the inter-distance between each node to d/N . Considering a

simple distant-dependent pathloss model such that the channel

gain of the SN-DN link is given by ρ = 10C−10κ log10(d), then

the maximum channel gain improvement provided by having

N−1 relays can be quantified as 10κ log10(N) dB, where κ is

the pathloss exponent, C is a constant. Hence, more EE gain

can be achieved for high values of κ, i.e. when the channel

propagation conditions are poor.

In order to illustrate this statement, we compare in Fig. 4,

the optimal energy-per-bit consumption of N -hops MIMO-

AF and MIMO systems when considering both path-loss and

small scale fading, the power model values of Table I, W = 1,

ς = 1/2, M = 256, i.e. t = 2 & K = 128, σ2
i = 0 dB,

∀i ∈ N , and ρi = ρ + 10κ log10(N) dB, ∀i ∈ N , for the

multi-hop system. As we expected, multi-hoping is mainly

beneficial in terms of energy-per-bit consumption when the

pathloss exponent is high, or in other words, when the channel

quality between the SN and DN is poor. For instance, using

2, 3 or 4 hops instead of direct transmission can reduce the

energy-per-bit consumption by 30% when ρ = 0 dB and κ =
4.

V. CONCLUSION

In this paper, a near-optimal energy-efficient joint resource

allocation method has been designed for the multi-hop MIMO-

AF system when considering that full CSI is available at the

RNs and transmit CSI is available at the SN. We have demon-

strated how to simplify the multivariate unconstrained EE-

based problem by proving the existence of a unique optimal

solution. We have then provided a low-complexity algorithm

for solving this problem. The performances of our algorithm

have been compared against a traditional convex optimization

method and results have confirmed the near-optimality and

low-complexity of our approach. As an application, we have

used our method to compare the EE of multi-hop MIMO-

AF with MIMO systems and our results have showed that

multi-hoping is mainly beneficial in terms of energy-per-bit

consumption when the channel quality between the SN and

DN is poor. In the future, we would like to extend our

algorithm for the case of power or/and rate constraint.

APPENDIX

1) Uniqueness of the minimum of Eb: The function Eb in

(9) being continuous and twice differentiable, the gradient and

Hessian of Eb can be formulated as

∇Eb(C) =
∇PΣ(C)RΣ(C)−∇RΣ(C)PΣ(C)

RΣ(C)2
and (18a)

∇2Eb(C) =
∇2PΣ(C)RΣ(C)−∇2RΣ(C)PΣ(C)

RΣ(C)2

+
∇RΣ(C)

T∇Eb(C) +∇Eb(C)
TRΣ(C)

RΣ(C)
, (18b)

respectively, where {.}T is the transpose operator. Let w ∈
RNM , we know from (3.21) of [21] that if Eb satisfies

∇Eb(C)w
T = 0 ⇒ w∇2Eb(C)w

T ≥ 0 (19)

then Eb is quasiconvex.

Firstly, ∇Eb(C)w
T = 0 implies that w∇2Eb(C)w

T =

w∇2PΣ(C)w
TRΣ(C)−w∇2RΣ(C)w

TPΣ(C)

RΣ(C)2
(20)

according to (18b). Given that according to (10b) the gradient

and Hessian of PΣ are expressed as

∇PΣ(C) = ln(2)[A1,12
C1,1 , . . . , AN,M2CN,M ], (21a)

∇2PΣ(C) = ln(2) diag{∇PΣ(C)}, (21b)

respectively, then w∇2PΣ(C)w
TRΣ(C) = ln(2)w ·

∇PΣ(C)w
TRΣ(C), where · denotes the dot product. Secondly,

∇Eb(C)w
T = 0 also implies that

∇PΣ(C)w
TRΣ(C) = ∇RΣ(C)w

TPΣ(C), (22)

according to (18a), such that ln(2)w · ∇PΣ(C)w
TRΣ(C) =

ln(2)w · ∇RΣ(C)w
TPΣ(C). By substituting

w∇2PΣ(C)w
TRΣ(C) with the latter in (28), we obtain

that w∇2Eb(C)w
T =

Eb(C)

RΣ(C)

(
ln(2)w · ∇RΣ(C)−w∇2RΣ(C)

)
wT. (23)



Knowing that the (i,m)-th element of the gradient of RΣ can

be expressed as

∂RΣ(C)

∂Ci,m
= W

∏N
j=1
j 6=i

(
2Cj,m − 1

)

∏N
j=1 2

Cj,m −∏N
j=1 (2

Cj,m − 1)
, (24)

it can be easily proved that ln(2)w · ∇RΣ(C)w
T ≥

w∇2RΣ(C)w
T and, hence, Eb is quasiconvex, i.e. unimodal.

Let C⋆ be one of the stationary point of Eb, accordingly,

∇Eb(C = C
⋆) = 0. Moreover, we know from (18a) that if

∇Eb(C)w
T = 0 then Eb(C) =

∇PΣ(C)wT

∇RΣ(C)wT such that Eb(C +

w)− Eb(C) =

∇PΣ(C)(2
w − 1)T

ln(2)RΣ(C +w)
− [RΣ(C +w)−RΣ(C)]∇PΣ(C)w

T

RΣ(C +w)∇RΣ(C)wT
.

(25)

In addition, let F : X ∈ R2M 7→ R and ‖w‖ ≪ 1, then the

gradient of F is similar to

∇F (X)wT ≃ F (X +w)− F (X). (26)

Given that ∇PΣ(C)(2
w−1)T > ln(2)∇PΣ(C)w

T, for w 6= 0,

it implies with (25) and (26) that Eb(C
⋆ + w) > Eb(C

⋆).
Hence, Eb reaches a local minimum in C

⋆, which happens to

be a unique and global minimum since Eb is unimodal and

Eb(C
⋆ +w) > Eb(C

⋆).
2) Eb(C): from a NM to a N -variable function: Accord-

ing to equation (18a), solving ∇Eb(C = C
⋆) = 0 yields

E⋆
b =

PΣ(C
⋆)

RΣ(C
⋆)

=
∂PΣ(C

⋆)

∂Ci,m

[
∂RΣ(C

⋆)

∂Ci,m

]−1

. (27)

Inserting
∂PΣ(C)
∂Ci,m

= ln(2)Ai,m2Ci,m and
∂RΣ(C)
∂Ci,m

in (24) into

(27), the latter can be reformulated as

E⋆
b =

ln(2)Ai,m2Ci,m
(
2Ci,m − 1

)

W

[ ∏N
j=1 2

Cj,m

∏N
j=1 (2

Cj,m − 1)
− 1

]
,

(28)

for any i ∈ N and m ∈ M⋆, which in turn implies that

Ai,m2Ci,m
(
2Ci,m − 1

)
= Ak,m2Ck,m

(
2Ck,m − 1

)
, (29)

for any (i, k) ∈ N 2 and m ∈ M⋆, when C = C
⋆. Let k be

a fixed index, then any Ci,m variables can be related to the

variable Ck,m such that

Ci,m = log2

(
1 +

√
1 + 4

Ak,m

Ai,m
2Ck,m (2Ck,m − 1)

)
− 1,

(30)

for any i ∈ N and m ∈ M⋆ with i 6= k. Hence, the NM -

variable function Eb(C) in (9) can be reformulated into a

M -variable function when C = C⋆ by substituting Ci,m in

(10a) and (10b) with (30). Moreover, since 2x− 0.5 is a good

approximation of
√
2x (2x − 1), i.e. they differ by less than

1% for x ≥ 2, a simplified but approximated relation between

any Ci,m and Ck,m is given by

Ci,m ≈ log2

(
1 +

√
Ak,m

Ai,m

(
2Ck,m+1 − 1

)
)

− 1. (31)

Equation (12) can then be obtained by inserting (31) into (28)

and using the change of variables defined in (13).
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