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Abstract—This paper considers the problem of assigning fre-
quency and time resources in a heterogeneous network, in a self-
organizing manner. The general problem is to assign a resource
set, so as to minimize the number of pairs of adjacent base
stations that obtain the same resource. This can be modeled by
Minimum-Collisions Coloring (MCC) on an undirected graph,
where the colors are the resources, the vertices are the wireless
nodes and the edges represent interference relations between
nodes. The MCC decision problem is NP-complete. This paper
develops a game-theoretic model for the MCC problem. The
players of this game are a set of colored agents, which in practice
could be software robots. The game is proven to possess multiple
pure-strategy Nash Equilibria (NEs). Then a swapping mechanism
is developed to improve the NE performance and the resulting
coloring is pairwise Nash stable. Further refinement is proposed
by making use of an external referee. All theoretical results are
corroborated through simulations.

I. INTRODUCTION

Small Cells (SCs) are an economical and scalable solution
to the ever increasing demand for throughput in wireless
networks. The introduction of user deployed SCs, also called
femtocells, presents network optimization problems, which
were previously not addressed in classical operator deployed
cellular networks. A wireless network with user deployed SCs
is called a Heterogeneous and Small Cell Network (HetSNet)
[1]. Just as any cell, SCs too require operating parameters
to integrate into the wireless network. Complexity of SC
configuration arises because of the large number and the un-
predictability of their on-off operating times. These obstacles
have given rise to an increased interest in Self-Organizing
Networks (SONs) [2]. SONs address the large number and
randomness of network elements by relegating the network
intelligence, from a centralized system to the edge nodes
themselves. Interactions among the nodes determine the state
of the network.

One fundamental optimization problem in a HetSNet is the
allocation of a finite set of resources, such that the pairs of ad-
jacent Base Stations (BSs) that obtain a common resource are
minimized. This is the Minimum-Collisions Coloring (MCC)
problem, where the colors are the resources. Examples of
MCC problems in HetSNets are, orthogonal frequency band
distribution among interfering cells and scheduling time slots
of a finite duration frame over a set of collocated interfering
links. For the sake of generality, the rest of the paper refers
to the finite resource set N , as the set of colors.

MCC decision problem is NP-complete. Consider a reduc-
tion from proper-vertex coloring problem. Let G = (V, E)
be an undirected graph, where V is the set of vertices and
E is the set of undirected edges. The proper-vertex coloring
decision problem is: can G be k−colored where k is a positive
integer [3]? Call this problem P1 (G, k) . The MCC decision
problem is; given the graph G and two positive integers N
and τ , is there an assignment of N colors to the vertices such
that the number of collisions is at most τ? Call this problem
P2 (G,N, τ) . Clearly P2 is in NP. P1(G, k) can be reduced,
in polynomial time, to P2(G, k, 0). Since P1 is NP-complete,
it follows that P2 is NP-hard. Since P2 is NP-hard and is in
NP, it is NP-complete. Hardness of the MCC problem permits
us to seek heuristic efficient solutions.

Graph coloring heuristics have been extensively used in
wireless networks [4]. This paper falls in the subclass of
distributed game theoretic methods. Vertex coloring games
have been the subject of study before. In [5] the proper-vertex
coloring problem is modeled by a game played by the vertices.
The actions are the set of colors. Through potential function
and Best Response (BR) dynamics, the game is shown to
converge to a Nash Equilibrium (NE) of proper coloring. In
[6] the above work is extended to a distributed and parallel
implementation. In [7] the bound for the worst case number of
colors presented in [5] is improved. In [8] a proper coloring
game is designed for the case when number of colors k is
at least ∆ (G) + 2, where ∆ (G) is the maximum degree
of the graph. Any graph, G can be proper k−colored in
polynomial time and with knowledge of only the neighbors, if
k ≥ ∆ (G) + 1. However the novelty of [8] is that the players
follow a randomized strategy. In [9], the problem of assigning
a fixed number of subchannels, k, among access points, is
modeled by the graph coloring problem of finding weighted
maximum induced k−colorable subgraph (weighted-Max-k-
CIS).

In the above discussed research work, the players of the
games are the vertices, and most of the work concentrates on
obtaining a proper coloring, while minimizing the number of
colors used, except Max-k-CIS, which leaves some vertices
uncolored. The research presented in this paper sets itself
apart from previous work in three significant aspects. The first
novelty is in the design of the game. The game of this paper,
is played not by vertices, instead by a set of colored agents,
and vertices are the strategy space of each colored agent.
In a practical implementation the colored agents are akin to
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Figure 1. The graph G is designed to discourage common frequencies to
nearby BSs. A set of 5 subchannels must be distributed. The operator creates
3 agents per subchannel.

software robots, currently used in Internet applications. Second
significant difference is in the definition of the problem.
In MCC the number of colors available is a predetermined
parameter of the problem and therefore there exists no space
to introduce extra colors as in proper coloring games. For
that reason, the objective is to minimize the collisions, rather
than to obtain a zero collision state. Also unlike Max-k-CIS,
MCC does not leave any vertex uncolored. Finally, while all
previous work considers only NE as the choice of equilibrium,
this paper goes beyond, with pairwise Nash stability, which is a
stronger criterion than NE. To the best of our knowledge this
is the first paper to consider an MCC game among colored
agents.

The remainder of the paper is organized as follows. Section
II formulates the non-cooperative game. Section III improves
NE performance by pairwise Nash stability. Section IV in-
troduces a further refinement of pairwise Nash stability by
involving an external refereeing process. Section V presents
numerical results and finally Section VI concludes the paper.

II. NON-COOPERATIVE GAME FORMULATION

Let G = (V, E) be an undirected graph, where V is the set
of vertices and E is the set of edges. Let V be the cardinality
of set V, and the set of adjacent vertices of a vertex v ∈ V
is denoted by Vv. Two vertices are adjacent if they share an
edge. The finite set of distinct colors is N := {1, . . . , N} .
A non-cooperative game in normal form is determined by a
set of players, the actions/strategies available to the players,
and the utility functions of them. The conceptual vision of
the game that is developed in this paper is; given the graph
G, we release a sufficiently large set of colored agents on to
G. It is possible that some agents share the same color. Then
each colored agent attempts to occupy a single vertex v ∈ V
for itself. Thus the strategy space of each agent is the set of
vertices. The cost that agent ` obtains by occupying vertex v
is an increasing function of the number of adjacent vertices to
v, which are occupied by agents of the same color as `.

Let L 3 ` denote the set of agents and L its cardinality.
In order to uniquely identify the colored agents, who share
the same color, each agent is given a pair of values. The first
element of (x, y) identifies the color and the second element
identifies the index, which is unique among agents of the same
color. They are called indexed-colored agents or, in short,
agents. Note that the exact indexing process is irrelevant, as
long as each colored agent can be identified uniquely. For
example if the graph G has three vertices and two colors are
available, N = {1, 2} , then the game requires that at least one
color is duplicated. Therefore the resulting indexed-colored
agents can be L1 = {(1, 1) , (1, 2) , (2, 1)} or equivalently
L2 = {(1, 1) , (1, 2) , (2, 3)}. One may prefer L2 indexing over
L1, since the total number of agents can be directly read off the
sorted second element in L2, which in this case is 3. Clearly
the minimum set of elements in L has to be equal to the
number of vertices in the network, i.e., L ≥ V. However there
is no restriction on the upper limit of L, other than the demand
to be finite. It is easy to realize that a set of indexed-colored
agents with V instances of each color n ∈ N is sufficient to
obtain any combination of color assignments over V vertices.

The NE of the game must ensure that two agents `, `′ ∈ L
do not select the same vertex v ∈ V at an equilibrium state.
Also at a NE, each vertex needs at least one agent. To address
these two design requirements, this paper introduces two
mechanisms. First, a virtual vertex v0, which does not possess
any neighbors, and second, a very large cost is associated to
each agent occupying a vertex v ∈ V , (but not v0), if there
are more than one agent in v. As is demonstrated later, the
virtual agent and pricing scheme, together, ensure that the
above mentioned two design requirements are met at the NE.
Fig. 1 depicts a typical graph of a wireless network frequency
assignment problem. The graph G is such that each SC BS
is adjacent, i.e., has an edge, to its closest and second closest
neighbors and to the macrocell BS. This means, the operator
wants to discourage a SC from having a frequency band that
is used by its close neighbors or the macrocell. Then fifteen
agents are created, duplicating each subchannel 3 times.

Let V0 := V ∪{v0} and let the number of agents occupying
vertex v ∈ V be denoted by # (v) . Let Sv ⊂ N denote the
colors of the agents occupying vertex v ∈ V, t` ∈ N denote
the color of agent ` ∈ L, and q` ∈ V0 denote the vertex
occupied by agent ` ∈ L. Note t` ∈ Sq` . Following standard
game theory notation, q−` := ×`′ 6=`q`′ is the strategy vector
of all players except `. Then for constants a, d > 0, the linear
cost function of an agent ` ∈ L is given by,

c` (q`,q−`) :=

a |{v′ : t` ∈ Sv′ , v
′ ∈ Vq`}|+ d if # (q`) = 1

and q` ∈ V,
(a+ 2)V + d if # (q`) > 1

and q` ∈ V,
(a+ 1)V + d if q` = v0,

(1)

and the total system cost, also called the social cost is,

CL (q`,q−`) :=
∑
`∈L

c` (q`,q−`) . (2)
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The finite normal form game thus performed by the colored-
indexed agents is defined by GL :=

〈
L,VL

0 , {c` (·) | ` ∈ L}
〉
,

where VL
0 := ×`∈LV0, is the joint action space of L ≥ V

agents. From the above definition of the cost function (1) an
agent `, always prefers an unoccupied vertex v ∈ V over v0.
Yet the agent prefers v0 over occupying a vertex in V that is
already occupied by another. And out of all vertices in the set
V , the agent prefers the vertex, which has the least number of
collisions.

Next we explore the existence and properties of pure-
strategy NEs of GL. As discussed before, it is paramount, to
the applicability of game GL, that no pure-strategy NE exists
where a vertex in V has more than one agent, or has no agent.
The following Proposition 1 proves just this, i.e., at any pure-
strategy NE of GL, each vertex in V (note, not v0) has exactly
one agent. Conversely Proposition 2 proves that all one-to-one
assignments between V and subsets of L of cardinality V are
pure-strategy NEs of GL.

Proposition 1. There does not exist a NE of GL where
# (v) > 1 or # (v) = 0, ∀ v ∈ V .

Proof: Suppose agents `, `′ ∈ L are both occupying
v ∈ V. Then by definition of cost function in (1), any one
of the agents can move to v0 and obtain a strictly lower cost
,therefore the current strategy profile is not a best responses
and therefore is not a NE. Now suppose there is a vertex v ∈ V
with no color. By definition of the game, L ≥ V . Therefore,
there must be at least one agent ` ∈ L with q` = v0 and this
agent is strictly better off by occupying v. Therefore multiple-
colored and uncolored vertices cannot be in any NE.

Proposition 2. A strategy vector, where each vertex in V
obtains a single color, is a NE of GL.

Proof: Consider an allocation where each vertex in V
has exactly one agent. Without loss of generality let q` = v,
v ∈ V. If ` moves to another vertex in V its cost strictly
increases. Similarly according to (1) if ` moves to v0 its cost
strictly increases. Therefore v ∈ V is a best response for agent
`. Now consider an agent `′ occupying v0. Analogous to the
above argument, moving to a vertex in V strictly increases the
cost of `′. Therefore `′ is also playing a best response. Since
each agent is at a best response, by definition the allocation
is a NE. Therefore all allocations of agents where each vertex
in V is occupied by one agent are pure strategy NEs of GL.

It can also be shown that sequential BR dynamics converges
to a NE of game GL. Proposition 3 proves so by a potential
function argument.

Proposition 3. The social cost CL (·) , is a generalized ordinal
potential function of the game GL.

Proof: For CL (·) to be a generalized ordinal potential
function the following condition must be satisfied:

c` (q′`, ,q−`) − c` (q`,q−`) < 0 ⇒ CL (q′`,q−`) −
CL (q`,q−`) < 0. That is, if ` ∈ L reduces its cost by
changing its strategy from q` to q′` then the social cost
also reduces. This can be proven by considering the two
cases where a reduction in cost is possible. Case 1: both

q`, q
′
` ∈ V and q′` is unoccupied before the change and,∣∣∣{v′ : t` ∈ Sv′ , v

′ ∈ Vq′`
}∣∣∣ < |{v′ : t` ∈ Sv′ , v

′ ∈ Vq`}| . Case
2: q` = v0, q

′
` ∈ V and q′` is unoccupied before the change. In

both cases, c` (·) reduces and CL (·) also reduces. It is well
known that BR dynamics converges to a pure-strategy NE if
the game possesses a potential function [10].

III. SWAP OPERATION AND PAIRWISE NASH STABILITY

By Propositions 1 and 2, vertex occupancy vector (q`,q−`)
is a NE if and only if each vertex in V has one agent. Thus
the game GL has a large collection of pure-strategy NEs.
The task ahead is to promote NEs that have lower total cost
CL (q`,q−`) , which translates to lower number of collisions
among vertices of graph G. To this end, the paper develops
a swapping mechanism that employes a stronger form of
equilibria, called pairwise Nash stability [11].

Suppose the agents are in some initial pure-strategy NE
occupancy state in V0, i.e., |Sv| = 1, ∀v ∈ V. Without loss
of generality, let `, `′ ∈ L be occupying two distinct vertices
in V, q` 6= q`′ . Let q−{`,`′} := ×`′′ 6=`,`′q`′′ , i.e., the strategies
of all players except ` and `′. Then consider the change in
costs of the two agents `, `′, and the change in total cost of
the system, as ` and `′ perform a swap (mutual exchange) of
the vertices that they occupy, while all other players hold their
initial vertices, i.e., q−{`,`′} remains constant. Let q−` (resp.
, q+` ) denote the vertex occupied by ` ∈ L before the swap
operation (resp. after the swap operation). Note that q+` = q−`′ ,

and vice-versa. The swap operation is denoted by
	
``′. The

change in cost of player ` is,

∆c`

(
	

``′,q−{`,`′}

)
=

a
∣∣∣{v′ : t` ∈ Sv′ , v

′ ∈ Vq+`
}∣∣∣− a ∣∣∣{v′ : t` ∈ Sv′ , v

′ ∈ Vq−`
}∣∣∣ .
(3)

The change in total cost is,

∆CL

(
	

``′,q−{`,`′}

)
=

2∆c`

(
	

``′,q−{`,`′}

)
+ 2∆c`′

(
	

``′,q−{`,`′}

)
. (4)

This paper defines pairwise Nash stability of game GL,
following the pairwise Nash definition for network games in
[11].

Definition 1. Strategy vector (q`,q−`) is pairwise Nash

stable if it is a NE and if ∆c`

(
	
``′,q−{`,`′}

)
< 0 then

∆c`′

(
	
``′,q−{`,`′}

)
> 0 , ∀ `, `′ ∈ L.

Definition 1 stays that the agents are pairwise Nash stable if
they are in a NE and no pair of agents can swap their vertices
to decrease both their costs. Thus two agents agree for a swap
only if both obtain a reduction in costs. Thus we define the
swap operation between agents as follows.
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Definition 2. Swap is the process where two agents mutually
exchange vertices, if both agents obtain a strict reduction in
costs.

Note that the occupancy state that results after each swap
operation is a NE by Propositions 1 and 2. Mutual cost
reduction is a stronger statement than BR. Swap operation
can be employed to propel the system to a NE with better
performance with regards to the social cost CL (q`,q−`). It is
important to theorize that swap may never increase the social
cost and that the swap operation may not get stuck in an
infinite loop, i.e., that sequential swaps reach a pairwise Nash
stable coloring state after a finite number of steps.

Lemma 1. Swap always reduces social cost and only finitely
many swap operations may happen before reaching pairwise
Nash stability.

Proof: Note that the minimum reduction in cost by a
change of action by a player is a. By Definition 2 and from (3),
(4), if a swap operation takes place between two agents `, `′,

then ∆c`

(
	
``′,q−{`,`′}

)
≤ −a and ∆c`′

(
	
``′,q−{`,`′}

)
≤

−a, which implies that ∆CL

(
	
``′,q−{`,`′}

)
≤ −4a. Thus,

every swap operation reduces the system cost by at least
4a. However the system cost CL (·) is lower bounded by 0.
Therefore only a finite number of swaps are possible. Once all
pairs of agents have consecutively failed a successful swap, by
Definition 1 the players have reached pairwise Nash stability
and swap process terminates.

By Lemma 1, sequential swap operation always converges
to a local minima of system cost CL (·) . In a HetSNet with a
large number of vertices, sequential swap operation may not
be ideal. However as discussed next, swap operation can be
parallelized with certain restrictions that preserve Definition 2.

Let us consider a NE state where agents `, `′ ∈ L oc-
cupy two distinct vertices in V . The cost of an agent ` is
a function of only the adjacent agents denoted by L` :=
{`′′ : (q`, q`′′) ∈ E}. Therefore, if `, `′ decides to swap, the
agents occupying the immediate neighbor vertices of q` and
q`′ must remain static. Otherwise the costs of the two agents
`, `′ cannot be guaranteed to reduce thus possibly violating
Definition 2. Therefore the agents occupying neighbor vertices
of the `, `′, are in a restricted state. However two other
agents who occupy vertices that do not share an edge with
the vertices q` and q`′ , may engage in their own swap and
in turn the restricted state applies to their neighbors. Parallel
swap operation is scalable for a large network, as the number
of nodes grows, but as long as the edges remain sparse. In
the worst case, if the network is a click, i.e., every node is
connected to all other nodes, only sequential swap is possible.

IV. REFINING EQUILIBRIA BY REFEREEING

One drawback of the swap operation is that the agents
who are initially occupying the virtual vertex v0, do not get
a chance. Because no agent occupying a vertex in V can
reduce its cost by swapping with an agent in v0. Therefore
the final occupancy state of the colored agents depends on
the initial NE occupancy state from which the swap operation

began. To allow the agents in v0 to explore graph G, the
involvement of a referee is required. A referee is a process
that intervenes externally to modify the outcome [12]. The
task of the referee is to forcefully swap agents occupying
vertices in V with agents occupying the virtual vertex v0.
The refereeing process in itself can be modeled as a complex
combinatorial optimization problem with knowledge of the
percent occupancy state of the graph G. However for the sake
of this paper we propose the following simplified refereeing
process.

Definition 3. Referee picks an agent ` occupying
a vertex v ∈ V and replace ` with an agent `′

occupying v0, if c`′
(
q` = v0, q`′ = v,q−{`,`′}

)
<

c`
(
q` = v, q`′ = v0,q−{`,`′}

)
.

Note that, unlike swap, referee violates the mutual cost low-
ering requirement of Definition 2. Therefore after refereeing,
swap operation has to be carried out to bring the state back to
a pairwise equilibrium. Lemma 2 establishes that the referee
is innocuous and that it terminates. A referee is innocuous,
if after the refereeing operation, the social cost of the graph
cannot increase.

Lemma 2. Occupancy state after the refereeing operation is
a NE, has system cost CL (·) no greater than the cost before
refereeing, and halts in a finite number of steps.

Proof: Proof that the state after refereeing is a NE follows
from Propositions 1 and 2. To notice that the system cost
cannot increase, consider that ` is the agent that is forced
out to v0 and `′ takes the previous vertex of `. Since referee
satisfies Definition 3, the number of neighbor in collision with
`′ is less than or equal to the number of collisions ` had . The
halting of the refereeing process follows by a similar argument
to that of halting of swap operation in Lemma 1.

Swapping coupled with the refereeing operation provides a
powerful combination that can escape a local minima, which
has a higher social cost, and explore further in the space
of all possible coloring states for pairwise stable colorings
with lower social cost. If need be it is possible to define the
referee such that it creates additional agents, or change the
color of an agent, when it cannot find agents in v0 that satisfy
the requirements of Definition 3. The referee function can be
implemented fully distributively by a software robot which
visits BSs in random or centrally by a leader of the colored
agents, that is elected at an initialization stage.

V. NUMERICAL RESULTS

We explore the results through a frequency band assign-
ment problem. To minimize cochannel interference, similar
frequency bands should not be allocated to adjacent BSs. The
interference relations between BSs are generated randomly.
Both a and b, of cost function, are set to 1. Fig. 2 validates
Proposition 3. The network has 20 BSs. Initially the frequency
agents are assigned to the BSs randomly, therefore it is
probable that there are BSs with multiple agents and/or no
agents. Then a sequential process selects agents to perform BR
dynamics. This simulation considers two selection processes,
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Figure 3. Performance improvement through swap and referee operations.

sequential by index and random. The process terminates when
none of the agents are able to perform a BR.

Fig. 3 demonstrates the reduction of cochannel collisions,
by swap and referee operations. Only 10 frequency bands are
available and each frequency is duplicated 10 times, creating
100 frequency-agents. The simulation starts-off from a random
one-to-one allocation of frequency-agents to V and the rest of
the agents occupying v0. Then swapping takes the network to
pairwise Nash stability. Finally refereeing operation is carried
out together with swapping. The x-axis shows the number
of BSs and the maximum degree, ∆ (G) of the interference
relations. As is seen from the figure, the referee and swap
operations together achieve phenomenal performance, given
that the test networks have high ∆ (G) .

Fig. 4 demonstrates the effect of the number of frequency
bands in reducing the collisions. Number of BSs in G is 40.
The total number of agents is kept constant at 100. As the
number of frequency bands increases all three schemes show
a reduction in the collisions, which is expected.

VI. CONCLUSION

This paper considers the problem of allocating a finite
resource, such as frequency bands and time slots, over a set
of BSs, in order to minimize the pairs of adjacent BSs that
are in collision. The paper follows a game theoretic approach.
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Figure 4. As the number of colors increases the performance of all schemes
improves.

The game is played among a set of agents, who represent
the resources. It is demonstrated that the game possesses
a multitude of pure-strategy Nash equilibria. Therefore two
refining mechanisms are developed. First refining process,
swaps pairs of agents and in the end achieves a pairwise
Nash stable coloring. Further improvement is achieved by an
external referee, wh0 helps the resource agents to explore
assignments that would not have been explored in swapping.
The simulation results demonstrate that refereeing coupled
with swapping vastly out performs best response dynamics in
average. Practical implementation of agents by software robots
in a test bed and weighted case of this problem, where the BSs
have priorities, need to be explored in future work.
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