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Abstract—Wireless sensor networks (WSN) are one of the
enabling technologies for the Internet of Things. Due to the
restricted capability of sensor, the performance of WSN is
sensitive to interference from nearby wireless devices utilizing
the same band. The channel hopping technique is adopted by
IEEE 802.15.4e standard to mitigate such adverse effect. In this
paper we propose the Adaptive Time-slotted Channel Hopping
(A-TSCH) framework which augments standard IEEE 802.15.4e
channel hopping with mechanisms for learning the spectral
condition and blacklisting. Complete design and implementation
are provided, followed by analysis of experimental results. We dis-
cover that A-TSCH improves the packet delivery in the presence
of interference from co-located devices, leading to substantially
enhanced reliability of WSN based on IEEE 802.15.4e.

I. INTRODUCTION

Wireless sensor networks (WSN) are one of the core
ingredients of the Internet of Things. Current developments
in wireless communication have led to intensified utilization
of the 2.4 GHz Industrial Scientific and Medical (ISM) band
[1] where most WSN operate. This poses a challenge as
sensors have to compete with a variety of other devices
for the scarce spectrum. Channel hopping technique was
developed to mitigate this issue [2], [3] by regularly switching
communication frequencies in a pseudo-random manner [4].
This approach has been widely adopted [5], [6] and is now
part of the IEEE 802.15.4e standard [7].

The standard channel hopping is limited since it does not
consider differences between IEEE 802.15.4 channels. In this
paper, we propose the Adaptive Time-slotted Channel Hopping
(A-TSCH) framework which addresses such limitation of
existing IEEE 802.15.4e channel hopping by only utilizing
a selective set of desirable channels for hopping. The
design of A-TSCH is presented in detail; implementation
is carried out on a WSN platform and its performance is
evaluated through experiments, highlighting the improvement
of reliability as well as the validity of the A-TSCH framework.

The remainder of the paper is structured as follows: Sec-
tion II reviews some studies related to this work. The overview
of A-TSCH is provided in Section III and detailed descrip-
tions of two vital components are presented subsequently in
Section IV and V. The performance of A-TSCH is evaluated
through experiments described in Section VI, and results are

analyzed in Section VII to demonstrate our findings. Finally
conclusions are drawn in Section VIII.

II. RELATED WORK

Using pseudo-randomized frequency access to allay
adverse effect of ambient interference is an effective strategy
embraced by several technologies operating in the ISM band,
including Bluetooth and WirelessHART [5], [6], and a formal
framework known as Time-slotted Channel Hopping (TSCH)
is defined in IEEE 802.15.4e MAC Enhancement Standard
[7]. TSCH divides time into discrete timeslots and uses
pseudo-randomly chosen operating frequencies in individual
timeslots [4], [8]. Accordingly, transmission is evenly spread
over the entire set of 16 channels in long term [7].

The effectiveness of channel hopping essentially comes
from the variation of desirability among available channels
[9], [10]. While single-frequency schemes suffer significant
degradation if its channel experiences powerful interference,
channel hopping distributes the risk of negative influences
over a wide spectral range, considerable enhancing the
overall reliability [4], [11]. Taking this philosophy one step
further, the blacklisting technique aims to use only “good”
channels for hopping. Some supporting evidence for this
approach is found in [11]. Specifically, communication traces
between TSCH-based sensors were recorded and subsequently
replayed with certain channels removed from the hopping
sequence. An improvement in packet delivery ratio (PDR)
was observed as a result. Although this finding was purely
statistical and few suggestion on specific design was given, it
motivated the idea of designing a blacklisting algorithm for
TSCH, which is an essential component of A-TSCH.

The Efficient Multichannel MAC (EM-MAC) protocol [12]
demonstrates a practical design of blacklisting mechanism.
In EM-MAC, certain parameters are regularly exchanged
to enable senders to deduce the wake-up time and pseudo-
randomized communication frequencies of the receiving end.
Right before the transmission of outgoing packets, clear
channel assessments (CCA) is performed to detect whether
the channel is interference-free. Channels are blacklisted if
either CCA or packet delivery fails three times and senders
are inform of updated blacklists by corresponding receivers.



Fig. 1: Slotframes of standard TSCH include ADV, Tx, Rx
and Idle type. A-TSCH introduces an additional NF type.

Although EM-MAC and A-TSCH share the same philos-
ophy of employing blacklisting, there are several importan-
t differences. First, transmission in EM-MAC is receiver-
initiated as senders only transmit after confirmed by receivers.
In contrast, A-TSCH communications happen in scheduled
timeslots and require no additional coordination once the
network is established. Second, in EM-MAC only senders have
the opportunity to probe channel desirability, whereas all node
has such ability in A-TSCH. Third, blacklisting in EM-MAC is
either invoked by failed CCA or unsuccessful packet delivery,
which are a posteriori knowledge of affected performance. The
A-TSCH, on the other hand, regularly monitors the spectral
condition thus more proactively protects performance from
potential adverse factors.

III. ADAPTIVE TIME-SLOTTED CHANNEL HOPPING
(A-TSCH)

Adaptive Time-slotted Channel Hopping (A-TSCH) is a
MAC layer framework for WSN. It extends the IEEE
802.15.4e Enhancement Standard [7] through augmenting the
existing channel hopping mechanism. This section begins with
a specification of standard IEEE 802.15.4e TSCH and then
proceeds to provide an overview of the A-TSCH architecture.

A. Standard IEEE 802.15.4e TSCH

IEEE 802.15.4e TSCH [7] divides time into successive
timeslots. Repetitive patterns of timeslots are grouped into
slotframes. Therefore the temporal domain is considered an
infinite series of slotframes consisting of fixed timeslot ar-
rangement, as illustrated in Figure 1. Activities inside timeslots
depend on associated type values. The standard TSCH has
3 types of non-idle slots: advertisement (ADV), transmission
(Tx) and reception (Rx). Synchronized nodes maintain a
uniform sense of time by sharing identical counts of elapsed
timeslots, known as Absolute Slot Number (ASN). Accord-
ingly, slotframes are aligned throughout the network which
enables coordinated operations.

Channel = (ASN mod 16) + 11 (1)

Operating frequencies in TSCH are pseudo-randomly gen-
erated using Equation (1). For ASN∈ [0,+∞) the equa-
tion yields Channel∈ [11, 26], hence providing indiscriminate
pseudo-random access to all sixteen IEEE 802.15.4 channels
in 2.4 GHz band.

Fig. 2: A-TSCH components and operations. Arrow types
correspond to logic branches. Lines are annotated with actions.

B. A-TSCH Design

To facilitate blacklisting in A-TSCH, the standard TSCH
slotframe is modified to include two additional Noise Floor
(NF) slots that are reserved for noise floor listening, as
illustrated in Figure 1. Transmission is suspended in NF slots
to ensure sampled noise floors are not affected by network’s
own signals [13]. This particular placement provides fairly
frequent opportunities for noise detection without incurring
over-sized slotframe which may affect network throughput. In
practice, noise floors are retrieved from the Received Signal
Strength Indicator (RSSI) register of the radio [14]. The
hardware also report another Link Quality Indicator (LQI)
value, but its correlation with transmission success rate is
not as good as RSSI’s [15], [16], especially for unstable
transmission medium [17].

The logic flow of A-TSCH is illustrated in Figure 2.
Upon entering a timeslot, A-TSCH firstly discovers the slot
type by checking the schedule. In NF timeslots, the noise
floor listening process is invoked. Equation (1) is used to
indiscriminately and pseudo-randomly determine channels to
probe. Collected noise readings are passed to the channel
quality estimation which updates channel quality records to
reflect the desirability of channels. Blacklisting subsequently
composes the blacklist which is the collection of undesirable
channels to be excluded from the hopping sequence. In Tx
or Rx slots, normal communication routines are carried out
using frequencies generated by Equation (1) while consulting
the blacklist. The processes of channel quality estimator and
blacklisting are vital ingredients of A-TSCH and for this
reason they are further discussed in the following sections.

IV. CHANNEL QUALITY ESTIMATOR

The obtained noise floor readings represent momentary
interference levels and may not reflect channel quality over
longer periods. Accordingly, exponential smoothing (ES) tech-
nique is adopted to provide a simple and lightweight channel
quality estimator for low power wireless sensors. After a brief
introduction to properties of ES, its operating parameter is



TABLE I: Smoothing coefficient candidate with corresponding
forecast accuracy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2.47 2.50 2.52 2.54 2.56 2.57 2.57 2.59 2.61 2.88

tuned through simulation. An additional ES-based estimator
that utilizes Kalman Filter for dynamic parameter adjustment
is also proposed.

A. Exponential Smoothing

Exponential smoothing (ES) is a popular forecast technique
known for its effectiveness and relative simplicity [18], [19]
and it has several variants for estimation subject with various
characteristics. Single exponential smoothing, also known as
simple exponential smoothing, is arguably the most concise
form of ES techniques. Due to its independence from assump-
tions of underlying process and low computational overhead,
it is suitable to be used in power-constrained wireless sensors.

Ŷt+1|t = αOt + (1− α)Yt|t−1 (2)

Equation (2) generalizes the smoothing process. Ot is the
noise observed at time t and Yt|t−1 denotes the forecast for
time t previously generated at t-1. And Ŷt+1|t, the forecast
for time t+1 yielded at t is the weighted combination of Ot

and Yt|t−1, subject to a smoothing coefficient α ∈ [0, 1].
Accordingly, a forecast with single ES is yielded entirely
from the result of previous steps and most recent observation,
ensuring modest computation and storage overheads.

It is evident that the estimator is controlled by coefficient
α. This parameter is case-specific and simulations on real
noise samples were conducted to determine suitable α for our
experiment environment. Noise were sampled using Guidance
and Inertial Navigation Assistant (Gina) motes [20] for a
total duration of 48 hours. Candidate coefficients were evenly
extracted between 0.1 to 1.0 with a step of 0.1. Zero was
not considered because it would nullify the influence of
observations in Equation (2) which effectively disables noise
floor listening. Simulations were conducted in Matlab and the
root-mean-square error (RMSE) between the true values and
forecasts are shown in Table I. The α of 0.1 was found to
yield the best result thus later used in experiments.

B. Exponential Smoothing aided by Kalman Filter (KFES)

An additional type of estimator is devised in this work
to dynamically adjust α by employing Kalman Filter (KF),
an optimal estimator for dynamic linear systems, with the
assumption that the best smoothing coefficient tends to be
constant in long term. This estimator is called KFES and
described in Algorithm 1. Note that details of ES and KF
functions are omitted from the algorithm listing since they are
well known and also due to the page limit. Specifically, noise
samples are thought to truthfully reflect momentary states.

Thus it is possible to determine the α which could have led to
optimal estimates in hindsight. This retrospective information
is denoted as bestAlpha and used as the correction value for
KF. The estimate generated by KF is taken as the ideal α and
subsequently used by ES to yield noise forecasts.

Input:
Nk : Noise observation at time k

Result:
ESTk+1 : Noise level estimate for time k+1

Data:
αk−1 : coefficient used at k-1 (to generate ESTk)
ESTk−1 : estimated noise level for time k-1

main():
while Device up and running do

// Retrospectively get the best α
for last step

bestAlpha =bestCoefficient(Nk, ESTk−1);
// Get estimate of optimal α
αk = KF(bestAlpha);
// Get forecast of noise level
ESTk+1 = ES(Nk, αk);

end
end

func bestCoefficient(Nk, ESTk−1) :
Find β̌ that minimizes
|Nk − bestCoefficient(ESTk−1, β)|;

return β̌;
end

Algorithm 1: The algorithm of KFES estimator

V. BLACKLISTING

A blacklist consists of 16 bits that represent individual
frequencies and channels are blacklisted by setting
corresponding bits to 1. The sizing of blacklist controls
the maximum number of channels allowed to excluded. This
parameter can be either static or, alternatively, dynamic to
cover any channel falling short of certain threshold, provided
that at least one channel remains usable.

In Tx / Rx slots, blacklists are consulted when nodes initiate
access to radio frequencies obtained from Equation (1). The
communication goes ahead if the prospective channel is
not blacklisted; otherwise an alternative must be generated
with Equation (1) and checked again. This iterative process
terminates when an admissible channel is found.

Blacklists are periodically updated at intervals of Tu
to reflect latest spectral condition. The synchronization of
blacklists is crucial to maintaining communication between
peers. In ADV slots, nodes insert their local blacklists to
ADV payload and propagation is achieved simultaneously
with standard TSCH timing synchronization [14]. An



important detail is that blacklisting is deactivated in ADV
slots so that common hopping sequence can be easily
recovered in case of desynchronized blacklists since ADV
packets are always exchanged using default hopping sequence.

VI. IMPLEMENTATION AND EXPERIMENT

In order to test the performance of the proposed framework,
A-TSCH was implemented atop Berkeley’s OpenWSN [21]
protocol stack. Experiments were conducted in a communal
workspace environment (approximately 12m × 12m) with 3
wireless access points placed in proximity and typically more
than 10 WLANs visible. A total of 6 Guidance and Inertial
Navigation Assistant (Gina) nodes [20] were deployed as 3
sender-receiver pairs. Note that A-TSCH does not depend on
specific hardware. One of the groups was configured with un-
modified TSCH while the other two adopted A-TSCH with ES
and KFES estimators, respectively. Senders were programmed
to simultaneously transmit 600 packets to their corresponding
partners at power of 0 dBm with inter-packet time of 2
seconds. To help demonstrate the effect of blacklisting, the
update interval Tu was set to 200 seconds to ensure at least
5 update opportunities within the duration. Experiments were
conducted in 4 rounds using blacklist sizes of 3, 6, 9 and 12,
respectively, and each round was repeated 6 times.

VII. ANALYSIS

The metric of Expected Transmission Count (ETX) is
empolyed to quantify the transmission success rate. Since
ETX is the reciprocal of packet delivery ratio (PDR), therefore
it denotes the average number of transmission required for a
packet to be successfully received [11], [22].

The ETX observed in experiments are reported in Figure 3.
The individual segments denote results achieved with different
blacklist sizes as labeled on the horizontal axis, while bars
inside each segment represent ETX performance with different
estimators. In particular, the standard TSCH has estimator
type of N/A as it does not use any, and its ETX results are
used in all segments as the baseline for measuring the effect
of A-TSCH. It can be clearly observed in the figure that motes
using A-TSCH with any settings uniformly deliver lower
ETXs than standard TSCH, confirming that A-TSCH improves
transmission success rate. Reduction in ETX is quantified in
percentage and labeled atop of corresponding bars in Figure 3.

Relationship between ETX and blacklist size is evident as
size 12 delivers ETX reduction nearly twice as much as size
3 does, while size 6 and 9 provide similar results. Variation in
ETX reduction also exists between different estimator types.
While the KFES outperforms its ES-based counterpart when
small or large blacklist (size 3 and 12) are used, ES exhibits
marginal advantage with moderate sizes (6 and 9). Although
these findings are not sufficient to derive any deterministic
arguments about the effect of A-TSCH parameters, they

Fig. 3: ETX obtained with different blacklist sizes and esti-
mators. ETX reduction is labeled in percentage.

provide clues about what future work should investigate.

The blacklist updates results are also examined to ascertain
whether A-TSCH was able to correctly blacklist channels in
accord with noise floor condition. To this end, the auxiliary
metric of Blacklisting Rate (BR) is introduced and defined as
the number of times that certain channel is blacklisted divided
by the number of blacklist updates. Accordingly, BR denotes
how frequently a channel is recognized as noisy and excluded
by the blacklisting process. The actual channel condition
was monitored using Wi-Spy spectrum analyzer [23] and the
obtained noise density is presented in Figure 4(a) as a baseline.

Channel BR associated with different blacklist sizes are
illustrated in Figure 4(b) and found to be in agreement with
the actual noise condition. Despite occasional variations,
the most noisy channels (11 through 14 and 16 through 19,
according to Figure 4(a)), were very frequently blacklisted;
the relatively quiet channel 25 and 26 were largely intact.
This also partly explains the diversity of ETX among blacklist
sizes: the size of 12 can exclude nearly all noisy channels
(11 through 19, 22 and 23), hence the biggest reduction; as
the blacklist sizes decrease, some noisy channels inevitably
escaped the exclusion and exerted negative influences.

Also plotted is the BR’s association with estimators in
Figure 4(c). It is observed that distinction between channel
BRs is sharper with ES than KFES. A possible reason
is that the ES estimator was less sensitive to momentary
fluctuations in noise level because the low smoothing factor
(0.1) made its view of channel desirability relatively steady.
In comparison, KFES was more susceptible to short-term
changes in noise levels hence the less deterministic BR
profile. These explanations are in accord with the fact that
KFES performed best with small blacklists (4) and ES tended
to excel with bigger ones: blacklists large enough to contain
all noisy channels could benefit from the stability of ES
estimator which led to more desirable results; and in case of
small blacklists, KFES’s actively adjusted evaluation allowed
for accurate identification of the most noisy frequencies.
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Fig. 4: (a) WiSpy’s noise density graph; Blacklisting rates
(BR) associated with (b) blacklist sizes and (c) estimators.

In spite of the diversity discussed above, all BR curves of
BR conform to the noise density in 4(a), confirming the overall
correctness of the A-TSCH blacklisting process. However,
the above findings may not be independent from specific
environments, therefore investigations should be furthered in
the continuation of this work, for example, into an adaptive
blacklist sizing mechanism.

VIII. CONCLUSION

In this paper, we briefly reviewed the IEEE 802.15.4e Time-
slotted Channel Hopping (TSCH) and suggested further im-
provement. The Adaptive TSCH (A-TSCH) was subsequently
proposed to improve the reliability of transmission in the
face of interference via blacklisting technique which exclude
channels of high noise levels from hopping sequence. The
A-TSCH was implemented for a WSN platform and tests
were conducted with different estimators and blacklist sizes.
A commercial spectrum analyzer was employed to verify the

correctness of blacklisting operations. Although no singular
best estimator technique and blacklist configuration could be i-
dentified based on current findings, the experimental evidences
clearly demonstrate A-TSCH’s advantage over standard IEEE
802.15.4e channel hopping in terms of transmission success
rate in the face of interference.
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