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Abstract—In this paper, we study the problem of cooperative
communications in cognitive radio systems where the secondary
user has limited relaying room for the overheard primary
packets. More specifically, we characterize the stable throughput
region of a cognitive radio network with a finite relaying buffer
at the secondary user. Towards this objective, we formulate a
constrained optimization problem for maximizing the secondary
user throughput while guaranteeing the stability of the primary
user queue. We consider a general cooperation policy where
the packet admission and queue selection probabilities, at the
secondary user, are both dependent on the state (length) of the
finite relaying buffer. Despite the sheer complexity of the opti-
mization problem, attributed to its non-convexity, we transform
it to a linear program. Our numerical results reveal a number of
valuable insights, e.g., it is always mutually beneficial to cooperate
in delivering the primary packets in terms of expanding the stable
throughput region. In addition, the stable throughput region
of the system, compared to the case of infinite relaying queue
capacity, marginally shrinks for limited relaying queue capacity.

Index Terms—Wireless networks, cognitive radio, cooperative
communications, stable throughput region, convex optimization.

I. INTRODUCTION

The concept of cognitive radios was motivated by the
problem of spectrum scarcity, as well as the inefficient uti-
lization of the licensed spectrum [1], [2]. The fundamental
purpose of deploying cognitive radio networks is to enhance
the spectrum utilization by exploiting spectral holes where a
portion of the licensed spectrum is unutilized for a period
of time. Accordingly, the cognitive radio technology proposes
the coexistence of unlicensed secondary users (SUs) with the
licensed primary users (PUs) on the same frequency band
in such a way that a minimum quality of service (QoS) is
guaranteed for the PUs. For example, in overlay cognitive
radio networks, the SU seizes the opportunity to transmit its
packets when it senses a spectrum hole, that is, the PU is idle.

In wireless networks, the notion of cooperative communi-
cations has attracted considerable attention in recent years.
The basic idea relies on the broadcast nature of the wireless
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channel where intermediate nodes between the transmitter and
receiver can be thought of as potential relay nodes. If a receiver
fails to decode a packet, there is a good chance that one of the
intermediate nodes has received this packet and, hence, can aid
in delivering it to the receiver. Therefore, cooperative commu-
nications can play a major role in enhancing the performance
of wireless networks. Cooperative communications has been
explored within the framework of cognitive radio networks
whereby the SU helps the PU in delivering its packets to
the destination [3], [4]. Intuitively, both the PU and the SU
benefit from such cooperation. The PU reliably delivers its own
packets while the SU witnesses an increase in the number of
time slots available for transmission.

A considerable part of the wireless literature was dedi-
cated to the concept of cooperative communications from the
perspective of the physical layer, e.g., [3], [4], [5]. Others
studied it from the perspective of the MAC layer, e.g., [6],
[7]. Our prime focus in this paper is on cooperative relaying
in cognitive radio networks at the packet level. Essentially, we
extend the work presented in [8], [9] and [10]. In [8], a new
protocol-level full cooperation in a wireless multiple-access
system is proposed for a system composed of N users in which
each node is a source, and at the same time a potential relay.
In [9], [10], the authors propose a cooperative strategy with
probabilistic relaying. In this strategy, it is considered that the
SU has two infinite-length queues; one is for its own packets
and the other is for relaying the PU packets. Upon overhearing
a PU transmission, the SU enqueues the PU packet, if not
correctly decoded by the destination, with probability (w.p.)
a. Conversely, when the PU is sensed idle, the SU serves its
own data queue w.p. b or the relaying queue w.p. 1− b.

Our main contribution in this paper is to characterize the
stable throughput region of the system in [10] when the relay-
ing buffer at the SU has finite capacity. This, in turn, renders
the problem more challenging due to the added complexity
of modelling the state of the SU relay queue and solving the
associated optimization problem. The motivation behind our
work is to investigate the case when the SU helps the PU in de-
livering its packets, yet, with limited resources, as opposed to
unlimited resources in [8], [10]. It can be contemplated that the
proposed system model constitutes an important step towards
real systems. Furthermore, we extend the system degrees of
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Fig. 1. The system model.

freedom whereby the probability of the SU enqueueing an
overheard PU packet is dependent on the state of the relaying
queue, i.e., relaying queue length at a given time slot. In
addition, the SU queue selection probabilities, between the
relay queue and its own packets queue, is also assumed to
be state-dependent. This problem formulation yields a non-
convex optimization problem. Nevertheless, we exploit the
structure of the problem that enables us to transform it into
a linear program that can be efficiently solved. We study the
effect of the finite size of the relaying queue on the stable
throughput region of the system. The numerical results show
that the stable throughput region, compared to the case of
infinite relaying buffer size, marginally shrinks for relatively
small relaying queue lengths.

The rest of this paper is organized as follows. In Section
II, the system model is described. Section III demonstrates the
proposed cooperation policy. The characterization of the stable
throughput region of the system as an optimization problem is
investigated in Section IV. Numerical results are presented in
Section V. Finally, Section VI concludes the work and points
out potential directions for future research.

II. SYSTEM MODEL

We consider the cooperative cognitive radio network shown
in Fig. 1. The network consists of a PU, an SU, and a common
destination. The PU is equipped with an infinite queue (Qp) for
its own packets. On the other hand, the SU is equipped with an
infinite queue (Qs) for its own packets and a finite queue (Qsp)
of size K for the packets overheard, decoded and enqueued
from the PU. The system is time-slotted where the packet
transmission from either user to the destination takes precisely
one time slot. The external packet arrivals at Qp and Qs are
modelled as Bernoulli random processes with average arrival
rates λp and λs packets per slots, respectively, where 0 ≤
λp, λs ≤ 1. The arrival processes of both users are assumed
to be independent from each other across time slots. Following
the notation in [10], The instantaneous length evolution of an
arbitrary queue i is defined as

Qt+1
i =

(
Qti − Y ti

)+
+Xt

i , i ∈ {p, s, sp} (1)

where Qti is the number of packets at the beginning of time
slot t, and Xt

i and Y ti are the number of arriving and departing
packets in time slot t, respectively. The random variables, Xt

i

and Y ti , are binary taking values 0 or 1. Note that (Z)+ =
max(Z, 0).

The quality of a wireless communication channel is de-
teriorated due to the inherent impairments caused by signal
attenuation, shadowing, multipath fading, and additive noise.
The quality of the channel is abstracted in this work by the
average channel reception probability which is the probability
that a transmitted packet is correctly decoded. It is assumed
that the SU has a perfect sensing capability and, hence, at
most one of the two users will transmit in every time slot.
Consequently, the only reason for packet loss is link outage.
Since we assume that the channel gain and noise processes
are stationary, and the mobility of the nodes is ignored in our
analysis, the channel success probabilities are deterministic
and take values from the interval [0, 1]. Let fpd, fps and fsd
denote the probability of successful packet reception from the
PU to the destination, from the PU to the SU, and from the
SU to the destination, respectively. Throughout our analysis,
we assume that fpd < fsd, i.e., the SU has a better channel to
the destination than the PU. We will signify the prominence
of such assumption to the cooperation strategy later.

Acknowledgement packets (ACKs) are sent either by the
destination for successfully decoded packets from the PU or
SU, or by the SU for successfully-decoded overheard primary
packets. We assume that ACKs are instantaneous as well as
error-free. Additionally, ACKs can be heard by all the nodes
in the system.

III. COOPERATION WITH FINITE RELAYING BUFFER AT
THE SU

The proposed system adopts the following cooperative pol-
icy at the MAC layer. When the PU is backlogged, i.e., Qp is
non-empty, it transmits a packet. In such case, we have three
possible scenarios. If the destination correctly decodes the PU
packet, it sends back an ACK that is heard by the PU and the
packet is then dropped from Qp and exits the system. On the
other hand, if the destination fails to decode the PU packet,
but the SU correctly decodes it, Qsp buffers the packet w.p.
ai, i = 0, 1, . . . ,K. The packet admission probability in the
system depends on the number of packets in Qsp. If the SU
admits the packet, it sends back an ACK so that the PU drops
the packet from its queue. Therefore, the SU is in charge of
transmitting this packet to the destination. Finally, if neither
the destination nor the SU successfully receives the PU packet,
the PU keeps this packet in its queue to be retransmitted in
the next time slot.

When the PU is idle, i.e., Qp is empty, the SU accesses the
channel. It transmits a packet either from Qsp w.p. 1− bi, i =
0, 1, . . . ,K or from Qs w.p. bi, i = 0, 1, . . . ,K. The queue
selection probability in the system also depends on the number
of packets in Qsp. If the destination correctly decodes the SU
packet, it sends back an ACK that is heard by the SU. The
packet is then dropped from either Qsp or Qs and exits the
system.

In view of the finite queue size of Qsp, we should account
for the blocked packets when the relaying queue is full at
a given time slot, i.e., when it has K packets. This case
is handled by forcing the system to not accept any relayed



packets from the PU when Qsp is full. In other words, we set
aK = 0. On the other hand, a time slot would be wasted if
an empty Qsp is selected for transmission while Qs still has
packets to transmit. In order to prevent such case, the system
is forced to select Qs for transmission whenever Qsp is empty,
In other words, b0 = 1.

According to the aforementioned cooperation policy, the
system at hand is non-work-conserving because there are cases
where the system might waste time slots in spite of having
packets to transmit. A typical case occurs when an empty Qs
is probabilistically selected for transmission while Qsp still
has packets to transmit. Thus, the system would waste such
time slots. Nonetheless, the non-work-conserving policy of
our system achieves the same stable throughput region of the
work-conserving policy characterized in [8] using an infinite
relaying buffer. This result stems from optimally tuning the
system degrees of freedom provided by the probabilistic packet
admission and queue selection of the proposed cooperation
policy with finite relaying buffer. The optimization problem
and performance results supporting the above insights will
follow in the next two sections.

IV. THE STABLE THROUGHPUT REGION

A. Queue Stability

In a stable network of queues, every individual queue has
to be stable. Loynes’ theorem establishes the condition for
stability of an infinite size queue [11]. It asserts that if the
queue arrival and service processes are stationary, the queue
is stable if and only if the packet arrival rate λ is strictly less
than the packet service rate µ. It is worth mentioning that
Qsp, with maximum size K, is stable for all positive values
of the arrival and service rates. The number of packets will
never grow to infinity since it is upper bounded by K. Let πi,
i = 0, 1, . . . ,K, be defined as the probability that Qsp is in a
given state i, i.e., Qsp has i packets, at a given time slot.

Note that a packet leaves Qp if it is either correctly decoded
by the destination or correctly decoded by the SU and admitted
to the relaying queue. Therefore,

µp = fpd + (1− fpd) fps
K∑
i=0

aiπi (2)

Also, a packet leaves Qs if the PU is idle, Qs is selected
for transmission, and the packet is correctly decoded by the
destination. Therefore,

µs = fsd

(
1− λp

µp

) K∑
i=0

biπi (3)

Accordingly, the stable throughput region of the system is
characterized as

R =

{
(λp, λs)

∣∣∣ λs < fsd

(
1− λp

µp

) K∑
i=0

biπi,

for λp < fpd + (1− fpd) fps
K∑
i=0

aiπi

}
(4)

Fig. 2. Discrete Time Markov Chain (DTMC) model of the SU relaying
queue, Qsp.

In pursuance of completely characterizing the stable through-
put region of the system, the steady-state distribution of Qsp
should be calculated. In the next subsection, we conduct a
Discrete Time Markov Chain (DTMC) analysis for Qsp.

B. DTMC Analysis of Qsp

Fig. 2 depicts the state transition diagram of Qsp where state
i denotes the number of packets in Qsp. The arrival rate λi
can be characterized as the conditional probability that Qp is
non-empty, the destination fails to decode the PU packet, the
SU correctly decodes that packet, and Qsp admits the relayed
packet, given that Qsp is at state i. Thus,

λi =
λp
µp

(1− fpd) fpsai, i = 0, 1, . . . ,K (5)

Similarly, µi can be characterized as the conditional probabil-
ity that Qp is idle, the SU selects Qsp to transmit the enqueued
PU packet, and the destination correctly decodes it, given that
Qsp is at state i. Thus,

µi =

(
1− λp

µp

)
(1− bi) fsd, i = 0, 1, . . . ,K (6)

It should be noted that λK = 0 as aK = 0 and µ0 = 0 as
b0 = 1.

Using the balance equations, the steady-state probabilities
can be expressed as

πj+1 =
λj
µj+1

πj (7)

where j = 0, 1, . . . ,K − 1. Substituting from (5) and (6) in
(7), we get

πj+1 =
λp (1− fpd) fpsaj

(µp − λp) (1− bj+1) fsd
πj for j = 0, 1, . . . ,K−1

(8)
Applying the normalization condition,

K∑
i=0

πi = 1 (9)

along with (8), one can obtain the value of π0 and, hence,
completely characterize the steady-state distribution of Qsp.



C. Stable throughput characterization problem

Taking into consideration our foregoing discussion in the
previous two subsections, the problem of defining the stable
throughput region of the system can be formulated as maxi-
mizing the service rate of the SU for a given arrival rate of
the primary traffic under stability constraints on all queues in
the system, i.e.,

max
µp,{ai,bi,πi}

fsd

(
1− λp

µp

) K∑
i=0

biπi

s. t. 0 ≤ ai, bi, πi ≤ 1 for i = 0, 1, . . . ,K

aK = 0, b0 = 1

µp = fpd + (1− fpd) fps
K∑
i=0

aiπi

λp < µp

(8), (9) (10)

Note that the optimization problem in (10) is non-convex.
Nevertheless, we exploit the structure of the problem to
transform it into a linear program as follows.

First, we introduce the optimization variables xi = aiπi,
and yi = biπi, where i=0, 1, . . . ,K. Therefore, we can write
(2) as

µp= fpd + (1− fpd) fps
K∑
i=0

xi (11)

Since ai, bi, πi ∈ [0, 1], for i = 0, 1, . . . ,K, we have the
following constraints on xi and yi,

0 ≤ xi, yi ≤ πi for i = 0, . . . ,K (12)

0 ≤
K∑
i=0

xi ≤ 1, 0 ≤
K∑
i=0

yi ≤ 1 (13)

Furthermore, we can write the objective function of (10) and
the constraint in (8) as

µs = fsd

(
1− λp

µp

) K∑
i=0

yi (14)

(πj+1−yj+1)(µp−λp)=
λp
fsd

(1−fpd) fpsxj

for j=0, . . . ,K−1 (15)

Next, we rewrite the optimization problem in (10). The
resulting problem is given by

max
µp,{xi,yi,πi}

fsd

(
1− λp

µp

) K∑
i=0

yi

s. t. 0 ≤ πi ≤ 1 for i = 0, 1, . . . ,K

xK = 0, y0 = π0

µp = fpd + (1− fpd) fps
K∑
i=0

xi

λp < µp

(9), (12), (13), (15) (16)

The above optimization problem is still non-convex. How-
ever, at a given value of µp, the problem reduces into a linear
program in the variables {ai, bi, πi} which is given by

max
{xi,yi,πi}

fsd

(
1− λp

µp

) K∑
i=0

yi

s. t. 0 ≤ πi ≤ 1 for i = 0, 1, . . . ,K

xK = 0, y0 = π0

(9), (12), (13), (15) (17)

It can be evidently shown from (2) and (4) that the feasible
values of µp over which the linear program runs is

max(λp, fpd) ≤ µp ≤ fpd + (1− fpd) fps (18)

To recapitulate briefly, we transformed the non-convex
optimization problem of finding the stable throughput region
of the system into a linear program via standard techniques.
At a given throughput of the PU, we run the resulting linear
program in (17) under the feasible values of µp given by (18).
Our goal is to identify the value of µp that corresponds to the
maximum achievable value of the objective function, i.e., the
service rate of the SU, while satisfying the system constraints.

In the next section, we solve the aforementioned linear
program. The numerical results will reveal the underlying
trend of the optimal solution of the problem.

V. NUMERICAL RESULTS

In this section, we conduct a performance evaluation for
the system under the proposed cooperative policy. The system
parameters are the probabilities of no link outages between the
different nodes that are selected to be fpd = 0.3, fps = 0.4,
fsd = 0.8. Moreover, a baseline comparison with the work-
conserving scheme in which the SU fully cooperates with the
PU via an infinite length queue [8] is presented. Furthermore,
we used CVX, a package for solving convex optimization
programs [12], [13], in order to solve the linear program in
(17).

Fig. 3 depicts the stable throughput region of the system for
different lengths of the relaying queue Qsp. The lower bound
of the stable throughput region occurs when K = 0. This
corresponds to ’No Cooperation’ scenario whereby the SU
doesn’t cooperate with the PU in delivering its packets. On the
other hand, the upper bound of the stable throughput region
occurs when K = 200, i.e., the queue length is relatively
long with respect to the system parameters. This corresponds
to ’Full Cooperation, Infinite Queue Length’ scenario [8].
Furthermore, As the queue length varies from K = 0 to
K = 200, the stable throughput region increases as shown in
Fig. 3. In other words, on the assumption that fsd ≥ fpd, when
the level of cooperation in delivering the PU packets raises by
increasing the length of the relaying queue Qsp, the likelihood
that Qp is empty increases and the SU can safely inject more
packets into Qs without violating the system constraints. As
a result, a corresponding increase in the throughput of the
SU takes place. Moreover, it is obvious that the decrease in
the stable throughput region, compared to the case of infinite
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Fig. 3. The stable throughput regions of the system under different
cooperative and non-cooperative schemes for different lengths of the relaying
queue Qsp (fpd = 0.3, fps = 0.4 and fsd = 0.8).

relaying buffer size, is marginal even for relaying buffer sizes
as small as 10 packets. In other words, the system doesn’t lose
much despite the limited relaying room.

Investigating the solution of our constrained optimization
problem of maximizing the SU throughput for a specific queue
length K, one can identify the underlying trend of the optimal
solution of the probability of selecting Qsp, 1 − bi, where
i = 1, 2, . . . ,K. As the PU injects more packets to the system,
i.e., λp increases, the probability of selecting Qsp, 1 − bi,
i = 1, 2, . . . ,K, increases. This is equivalent to giving more
priority to Qsp over Qs so as to accommodate the increase in
λp. This is a way to explains why λs is inversely proportional
to λp. In addition to this partial cooperation solution, the
full cooperation solution, 1 − bi = 1, i = 1, 2, . . . ,K, also
leads to the same maximum achievable stable throughput
region. Our solution of the optimization problem exploits
the introduced degree of freedom of the formulated problem
that is represented in the dependency of the queue selection
probability on Qsp state at every time slot. Therefore, at every
value of λp, the solver assigns the minimum 1 − bi that
maximize the objective function while satisfying all the system
constraints. However, the full cooperation solution assigns a
fixed value for 1− bi regardless of the value of λp.

VI. CONCLUSION

We study the stable throughput region of a cooperative
cognitive radio network when the relaying buffer at the SU has
a finite capacity. We demonstrate a rigorous mathematical for-
mulation for the problem. Although the formulation results in a
constrained non-convex optimization problem, the problem is
reformulated, via standard techniques, to be a linear program.
Numerical results reveal the fact that cooperation of the SU
in delivering the packets of the PU is always advantageous
to both users in terms of expanding their stable throughput
region. Furthermore, the numerical results show that the sys-

tem does not lose much in terms of the stable throughput
region despite the limited relaying capacity. Finally, solving
the optimization problem yields a partial cooperation solution,
in addition to the full cooperation solution, that maximizes the
service rate of the SU due to the degrees of freedom introduced
in the packet admission and queue selection probabilities. This
is embodied in the dependency of such probabilities on the
number of packets in the relaying queue. For future work,
other performance metrics of the network can be studied in the
light of the new dimensions added to the problem formulation.
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