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Abstract—The recent witnessed evolution of cellular networks
from a carefully planned deployment to more irregular,
heterogeneous deployments of Macro, Pico and Femto-BSs
motivates new analysis and design approaches. In this paper, we
analyze the coverage probability in cellular networks assuming
repulsive point processes for the base station deployment.
In particular, we characterize, analytically using stochastic
geometry, the downlink probability of coverage under a Matern
hardcore point process to ensure minimum distance between
the randomly located base stations. Assuming a mobile user
connects to the nearest base station and Rayleigh fading,
we derive two lower bounds expressions on the downlink
probability of coverage that is within 4% from the simulated
scenario. To validate our model, we compare the probability
of coverage of the Matern hardcore topology against an actual
base station deployment obtained from a public database. The
comparison shows that the actual base station deployment can
be fitted by setting the appropriate Matern point process density.

Index Terms—Coverage probability, Matern point process,
stochastic geometry, lower bounds, numerical results.

I. INTRODUCTION

Cellular networks capacity is fundamentally limited by the
intensity of the received power and interference. Both are
highly dependent on the spatial locations of the base stations
(BSs). By far, the most popular approach used in modeling
the BSs topology is the hexagonal grid model adopted by
standard bodies such as the 3rd Generation Partnership Project
(3GPP). Grid models are highly idealized models which do not
accurately capture the actual BSs topology. In reality, cells
radii differ from one cell to another due to differences in the
transmitted powers and the user density as shown for a real
deployment in Fig. 1.

The most common information theoretic downlink model
for cellular networks is the Wyner Model [1] due to its
mathematical tractability. However, it is a simplified one
dimensional model that sets the Signal-to-Interference ratio
(SIR) as a constant. Moreover, the Wyner Model is impractical
for OFDMA systems where the SIR values vary dramatically
across the cell [2]. Also, the Wyner model fixes the user
location, therefore it is highly inaccurate for analyzing the
probability of coverage (Pc).
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the Qatar National Research Fund (a member of Qatar Foundation). The
statements made herein are solely the responsibility of the authors.

2Tamer ElBatt is also affiliated with the EECE Dept., Faculty of Engineer-
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The recent witnessed evolution of cellular networks from
a carefully planned deployment to more irregular, heteroge-
neous deployments of Macro, Pico and Femto-BSs renders the
hexagonal and regular deployment models of limited utility.
This, in turn, motivates recent studies, tools and results [3]
[4] [5] inspired by stochastic geometry. A prominent approach
is to use random spatial models from stochastic geometry [6]
[7] to capture the real deployment as accurately as possible.
Stochastic geometry allows us to study the average behavior
over many spatial realizations of a network where the nodes
locations are derived from a point process (PP) [3] [5] [8].
Most of the stochastic geometry work on cellular networks
focus on the case where the BS deployment follows a Poisson
point process (PPP). In [9], the points derived from a PPP
are independent which significantly simplifies the analysis.
However, this is far from reality since the BSs locations in
real cellular networks are not totally independent. Instead, they
are planned deployments with a degree of randomness due to
irregular terrains and hot-spots as shown in [9] and [10].
A. Scope

In this work, we extend the coverage analysis of a PPP by
using a stationary point process that captures the repulsion
between BSs. We generalize the independent PPP analytical
framework in [9] to a Matern hardcore (MHC) point process
[11] which maintains a minimum separation between BSs in
an attempt to capture real deployments.
B. Related Work

The recent work in [9] introduced a stochastic geometry
framework for the analysis of coverage and rate in 1-tier cel-
lular networks. In this framework, Macro-BSs locations follow
a homogeneous PPP and the users locations are derived from
an independent PPP. Also, the users are assumed to connect to
the nearest BS. The authors derived closed form expressions
for the probability of coverage under Rayleigh fading. Also,
they compared the Pc of the PPP model and the grid model
against an actual data from a real BS deployment. The Pc
comparison showed that the PPP model can be considered a
lower bound to the real deployment and the grid model can
be considered an upper bound.

Recent studies to extend the PPP framework to non-Poisson
point processes, in order to model the dependence between
BSs in cellular networks, can be found in [10] [12]. One of the
main difficulties in the analysis of non-Poisson point processes
is the mathematical intractability attributed to the absence
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Fig. 1: Actual BS deployment from a rural area [15]

of a closed form expression for the probability generating
functional (PGFL) of the underlying node distribution. An
alternative approach is presented in [13] to overcome the
PGFL hurdle by using Weierstrass inequality [14]. The authors
derived bounds on the probability of coverage utilizing the
second order density of the underlying node distribution.
However, these bounds are suggested for very small densities
less than 0.04 and diverge as the SINR threshold increases.
Therefore, we overcome the shortcomings of this approach by
proposing a general framework based on the Matern hardcore
point process [11] in order to find a lower bound on the
probability of coverage.

C. Contributions

Our contribution in this paper is multi-fold. First, we extend
the stochastic geometry framework presented in [9] to model
the BSs locations using a MHC point process, incorporating
dependence between deployment points as encountered in
practice. Second, we derive the MHC empty space distribution.
Third, we overcome the PGFL hurdle by applying Jensen’s
inequality and the inequality proposed in Conjecture 1 to
establish tight lower bounds on the MHC coverage probability.
Finally, we compare the coverage probability of PPP, square
grid and MHC deployments to an actual BS deployment from a
rural area [15]. We also compare the simulated MHC coverage
probability to the analytical lower bounds which confirm their
tightness, especially for the Conjecture 1 inequality-based
bound.

The rest of this paper is organized as follows. In Section II,
we present a background on the stochastic geometry tools and
the point processes used in this paper. Afterwards, we present
the system model in Section III. In Section IV, we present
our main analytical results and establish lower bounds on
the coverage probability. In Section V, we provide numerical
results to support our analytical findings. Finally, conclusions
are drawn and potential directions for future research are
pointed out in Section VI.

II. BACKGROUND: STOCHASTIC GEOMETRY

A. Spatial Point Processes

A spatial point process (PP) Φ is a random collection of
points in space. A PP is simple if no two points are at the same
location, i.e. x 6= y for any x, y ∈ Φ. A random set of points
in Φ can be represented as a countable set of {xı} random
variables that take values in R2. The intensity measure of Φ
is Λ(B) = E[Φ(B)], where E[Φ(B)] is the expected number
of points in B ⊂ R2. A simple PP Φ is determined by its void
probabilities over all compact sets, i.e. P(Φ(B) = 0) for a
compact set B ⊂ R2. A point process is said to be stationary
if its distribution is invariant with respect to translation (shifts
in space) [8] [6].
A stationary Poisson point process (PPP) of intensity λp is
characterized by the following two properties:

• The number of points in any set B ⊂ R2 is a Poisson
random variable with mean λ|B|, i.e.

P (Φ(B) = k) = e−λ|B|
(λ|B|)k

k!
(1)

• The number of points in disjoint sets are independent
random variables [7].

Campbell’s Theorem. Let f(x) : R2 → [0,∞] be a measur-
able integrable function. Then, the average sum of a function
evaluated at the points of Φ is given by:

E

[∑
x∈Φ

f(x)

]
=

∫
R2

f(x)Λ(dx)

For a stationary PP Φ, the average number of points in a set
B ⊂ R2 conditioning on having a point at the origin ”o” but
excluding that point is denoted as E!o[

∑
x∈Φ 1B(x)], where

1B(.) is the indicator function [5].
If f(x) : R2 → [0,∞] is an integrable function, then

E!o

[∑
x∈Φ

f(x)

]
= λ−1

∫
R2

ρ(2)(x)f(x)dx (2)

where ρ(2)(x) is the second order product density of the
stationary PP Φ.
The conditional probability generating functional (PGFL) of a
PP Φ is given by

G [f(x)] = E!o

[∏
x∈Φ

f(x)

]
B. The Matern Point Process

A Matern Hard-core (MHC) point process Φm is generated
by a dependent thinning of a stationary Poisson point process
as follows [11]:

1) Generate a PPP Φp with density λp.
2) For each point x ∈ Φp associate a mark mx ∼ U [0, 1]

independent of any other point.
3) A point x is retained in Φm if it has the lowest mark

compared to all points in B(x, d), i.e. a circle centered
at x with radius d.
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Fig. 2: A realization of MHC PP with λp = 1, d = 0.5

The probability of an arbitrary point x is retained in Φm is
given by:

p =
1− exp(−λpπd2)

λpπd2
(3)

The density of the MHC PP Φm is λm = pλp, i.e.

λm =
1− exp(−λpπd2)

πd2

The second order product density of the MHC PP Φm is given
by [16]

ρ(2)(υ) =



λ2
m, if υ ≥ 2d

2V (υ)[1− exp(−λpπd2)]

πd2V (υ)[V (υ)− πd2]
if 2d > υ > d

−2πd2[1− exp(−λpV (υ))]

πd2V (υ)[V (υ)− πd2]

0, otherwise
(4)

where V (υ) is the union area of two discs of radius d and
inter-center distance υ, centered at any two points of the MHC
point process Φm, and V (υ) is defined as

V (υ) = 2πd2 − 2d2 cos−1
( υ

2d

)
+ υ

√
d2 − υ2

4

III. SYSTEM MODEL

We model the downlink of a cellular network where the BS
deployment is based on a repulsive point process which is a
variation of the independent PPP. A repulsive point process
guarantees min distance d between BS deployment locations.
In this paper, we consider a mathematically tractable type of
the repulsive point processes, namely the Matern hardcore
(MHC) point process Φm of intensity λm and a minimum
distance d between BSs. We assume that the mobile users
spatial distribution follows an independent homogeneous PPP.
We assume that a mobile user is connected to the nearest
BS. Hence, the base stations downlink coverage areas are
Voronoi tessellations on the plane as shown in Fig. 2. We
adopt the standard path loss propagation model with path loss
exponent α and assume that the channel between the mobile
user and the attached BS varies according to Rayleigh fading

Fig. 3: System model

with constant transmitted power (1/γ) and noise power σ2.
Thus, the received power for a typical mobile user at a distance
r from the attached BS is hr−α, where h is an exponentially
distributed random variable, i.e. h ∼ exp(γ). Moreover, since
the MHC PP is a stationary PP we can assume without loss
of generality that the attached BS is located at the origin.

Our system model is illustrated in Fig. 3, where r is the
distance between the mobile user at point y and the attached
BS, ϕ is the angle between the x-axis and the vector r, υ is
the distance between the attached BS and any interfering BS
at point x on the plane, θ is the angle between the x-axis and
the vector υ, and Rx is the distance between the mobile user
and any interfering BS at point x.

The interference power, Ir, is defined as the sum of the
received powers from the interfering BSs, i.e. other than the
attached BS. Thus, the interference power Ir under Rayleigh
fading, i.e. (an exponentially distributed interference power
gx ∼ exp(γ)) is defined as

Ir =
∑

x∈φm\{o}

gxR
−α
x

Hence, the SINR for a typical mobile user is defined as
follows:

SINR =
hr−α

σ2 + Ir

The coverage probability is defined as the probability that
a typical mobile user is able to achieve some threshold SINR,
denoted β, i.e. Pc = P[SINR ≥ β]. That is, the probability
of coverage is the complementary cumulative distribution
function (CCDF) of the SINRs over the network.

IV. COVERAGE ANALYSIS

Our prime objective in this section is to characterize,
analytically, the coverage probability under a MHC spatial
point process. Towards this objective, we first derive the MHC
empty space distribution in Section IV.A which is an essential
step in the derivation of the Pc. Section IV.B is then dedicated
to the major results of this paper presented in Theorem 1 and



Proposition 1 which establish lower bounds on the probability
of coverage under the MHC spatial point process.

A. MHC empty space distribution

In our model, we assume that a mobile user connects to
the nearest BS. Thus, if a mobile user is at a distance r from
the attached BS, then there is no interfering BS that is closer
than r to the mobile user. The probability density function
(pdf) of r is the empty space distribution of the underlying
MHC point process which is approximated in the following
lemma.

Lemma 1. Given that the mobile user is at a distance r
from the attached BS, the approximated MHC empty space
distribution f(r) is given by:

f(r) = 2πλmr e
(−πλmr2) (5)

Proof: See Appendix A.

B. Probability of Coverage

This section hosts the main analytical findings of this
paper presented in Theorem 1 and Proposition 1. First, we
establish a lower bound on Pc using Jensen’s inequality in
Theorem 1. Next, we establish a tighter lower bound on Pc
in Proposition 1 using the inequality proposed in Conjecture 1.

Theorem 1. A lower bound on the coverage probability for
a mobile user in a cellular network deployed using a MHC
PP is given by

Pc ≥
∫ 2π

ϕ=0

∫ ∞
r=0

f(r)

2π
e−γβσ

2rαe−(µ1+µ2)dr dϕ (6)

where

µ1 = λ−1
m

∫ 2π

θ=0

∫ max[2d,|2r cos(θ−ϕ)|]

υ=max[d,|2r cos(θ−ϕ)|]
∆(r, υ, θ, ϕ) ρ

(2)
1 (υ) υ dυ dθ,

µ2 = λ−1
m

∫ 2π

θ=0

∫ ∞
υ=max[2d,|2r cos(θ−ϕ)|]

∆(r, υ, θ, ϕ) ρ
(2)
2 (υ) υ dυ dθ

(7)

and

∆(r, υ, θ, ϕ) = ln

(
1 + β

(
r2

υ2 + r2 − 2rυ cos(θ − ϕ)

)α/2)

ρ(2)(υ) =

ρ
(2)
1 (υ) ,if d < υ ≤ 2d

ρ
(2)
2 (υ) ,if υ > 2d

(8)

Proof: See Appendix B.Next, we propose an inequality in Conjecture 1 based on
our numerical observations, by which we develop a lower
bound in Proposition 1 tighter than Theorem 1.

Conjecture 1. For d small enough, the following
inequality holds for a MHC PP

E!o
φm

 ∏
x∈φm

1−∆x

 ≥ e−E!o
φm

[ ∑
x∈φm

∆x

]
(9)

where
∆x =

1

1 + β−1
(
r
Rx

)−α (10)

The inequality proposed in Conjecture 1 is motivated by
the fact that for d small enough, the probability of coverage
of a MHC PP ≥ the probability of coverage of a PPP and the
PGFL of PPP is given by

E!o
φp

 ∏
x∈φp

1−∆x

 = exp

−E!o
φp

∑
x∈φp

∆x


Thus, applying the PPP PGFL definition on a MHC PP

results in a lower bound on MHC Pc which is characterized
by the inequality in Conjecture 1.

Proposition 1. A lower bound on the coverage probability
for a mobile user in a cellular network deployed using a
MHC PP is given by

Pc ≥
∫ 2π

ϕ=0

∫ ∞
r=0

f(r)

2π
e−γβσ

2rαe−(µ1+µ2)dr dϕ

with

∆(r, υ, θ, ϕ) =

(
1 + β−1

(
r2

υ2 + r2 − 2rυ cos(θ − ϕ)

)−α/2)−1

and µ1, µ2, ρ
(2)(υ) are the same as (7) and (8).

Proof: See Appendix D.

V. NUMERICAL RESULTS

First, we compare the Pc of the MHC PP against a PPP,
a square grid and an actual BS deployment from a rural area
[15]. Intuitively, we expect that the Pc of the MHC PP to be
bounded by the PPP as a lower bound and the grid model as an
upper bound. Also, we show that an actual BS deployment can
be fitted by choosing the appropriate λp and d of the MHC PP.
Second, we solve the integrals of the analytical lower bounds
introduced in Theorem 1 and Proposition 1 numerically and
compare them against a simulated MHC scenario.
In Fig. 4, we compare the Pc for different models under
Rayleigh fading and path loss exponent α = 4. We set the
noise power to σ2 = 0.1PT , where PT is the BS transmitted
power. It can be noticed from Fig. 4 that the Pc derived
analytically for the PPP in [9] under Rayleigh fading yields
the most conservative Pc and the square grid lattice with 24
BSs yields the most optimistic Pc which agrees with intuition.
Therefore, the Pc of the MHC PP and the Pc of an actual
BS deployment in 100 × 80 km rural area lie between the
Pc of the PPP and the grid models, assuming all BSs are
omni-directional and transmit with unit power. The MHC PP
parameters λp = 2 and d = 0.4 are tuned to fit the actual data.

In Fig .5, we solve the lower bounds integrals numerically
using the composite trapezoidal rule and compare them against
a simulated MHC scenario with λp = 3 and d = 0.5. It can
be noticed that the lower bound introduced in Proposition 1
is tighter than Theorem 1 within 4% from the simulated data
on the average and it is quite accurate in plausible scenarios
where the SINR threshold ranges from 10 to 20 dB. Finally,
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we replace Conjecture 1 by the Weierstrass inequality in [13]
and we notice that the Pc diverges significantly as we increase
the SINR threshold.

VI. CONCLUSIONS

We presented a stochastic geometry formulation using the
Matern hardcore spatial point process to model the BS de-
ployment in cellular networks. Nevertheless, the presented
analysis can be employed to study other wireless networks,
e.g. ad hoc networks. This paper constitutes a departure
from the recent literature on studying and analyzing coverage
probability using independent Poisson point processes. We
established, analytically, two lower bounds for the coverage
probability which constitutes our major analytical findings and
constitutes an important step towards deriving closed form
expressions. We compared our model to actual BSs locations
from a rural area and showed that the actual data can by fitted
by using the appropriate MHC density λm via appropriately
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tuning λp and d. An important future extension of this work
is to build on our analytical findings to characterize the MHC
Pc in closed-form. Other future directions could be modeling
multi-tier cellular networks and incorporating other repulsive
point processes.

APPENDIX

A. Proof of Lemma.1

P[No BS is closer than r] = P[NM (B(y, r)) = 0)]

, where NM (B(y, r)) is the number of points in a circle
B(y, r) centered at the user y with radius r in a MHC PP.
The P[NM (B(y, r)) = 0)] in a MHC PP is equal to
∞∑
n=0

P[NP (B(y, r)) = n]P[n points are eliminated in MHC]

, where NP (B(y, r)) is the number of points in B(y, r) from
the original PPP. The probability that a point is eliminated in
the MHC PP is equal to q = 1 − p, where p is given by (3).
Using (1), we get

P[NP (B(y, r)) = n] =

∞∑
n=0

exp(−λpπr2)
(λpπr

2)n

n!

Then, we have the following approximation:
For d small enough,
P[n points are eliminated] ≈ (1− p)n = (1− (λmλp ))n , hence

P[NM (B(y, r)) = 0] =

∞∑
n=0

exp(−λpπr2)
((λp − λm)πr2)n

n!

= exp(−λmπr2)
(11)

Applying f(r) =
d

dr
(1− P[NM (B(y, r)) = 0]) to (11) we

get (5).
The approximation in (11) is shown in Fig. 6. Also, we have
checked numerically that the approximation in (5) does not
affect the Pc results.



B. Proof of Theorem 1

The probability of coverage (Pc) is equal to

Pc = Er,ϕ[P(SINR > β|r, ϕ)]

=

∫ 2π

ϕ=0

∫ ∞
r=0

f(r)

2π
P(SINR > β|r, ϕ) drdϕ

P(SINR > β|r, ϕ) = P(h > β(σ2 + Ir)r
α|r, ϕ)

(a)
= E!o

Ir

[
e−γ(β(σ2+Ir)rα)|r, ϕ

]
step (a) assuming Rayleigh fading, i.e. h ∼ exp(γ)

Pc =

∫ 2π

ϕ=0

∫ ∞
r=0

f(r)

2π
e−γβσ

2rα E!o
Ir

[
e−βγr

αIr |r, ϕ
]

drdϕ

(12)
where

E!o
Ir

[
e−βγr

αIr |r, ϕ
]

= E!o
φm,gx

[
e
−βγrα

∑
x∈φm

gxR
−α
x

]
(a)
= E!o

φm

 ∏
x∈φm

Egx
[
e−βγr

αgxR
−α
x

]
(b)
= E!o

φm

 ∏
x∈φm

1

1 + β
(
r
Rx

)α


= E!o
φm

[
e
−

∑
x∈φm

ln(1+β( r
Rx

)
α
)
]

(c)

≥ e
E!o
φm

[
−

∑
x∈φm

ln(1+β( r
Rx

)
α
)

]
(13)

Steps (b) from gx ∼ exp(γ) and step (c) using Jensen’s
inequality, let

µ = E!o
φm

− ∑
x∈φm

∆x

 , where ∆x = ln

(
1 + β

(
r

Rx

)α)
hence,

Pc ≥
∫ 2π

ϕ=0

∫ ∞
r=0

f(r)

2π
e−γβσ

2rα e−µ drdϕ

From trigonometry of Fig .3, Rx can be substituted by

Rx =
√
υ2 + r2 − 2rυ cos(θ − ϕ)

hence, ∆(r, υ, θ, ϕ) = ln

(
1 + β

(
r2

υ2+r2−2rυ cos(θ−ϕ)

)α/2)
From (2) , µ is equal to

µ = λ−1
m

∫ 2π

θ=0

∫ ∞
υ=max[d,|2r cos(θ−ϕ)|]

ρ(2)(υ) ∆(r, υ, θ, ϕ) υdυdθ

Using the definition of ρ(2)(υ) in (4), then µ = µ1+µ2, where

µ1
(a)
= λ−1

m

∫ 2π

θ=0

∫ max[2d,|2r cos(θ−ϕ)|]

υ=max[d,|2r cos(θ−ϕ)|]
∆(r, υ, θ, ϕ) ρ

(2)
1 (υ) υ dυ dθ

µ2
(b)
= λ−1

m

∫ 2π

θ=0

∫ ∞
υ=max[2d,|2r cos(θ−ϕ)|]

∆(r, υ, θ, ϕ) ρ
(2)
2 (υ) υ dυ dθ

ρ(2)(υ) =

ρ
(2)
1 (υ) ,if d < υ ≤ 2d

ρ
(2)
2 (υ) ,if υ > 2d

From trigonometry of Fig. 3, υ = 2r cos(θ − ϕ) for Rx = r.
Thus, the integral limits of υ is from max[d, |2r cos(θ − ϕ)|]
to ∞, since the closest interfering BS is at least at distance r
and ρ(2)(υ) = 0 for υ < d.

C. Proof of Proposition 1
Same as proof of Theorem 1 till (13-b), then proceed with

E!o
φm

 ∏
x∈φm

1

1 + β
(

r
Rx

)α
 = E!o

φm

 ∏
x∈φm

1−∆x


(a)

≥ exp

−E!o
φm

∑
x∈φm

∆x


step (a) by using Conjecture 1.
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