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Abstract—This work examines offline and online power control
policies for efficient usage of renewable energy in the downlink
of a multi-antenna wireless system. Two multiuser beamforming
schemes are considered, namely, channel inversion (CI) and
maximal ratio transmit (MRT) beamforming schemes. Power
control policies are derived for both schemes, respectively, with
the goal of maximizing the sum throughput by a deadline subject
to energy causality and battery storage constraints. With CI
beamforming, the power control problem can be formulated as
a convex optimization problem, whose solution can be obtained
using the directional water-filling algorithm. With MRT beam-
forming, the power control problem becomes non-convex, due to
interference between the signals intended for different users, and,
thus, is difficult to solve exactly. However, an efficient solution
can be obtained by performing successive approximation into a
sequence of geometric programming problems, i.e., by employing
the condensation method. Offline power control policies are
first derived assuming non-causal knowledge of the energy
arrival and channel coefficients over time. Online power control
policies are then proposed based on observations gained from
the offline policy. The performance of the proposed schemes are
demonstrated through numerical simulations.

I. INTRODUCTION

In recent years, small cell networks [1] have emerged as
a promising solution to meet the increasing demand for high
throughput and high date-rate wireless communications. How-
ever, the exponential increase in data traffic is accompanied
by a rapid increase in energy and environmental costs [2].
Interestingly, the small cell architecture is not only energy
efficiency but the low transmit power required also allows
for the employment of renewable energy sources at the base-
stations (BSs). However, the efficient use of renewable energy
is often hindered by uncertainties of the energy arrival and
limitations of the battery storage capacity.

The main objective of this work is to derive power control
policies for efficient usage of renewable energy in the down-
link of a multiantenna wireless system. We consider the use
of a multiantenna BS that is powered by renewable energy
through a rechargeable battery. The BS serves all users in the
cell simultaneously and power control policies are derived to
maximize the sum throughput by a deadline subject to the
energy causality and the battery storage capacity constraints.
The deadline can be viewed as either a QoS requirement
or the time before users leave the BS coverage. The energy
causality constraint refers to the fact that energy cannot be
used before it arrives whereas the battery capacity constraint

refers to the maximum energy that can be stored in the battery
at any given time. Offline power control policies are first
derived by assuming non-causal knowledge of the energy
arrival and channel coefficients over time. Online policies are
then derived based on observations made from the solution
of the offline problem. Two multiuser beamforming schemes
are considered, namely, the channel inversion (CI) [3] and the
maximal ratio transmit (MRT) [4] beamforming schemes. In
the CI beamforming case, the offline power control problem
can be formulated as a convex optimization problem, whose
solution is given by the directional water-filling algorithm [5].
In this algorithm, the energy in each slot is shared with later
time slots to make the water-levels between consecutive time
slots as even as possible. In the MRT beamforming case,
the power control problem is non-convex due to interference
between the signals intended for different users. This type of
problem was shown to be NP hard in [6], but an efficient
solution can be obtained using the condensation method [7],
which approximates the problem successively into a sequence
geometric programming (GP) problems. Based on the fact
that energy should be shared with later time slots to even
the water-levels between consecutive time slots, an online
power control policy is proposed where power allocation is
performed in each time slot with total power given by the
average of the current available energy plus the energy arrival
in the remaining time slots. The effectiveness of the proposed
schemes are demonstrated through numerical simulations.

Power control policies for energy harvesting transmitters
(i.e., transmitters empowered by renewable energy) was in-
vestigated recently in [5], [8], [9]. In [5], online and offline
power control policies were derived for systems with only
a single receiver. The directional water-filling algorithm was
proposed to maximize the sum throughput by a deadline
subject to energy arrival and battery storage constraints. This
problem was shown in [8] to be closely related to the problem
of minimizing the transmission completion time for a given
amount of data. The latter problem was extended to the K-
user AWGN broadcast channel in [9]. It was shown that the
total power allocated to each time slot is the same as that in
the single-user scenario and can be found using the directional
water-filling algorithm. However, the transmitter is assumed to
have only a single antenna in these works. Different from these
works, we consider a multiantenna BS and derive the power
control policy for different multiuser beamforming schemes.



II. SYSTEM MODEL AND PROBLEM FORMULATION

Let us consider a downlink wireless cellular system that
consists of a single base-station (BS) equipped with M
antennas and K single-antenna users, as illustrated in Fig.
1. The BS is supported by a rechargeable battery that is
continuously charged by a renewable energy source. Here, we
consider a time-slotted system where all users are to be served
simultaneously in each time slot.

Specifically, the signal transmitted in the t-th time slot is
given by x[t] =

∑K
i=1

√
pi[t]wi[t]si[t] where si[t] represents

the signal intended for user i, wi[t] is the associated M × 1
beamforming vector, and pi[t] is the power used to transmit the
signal to user i. Here, we set E[‖si[t]‖2] = 1 and ‖wi[t]‖ = 1.
The received signal at user i is given by

yi[t] =hi[t]
H
√
pi[t]wi[t]si[t]

+ hi[t]
H
∑
j �=i

√
pj[t]sj [t]wj [t] + ni[t], (1)

where hi[t] is the M × 1 channel vector between the BS and
user i and ni[t] is the additive white Gaussian noise (AWGN)
with zero mean and variance σ2

n, i.e., ni[t] ∼ CN (0, σ2
n).

The first term in (1) contains the signal of interest for user
i whereas the second term represents the interference from
other signals. The received signal to interference plus noise
ratio (SINR) can be expressed as

γi[t] �
pi[t]|hi[t]

Hwi[t]|2∑
j �=i pj[t]|hi[t]Hwj [t]|2 + σ2

n

. (2)

The rate achieved by user i in the t-th time slot is given by
Ri[t] = log(1+ γi[t]) and, thus, the total throughput achieved
under the deadline constraint T is defined as

T∑
t=1

K∑
i=1

log(1 + γi[t]). (3)

Our goal is to determine the optimal power control policy
for a given multiuser beamforming scheme to maximize the
sum throughput under a deadline constraint. The power uti-
lized by the BS is subject to two renewable energy constraints,
namely, the energy causality constraint and the battery storage
constraint. The energy causality constraint refers to the fact
that energy cannot be expended before it stored into the batter
and the battery storage constraint refers to the fact that the
amount of energy stored in the battery cannot exceed the
maximum battery capacity, denoted by Bmax. Let ε[t] be the
energy arrival at the beginning of the t-th time slot and let
Bin[t] be the corresponding amount of energy actually stored
into the battery1. Notice that Bin[t] is used to model the
fact that energy may not be stored if the battery capacity is
exceeded and that Bin[t] ≤ ε[t], for all t. The energy causality

1In practice, energy does not arrival instantaneously. In this case, ε[t] can
be viewed as the energy arriving in the previous time slot, i.e. slot t− 1, but
is not used until the t-th time slot. However, the instantaneous energy arrival
at the beginning of each time slot is assumed here for tractability.

Fig. 1. System Model

and the battery storage constraints are then given by
�∑

t=1

K∑
i=1

pi[t] ≤
�∑

t=1

Bin[t], for � = 1, · · · , T (4)

and
�+1∑
t=1

Bin[t]−
�∑

t=1

K∑
i=1

pi[t] ≤ Bmax, for � = 1, · · · , T−1. (5)

Let us first consider the offline power control policy where
the transmit powers {pi[t], ∀i, t} are determined by assuming
non-causal knowledge of the energy arrivals {ε i[t], ∀i, t} and
channel conditions {hi[t], ∀i, t}. The problem is formulated
as follows:

max
pi[t],Bin[t],∀i,∀t

T∑
t=1

K∑
i=1

log(1 + γi[t]) (6a)

subject to
�∑

t=1

K∑
i=1

pi[t] ≤
�∑

t=1

Bin[t], (6b)

�+1∑
t=1

Bin[t]−
�∑

t=1

K∑
i=1

pi[t] ≤ Bmax, (6c)

Bin[t] ≤ ε[t], pi[t] ≥ 0, ∀i, ∀�, ∀t. (6d)

In the following lemma, we show that, in the offline optimiza-
tion problem, the optimal energy stored in each time slot can
actually be solved explicitly.

Lemma 1: For the offline problem in (6), the optimal
amount of energy stored into the battery in the t-th time slot
is given by B∗

in[t] = min{ε[t], Bmax}, for t = 1, . . . , T .

Due to space limitations, we provide only a sketch of the proof
in the following. In particular, this lemma follows from the fact
that the sum rate in each time slot increases monotonically
with the total transmit power. To show this, let αi[t] be the
portion of power allocated to user i in the t-th time slot. In
this case, the power used to transmit user i’s message can be
written as pi[t] = αi[t]ptot[t], where ptot[t] is the total transmit
power in slot t, and the sum rate is given by

Rsum[t]=

K∑
i=1

log

(
1+

αi[t]ptot[t]|hi[t]
Hwi[t]|2∑

j �=i αj [t]ptot[t]|hi[t]Hwj [t]|2+σ2
n

)
.



It follows straightforwardly from this expression that the sum
rate Rsum[t] increases monotonically with ptot[t].

Moreover, let {p∗i [t], B∗
in[t], ∀i, ∀t} be a solution to the

offline power control problem in (6). Suppose that there exists
t′ such that B∗

in[t
′] < min{ε[t′], Bmax}. If the maximum

battery capacity Bmax was not met in slot t′, a larger sum
rate can be achieved by increasing both B ∗

in[t
′] and p∗tot[t′] by

the same amount without altering the sum rate in other time
slots. On the other hand, if Bmax was met in slot t, the power
consumed in the previous time slot t ′ − 1 can be increased
instead to allow for an increase in Bin[t

′]. This achieves a
larger sum rate in slot t′ − 1 without altering the sum rate in
other slots. This contradicts the fact that {p∗

i [t], B
∗
in[t], ∀i, ∀t}

is a solution for (6). Hence, the optimal solution must yield
B∗

in[t] = min{ε[t], Bmax}, for all t.
This lemma shows that the optimal power control should

allow all energy arrivals to be stored completely into the
battery unless the instantaneous energy arrival exceeds the
maximum battery capacity, i.e., Bmax. The offline power
control problem then reduces to

max
pi[t],∀i,∀t

T∑
t=1

K∑
i=1

log(1 + γi[t]) (7a)

subject to
�∑

t=1

K∑
i=1

pi[t] ≤
�∑

t=1

B∗
in[t], (7b)

�+1∑
t=1

B∗
in[t]−

�∑
t=1

K∑
i=1

pi[t] ≤ Bmax, (7c)

pi[t] ≥ 0, ∀i, ∀�, ∀t. (7d)

where B∗
in[t] is given as in Lemma 1.

In the following sections, we first find solutions to the
offline power control problem for two different beamforming
schemes, namely, the channel inversion (CI) and the maximal
ratio transmit (MRT) beamforming schemes.

III. POWER CONTROL WITH DIRECTIONAL

WATER-FILLING FOR CHANNEL INVERSION

BEAMFORMING

In this section, the optimal power control policy is derived
for the case of channel inversion (CI) beamforming [3].

Specifically, in the case of CI beamforming, the beamform-
ing vector wi[t] is obtained by normalizing the i-th column
of H[t]H(H[t]H[t]H)−1, where H[t] = [h1[t], . . . ,hK [t]]H .
It follows that, since hi[t]

Hwj [t] = 0, for all i �= j, no
interference will be experienced at each user. The objective
in (7) is thus given by

RCI({pi[t]}) =
T∑

t=1

K∑
i=1

log (1 + βi[t]pi[t]) (8)

where βi[t] � |hi[t]
Hwi[t]|2/σ2

n is the effective channel gain
of user i in slot t. Since the objective function is concave in
the power and the constraints in (7) are linear, the optimization

problem is a convex optimization problem. Let us define the
Lagrangian function [10]

L({pi[t]})= RCI({pi[t]})−
T∑

�=1

λ�

(
�∑

t=1

K∑
i=1

pi[t]−
�∑

t=1

B∗
in[t]

)

−
T−1∑
�=1

μ�

(
�+1∑
t=1

B∗
in[t]−

�∑
t=1

K∑
i=1

pi[t]−Bmax

)
−

T∑
t=1

K∑
i=1

νi[t]pi[t],

(9)

where λ� ≥, μ� ≥ 0, and νi[t] ≥ 0, for all �, i, and t,
are the Lagrange multipliers associated with the first, second,
and third constraints in (7). The complimentary slackness
conditions are given by

λ�

(
�∑

t=1

K∑
i=1

pi[t]−
�∑

t=1

B∗
in[t]

)
=0, �=1, · · · , T−1 (10)

μ�

(
�+1∑
t=1

B∗
in[t]−

�∑
t=1

K∑
i=1

pi[t]−Bmax

)
=0, �=1, · · · , T−1.

(11)

νi[t]pi[t] = 0, t=1, . . . , T, i=1, . . . ,K. (12)

Notice that the slackness condition is not included in (10) for
� = T since the corresponding constraint must be satisfied with
equality, i.e., all energy should be expended by the deadline.

By applying the KKT optimality conditions to the La-
grangian function in (9), the optimal power allocation p ∗

i [t]
can be given in terms of the Lagrange multipliers as

p∗i [t] =
(
1

τt
− 1

βi[t]

)+

, (13)

for i = 1, . . . ,K and t = 1, . . . , T , where τt =
∑T

�=t λi −∑T−1
�=t μi. Notice that, in time slot t, the power allocation

among users is equivalent to a traditional water-filling solution
with water-level equal to 1/τt. Hence, the power allocation
can be performed in two steps, namely, by first determining
the water-level in each time slot and then by computing the
water-filling solution over different users. It can be shown,
similar to that observed for the single user case in [5], that the
water-level should be monotonically non-decreasing over time
when there is no battery capacity constraint. This is due to the
fact that, when Bmax = ∞, the second constraint in (7) will
never hold with equality. In this case, we should have μ � = 0,
for all �, and, thus, 1/τt = 1/

∑T
�=t λi, for t = 1, . . . , T ,

will form a non-increasing sequence. This implies that battery
energy should be left for use in later time slots if future energy
arrivals do not yield as good a performance as in earlier time
slots. However, this is not completely the case when Bmax is
finite since the value of Bmax will limit the energy that can
be leaked to later time slots. The initial water-level at each
time slot 1/τ (0)� is found by traditional water-filling algorithm
with

∑K
i=1 pi[�] = B∗

in[�], ∀�. Following [5], the water-level
associated with each time slot is found using the directional
water-filling solution. In each iteration of the algorithm, say
iteration k, we check for consecutive time slots � and �+1 for



which 1/τ
(k−1)
� > 1/τ

(k−1)
�+1 and reset the water-levels so that

1/τ
(k)
� = 1/τ

(k)
�+1 or to the point where the battery constraint

Bmax is met in slot �+ 1.

IV. POWER CONTROL WITH GEOMETRIC PROGRAMMING

FOR MAXIMAL RATIO TRANSMIT BEAMFORMING

In this section, the optimal power control policy is derived
for the case of maximal ratio transmit (MRT) beamforming.

Specifically, for MRT beamforming, the beamforming vec-
tor for user i is given by wi[t] = hi[t]/‖hi[t]‖ [4]. Here, the
beamformer for user i’s message is matched to the channel
towards user i. This maximizes the signal energy at the
intended receiver but does not avoid interference to other users.
In this case, the objective in (7) can be written as

RMRT({pi[t]})

=
T∑

t=1

K∑
i=1

log

(
1+

pi[t]|hi[t]
Hwi[t]|2∑

j �=i pj [t]|hi[t]Hwj [t]|2+σ2
n

)
. (14)

Notice that, with (14) as the objective function, the opti-
mization problem in (7) is no longer a convex optimization
problem and has been shown in [6] to be NP-hard. However,
the problem can be approximated by a sequence of geometric
programming problems using the condensation method [7].

Specifically, let fi(p[t], t) �
∑

j �=i pj [t]|hi[t]
Hwj [t]|2+σ2

n,

gi(p[t], t) �
∑K

j=1 pj [t]|hi[t]
Hwj [t]|2 + σ2

n, andf(p[t]) =∑�
t=1

∑K
i=1 pi[t]. Then, the optimization problem in (7) can

be equivalently reformulated as

min
p[t],∀t

T∏
t=1

K∏
i=1

fi(p[t], t)

gi(p[t], t)
(15a)

subject to
�∑

t=1

K∑
i=1

pi[t] ≤
�∑

t=1

B∗
in[t], (15b)

∑�+1
t=1 B

∗
in[t]−Bmax

f(p[t])
≤ 1, (15c)

pi[t] ≥ 0, ∀i, ∀�, ∀t (15d)

where p[t] = [p1[t], . . . , pK [t]]. Notice that the above problem
is not yet in a standard GP form due to the fact that g i(p[t], t)
and f(p[t]) are posynomial functions. Let p∗[t] be a feasible
solution of the problem in (15). By the relation between
arithmetic and geometric means, we can obtain the following
inequalities

gi(p[t]) =
K∑
j=1

pj[t]|hi[t]
Hwj [t]|2 + σ2

n

≥
K∏
j=1

( |hi[t]
Hwj [t]|2pj [t]

ξj

)ξj ( σ2
n

ξK+1

)ξK+1

� g̃i(p[t]),

where ξj = |hi[t]
Hwj [t]|2pj [t]/gi(p∗[t]) and ξK+1 =

σ2
n/gi(p

∗[t]), and, similarly,

f(p[t]) =

�∑
t=1

K∑
i=1

pi[t] ≥ f̃(p[t]) =

�∏
t=1

K∏
i=1

(
pi[t]

ζi[t]

)ζi[t]

, ∀�,

where ζi[t] = p∗i [t]/f(p
∗[t]). Then, by approximating g i(p[t])

and f(p[t]) with the monomial functions g̃i(p[t]) and f̃(p[t]),
we obtain the following problem

min
p[t],∀t

T∏
t=1

K∏
i=1

fi(p[t], t)

g̃i(p[t], t)
(16a)

subject to
�∑

t=1

K∑
i=1

pi[t] ≤
�∑

t=1

B∗
in[t], (16b)

∑�+1
t=1 B

∗
in[t]−Bmax

f̃(p[t])
≤ 1, (16c)

pi[t] ≥ 0, ∀i, ∀�, ∀t. (16d)

This problem is in the form of a standard GP problem and
can be solved efficiently using general purpose interior point
solvers such as CVX [11]. The condensation method finds
an approximate solution of the original problem in (15) by
iteratively solving a sequence of approximated problems, as in
(16), with the feasible solution p∗[t] given by the approximate
solution obtained in previous iteration [7].

V. EXTENSIONS TO ON-LINE POWER CONTROL POLICIES

FOR MULTIUSER BEAMFORMING

In this section, an on-line power control policy is proposed
to mimic the energy flow of the offline policies.

Specifically, based on the offline policy derived in section
III, we can see that the maximum sum throughput is achieved
by a directional water-filling solution where the energy should
be left for use in later time slots to make the water-level
in consecutive time slots as equal as possible. Based on
this observation, we propose an online power control policy
where power is determined instantaneously in each time slot.
However, the power constraint is chosen such that the aver-
age energy that can be used from this point on is equally
divided among remaining time slots. Specifically, recall that
the energy available for user in the �-th time slot is given
by B[�] �

∑�
t=1 B

∗
in[t] −

∑�−1
t=1

∑K
i=1 pi[t] and the average

energy arrival in each of the remaining time slots is given by
E[
∑T

t=�+1 B
∗
in[t]]/(T − �). If the energy available in slot � is

greater than the average energy arrival in each of the remaining
time slots, then energy should be stored for use in later time
slots. Otherwise, all energy should be expended in the current
time slot. That is, the total energy expended in the �-th slot
should be given by

ptot[�] = min

⎧⎨
⎩B[�],

B[�] + E
[∑T

t=�+1 B
∗
in[t]

]
T − �+ 1

⎫⎬
⎭ (17)

The online power control in the �-th time slot is then
formulated as

max
pi[�],∀i,

K∑
i=1

log(1 + γi[�]) (18a)

subject to
K∑
i=1

pi[�] ≤ ptot[�], pi[�] ≥ 0, ∀i. (18b)
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Fig. 3. Performance of the CI and MRT beamforming under different battery
capacity limitation.

The solution is given by water-filling in the case of CI
beamforming and is obtained using GP approximations in the
case of MRT beamforming, as described in previous chapters.

VI. NUMERICAL COMPARISON

In this section, we compare the performance of the proposed
power control policies for both CI and MRT beamforming. The
results of the experiments were obtained by averaging over
1000 randomly generated realizations of channel fading and
energy arrival. The channel vectors are assumed to be i.i.d.
with entries that are Gaussian with mean zero and variance
σ2
h = 1. The noise variance is σ2

n = 1. The number of antennas
at the BS is M = 4 and the deadline is T = 10 for all
cases. The termination threshold for the GP approximation
case η equals to 10−2. The energy arrival in each time slot is
assumed to be Gamma distributed, i.e., ε[t] ∼ G(α, θ), since it
can be used to approximate many positive continuous random
variables [12]. We set α = 2 and scale θ to obtain different
mean average rate ε̄ = αθ J/slot.

In Fig. 2, the average sum throughputs of the power control
policies are shown for varying energy arrival rates. Here, the
maximum battery capacity is set as Bmax = 10 J. We can see
that the performance of online policies are close to the offline

schemes, and the sum throughput can be increased with higher
energy arrival rate. In the single user case, CI beamforming
and MRT beamforming are exactly the same, and with more
users, the performance can be increased. We can observe that
CI beamforming outperforms MRT beamforming with higher
energy rate since there is no inter-user interference in CI
beamforming case.

In Fig. 3, the average sum throughput for the different
schemes are shown for varying values of Bmax. The average
energy arrival rate is 1.5 J/slot. The performance is compared
with the benchmark scenario where no battery capacity con-
straint is imposed, i.e. Bmax = ∞. One can observe that
the throughput increases with Bmax since, with larger battery
storage capacity, more energy can be accumulated over time
and the energy-sharing with later time slots is less restricted.

VII. CONCLUSION

In this work, we derived both offline and online power
control policies for a multiantenna BS supported by renewable
energy. Two multiuser beamforming schemes were considered,
i.e., the CI and the MRT beamforming schemes. The power
control policies were derived with the goal of maximizing the
sum throughput by a deadline subject to energy causality and
battery storage constraints. The power control for the CI beam-
forming case was obtained using the directional water-filling
algorithm whereas that for the MRT beamforming case was
obtained using GP approximations. The effectiveness of the
proposed schemes were shown through numerical simulations.
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