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Abstract—In-network processing (INP) is a promising method
that allows aggregation of data while it is being transferred along
the communication paths as a means to optimize the utilization
of network resources without violating the quality of information
(QoI) requirements. Given the large amount of data existing
in dynamic environments, the optimization of INP requires a
distributed framework that can adapt easily to network changes
and user requirements. In this work, we develop the principle
for designing a distributed mechanism in order to determine and
control INP. Specifically, the proposed framework can decide, in
a distributed way, which nodes along the communication paths
optimally perform INP, with consideration of operational energy
consumption and QoI requirements for achieving global optimal
INP. The significance of the proposed distributed method is
that it requires each node to make independent decisions locally
for data aggregations, thus naturally enhance robustness and
efficiency against network and data load dynamics. Extensive
numerical results are presented to confirm the validity of the
proposed approach.

I. INTRODUCTION

Large information networks such as wireless sensor net-
works (WSN) are increasingly employed in a variety of
applications, ranging from healthcare and education to military
operations. The development of complex network technology,
the growth of smart environments, and the combination of
communication devices equipped with various sensing capa-
bilities generate huge amount of data. These data must be
transferred and processed to create useful information for
either single or multiple end-users often via multi-hop trans-
missions. However, practical constraints on the network, such
as communication range, bandwidth limitations, and dynamic
environments cause the transferring of the huge volume of
data generated from many sources to be very challenging, if
not impossible. However, In-Network Processing (INP) has
opened a new door to possible solutions for optimizing the
utilization of network resources. INP methods primarily aim
to aggregate (e.g., compression, fusion and averaging) data
from different sources with the objective of reducing the data
volume for further transfer, thus reducing energy consumption
and increasing the network lifetime [1].

Data aggregation approaches may be classified as lossy and
lossless. For lossy data aggregation, packets with data coming
from different sources are aggregated into a single packet by
intermediate nodes along the communication path. However,
the original data cannot be fully recovered from the aggregated
packet in contrast to that of lossless data aggregation which it
is possible to fully extract the original data from aggregated
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data packet. In this work, we do not focus on the data aggre-
gation function. Instead, we assume that aggregation process
is performed by a known aggregation function in the network.

When INP is applied in an information network, it is crucial
to consider how such data processing affects the quality of
information (QoI) at the receiving end, which is represented
by multi-dimensional metrics [2], e.g., information accuracy,
completeness, reliability and timeliness. How INP should be
carried out for satisfactory QoI at the user level remains an
open research issue. For example, [3]–[6] investigate the QoI
and introduce various models to maximize a utility function of
QoI. [7] introduce a distributed model to satisfy the user QoI
requirement. Nichols [8] introduces a centralized optimization
model utilising the QoI notion to prioritize traffic in directional
network. However, they do not consider INP or the impact of
further INP process on aggregated information.

Eswaran et al. [9] apply the network utility maximum
(NUM) framework to determine the optimal compression and
fusion factors for INP and which nodes in a path serve as the
optimal places for performing the data processing. However,
they do not include realistic QoI attributes in their work, as
they assume a utility function to represent all of the attributes.
Chen et al. [10] explore joint scheduling and data aggregation
by assuming that full aggregation is always possible with an
additive utility. Silberstein et al. [11] present a fully distributed
method for implementing many-to-many aggregation in a
sensor network that minimizes the communication cost by
optimally balancing a combination of multicast and in-network
aggregation. However, they only consider binary aggregation
options, i.e., no aggregation and full aggregation which may
deteriorate the QoI at the end user. Both [10], [11] use
integer programming techniques for making data aggregation
decisions. However, they do not consider any QoI metrics.

Considering dynamic approaches, Kennedy et al. [12] fo-
cuse on the data itself for designing a dynamic in-network
data aggregation protocol, while Jiao et al. [13] propose their
full data aggregation protocol based on dynamic routing, in
which data packets are sent to the nodes with the longest
data aggregation queue. However, again they did not take
into account any QoI metrics. Anandkumar et al. [14] take
a stochastic approach to model an energy-efficient distributed
inference in a random fusion network. They analyse the spatial
correlation among nodes presented by a dependency graph.
However, the inference policy in [14] still needs the centralized
network information and they do not consider any QoI metric.

Our work consists of two technical components: QoI and
INP. Although many studies have been conducted on both
of these technical issues, a gap still exists in the research
regarding how to dynamically control INP to satisfy QoI
requirements specified by the end users. For this reason, the978-1-4799-4912-0/14/$31.00 c© 2014 IEEE



objective of this paper is to introduce a distributed framework
for INP where intermediate nodes aggregate data dynamically
for energy efficiency, while satisfying user QoI requirements.

Providing a realistic QoI function and designing a method
such that end user can specify a required QoI and retaining the
QoI in a satisfactory level while processing and transferring
them are very challenging especially in a high dynamic and
complex network such as WSN. In such dynamic environment,
fully distributed methods are very desirable due to the ability
to readily adapt to the network changes and constraints and
deal with huge amount of data generated in this environment.
In sharp contrast to [3]–[14], we concentrate in this work on
designing a fully distributed framework to facilitate controlling
of INP process at intermediate nodes while satisfying the
end user requirements. For this purpose, as a starting point,
we consider the amount of information that user needs to
receive as a QoI parameter. Note that required amount of
data can present the accuracy metric of QoI [3]. In addition,
a realistic objective function, the total energy consumption of
the network is taken into account. We prove that under a set of
sufficient assumptions, the INP process can be fully distributed
while performing closely to the optimality.

The rest of the paper is organized as follows. We formulate
the problem in Section II. In Section III, the proposed dis-
tributed framework is presented and the evaluation results and
conclusions are presented in Sections IV and V, respectively.

II. PROBLEM FORMULATION

A. Scenario, QoI metrics and Assumptions
As an example, consider a WSN monitoring the level of

chemical contamination in an area. A user approaches the area
and wants to know the level of chemical contamination of a
specific part of the area. The user sends a query to the network
specifying his area of interest and the amount of information
that user needs to receive (e.g., number of data packets) as a
QoI requirement threshold.

We acknowledge that beside the required amount of infor-
mation, other parameters of QoI may also be important in this
scenario (e.g., timeliness). The significance of this paper is
that we propose the first efficient approach for designing a
fully distributed and QoI-aware framework in the field of INP.
The problem with more complicated parameter settings and
assumptions will be left to our future work.

We assume that a data aggregation tree (of nodes over which
the requested information is processed and routed toward
the end user) is formed after the user queries the network.
Furthermore, we assume that the total energy consumption
of a node consists of the energy spent in receiving pR ,
computing pC and transmitting pT its data. Among these
operations, data transmission typically uses more energy than
the others [9]. Data generated in the information networks
has a large amount of redundancy due to the spatial and
temporal correlation among sensors. Therefore, it is possible
to aggregate (e.g., compress, fuse, average) data as a means of
reducing energy consumption for transmission and reception,
without sacrificing QoI for the end users. On the other hand,
the more the data are aggregated, the higher the computational
energy cost is. Therefore, an energy trade-off exists among the
energy that each node spends for data reception, transmission
and computation.

Let the data processing algorithm in use aggregates received
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Fig. 1. (a) INP architecture; (b) Aggregation tree formed in responding to
the query by the end user.

data into a smaller volume of data for transmission at each
node. Therefore, a key for the energy trade-off is the data
reduction rate (denoted by δ between 0 and 1), which is the
ratio of the amount of aggregated data to that of all input
data at a node. The optimal energy trade-off is determined by
choosing the optimal reduction rate at each node.

B. A global optimization problem
We formulate the problem of finding the optimal data reduc-

tion rates at all nodes as an optimization problem. Specifically,
the optimal reduction rate at each node minimizes the total
energy consumption in the whole network, while satisfying the
user QoI requirements. Our goal is to choose the data reduction
rates at all nodes involved in order to minimize the total energy
consumption, while ensuring that the amount of aggregated
data for the end user exceeds a specified QoI threshold γ. To il-
lustrate, Fig. 1 (a) sketches the INP architecture where the gray
box denotes the network of interest, and Fig. 1 (b) presents
the corresponding aggregation tree along which the data from
source nodes are routed and processed toward node r and
finally to the end user. The optimisation problem is as follows:

min
{δi}

n∑
i=1

pi(δi, yi)

s.t. δryr ≥ γ
, (1)

where n is the total number of nodes in the network aggrega-
tion tree and pi(δi, yi) is the total energy consumption which is
a function of the volume of input data yi and the data reduction
rate δi at node i. Since node r is responsible for delivering
the required information to the user, the constraint yrδr ≥ γ
specifies the minimum volume of aggregated data that the user
requires from all source nodes in the area of interest, shown
in Fig. 1 (a).

We refer to (1) as a global optimization (GO) problem
where each node in the network has the optimal data reduction
rate in order to minimize the total energy consumption while
satisfying the users QoI requirement. Even though the problem
has only a single constraint, data reduction rate must be chosen
optimally at every node so that the constraint for end user can
be satisfied.

The GO problem in (1) is a variant of 0/1 knapsack problem
[15]. We investigate on the hardness of the GO problem
under two different scenarios. In the first scenario, we assume
that computation cost at each node is far more expensive
than its transmission cost and in the second scenario, the
transmission cost is considered to be far more expensive than
the computation cost at each node.

Under the first scenario, the GO problem is NP-hard, since
0/1 knapsack problem can be reduced to the GO problem as
follows. Assume a single level aggregation tree rooted at node
r as an instance of the GO problem (see Fig. 2). The total



energy consumption of node i consists of the energy spending
in receiving pR, computing pC and transmitting pT of its data.
Without lose of generality, assume pR = 0. In addition, if node
i chooses to forward all (δi = 1) or none (δi = 0) of its data,
the computation cost at node i equals zero. Under the first
scenario, it is beneficial for node i to forward all or none of
its data instead of aggregating them. That is, node i only has
two choices of sending all (δi = 1) or none (δi = 0) of its data;
Therefore, the only effective energy consumption cost will be
transmission cost. Since node r is responsible for delivering
information received from its children (i.e., yr =

∑
i∈Cr

δiyi,
where Cr is a set of node r’s children) to the end user, its
reduction rate must be equal to one (δr = 1), otherwise the
constraint in the GO problem will not be satisfied. The trans-
mission energy cost is relative to the amount of information
that node i sends (e.g., pT = αiyiδi). Therefore, the problem
is to find a set of δi ∈ {0, 1} such that

∑
i∈Cr

αiyiδi attains
its minimum value, while

∑
i∈Cr

yiδi ≥ γ, where αiyi and yi
are value and weight of item i respectively. Therefore, if there
exists a deterministic algorithm that can solve the instance
of the GO problem in polynomial time, then 0/1 knapsack
problem is also solvable, contradicting the prior-knowledge of
0/1 knapsack problem being NP-hard.

In the second scenario, given that transmission cost is far
more expensive than computation cost, the GO problem con-
verts to the fractional knapsack problem. However, although
the greedy approach [15] or dynamic programming method
can be applied to approximate the global solution for a single
level data aggregation tree, the interdependency among nodes
when a multi-level data aggregation tree is considered impedes
use of these techniques in our problem. In general, the GO
problem is an NP-hard problem, since the probability of having
the first scenario or multi-level data aggregation tree is not
zero.

Therefore, intractability and interdependency among nodes
motivate the need for a distributed method where no cen-
tralized operator is required and complex network structures,
such as multi-level data aggregation tree shown in Fig. 1 (b)
can be handled easily. To this end, we will propose our
fully distributed framework, a solution to the GO problem.
Proposed solution performs closely to the optimality with
O(n) complexity which not only provides solution to the
intractable GO problem where the first scenario and multi-
level data aggregation tree structures are considered, but also
improves on the complexity of well-known greedy technique
complexity O(n log n).

III. DISTRIBUTED, ENERGY-EFFICIENT AND QOI-AWARE
APPROACH

Given intractability of the GO problem, high interdepen-
dency among nodes and the desirability of fully distributed
solutions for our applications, we introduce our model the
Local Constrained Optimization framework (to be referred to
as LCO model) as follows:

n∑
i=1

min
δi

pi(δi, yi)

s.t.
δiyi ≥ γ
yi =

∑
j∈Ci

δjyj , for i = 1, ..., n

. (2)
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Fig. 2. An instance of the GO problem.

The significance of introducing (2) is explained as follows.
It turns out that under a reasonable set of assumptions, the
order of the minimization and summation operators in (2)
can be switched, while yielding the same optimal solution as
follows.

min
{δi}

n∑
i=1

pi(δi, yi)

s.t.
δiyi ≥ γ
yi =

∑
j∈Ci

δjyj , for i = 1, ..., n

. (3)

We refer to (3) as Constrained Optimization (CO) problem.
While (3) and (1) show a global optimization model, the
difference between the CO problem (3) and the GO problem
(1) is that in the CO problem, each node has its own QoI
constraint, while the GO problem has only one constraint for
the root node r.

It is important to note under the following set of assump-
tions the LCO model can provide exact solution to the CO
problem. That is, the total energy consumption in the network
can be minimized by selecting the optimal data reduction rate
at each node based on local information at each node, thus
introducing a fully distributed optimization system! We shall
develop conditions (assumptions) under which the LCO leads
to such a global optimal solution as follows.

Let pi denotes the total energy consumption of node i as
pi = piR + piC + piT , (4)

where piR, piC and piT denote the energy spent in receiving,
aggregating and transmitting data by node i, respectively.
piR is a function of the amount of data yi that node

i receives from its children nodes. let eR be the energy
consumed in receiving one unit of data. So, we assume

piR = f(yi) = eRyi. (5)
Consider that data aggregation at node i yields a data

reduction rate of δi. Given the amount of received data yi
at node i, the energy consumption for transmission piT at the
node i is assumed to be

piT = g(yi, δi) = eT yiδi, (6)
where eT is the transmission energy consumption per unit of
data.

Typically, the greater degree of data aggregation (i.e., the
smaller amount of aggregated data), the higher the energy
consumption for computation at the node. Therefore, piC
is assumed to be a function of δi and yi. Furthermore, the
influence of the reduction rate δi on piC is highly dependent
on the type of data being aggregated, the aggregation
functions and the characteristics of computation hardware.
For instance, processing high-quality video consumes more
energy than processing data such as temperature or humidity
values. To adequately capture the dependence, the energy
consumption for computation at node i is assumed to be

piC = k(yi, δi) = eCyiqi(δi), (7)
where eC is the energy consumption for processing one
unit of data, yi is the amount of received data and qi(δi) is
a scaling function for energy consumption of computation
which is a decreasing differentiable function of the reduction
rate δi. For example, qi(δi) = ( 1

δi
− 1) for δi > 0.



Furthermore, as shown in the data aggregation tree in
Fig.1 (b), the amount of data that node i receives is

yi =
∑
j∈Ci

yjδj , (8)

where Ci denotes the set of children nodes of node i.
There may be a concern that the linear model in (5) to

(7) is unable to adequately adjust to all the characteristics
of communication and computation in the network (e.g.,
coding and processing functions); however, as a general
assumption in [9], [16] we assume a linear model here. We
will investigate non-linear cost models in our future work.

With these assumptions, we present the following theorem
which introduces sufficient conditions under which the order
of the minimization and summation operators in (3) can be
switched while preserving optimality.
Theorem. Given the energy consumption represented by (5)
to (7) and the amount of received data in (8) for each node
in a single level data aggregation tree, the LCO model (2) is
equivalent to the CO (3) as follows:

min
{δi}

n∑
i=1

pi(δi, yi) =

n∑
i=1

min
δi

pi(δi, yi)

s.t. δiyi ≥ γ s.t. δiyi ≥ γ
yi =

∑
j∈Ci

δjyj yi =
∑
j∈Ci

δjyj

for i = 1, ..., n for i = 1, ..., n

. (9)

Proof. Duo to space limitation we develop our proof for a
single child. The same argument will be applied for multiple
children case. Considering the the LHS of (9), we have

min
{δi}

k+1∑
i=k

pi(δi, yi)

s.t. δkyk ≥ γ
δk+1yk+1 ≥ γ
yk = δk+1yk+1

. (10)

Substituting (4) to (7) into (10) and forming the Lagrangian
give the following:

L =yk(eRk + eCkqk(δk) + eT kδk − µkδk) + µkγ

+ yk+1(eRk+1 + eCk+1qk+1(δk+1) + eT k+1δk+1

− µk+1δk+1) + µk+1γ + λ(yk+1δk+1 − yk).
(11)

Considering λ as a complicating variable, (11) can be
reorganized as follows:

L =
(
yk(eRk + eCkqk(lk) + eT kδk − µkδk) + µkγ − λyk

)
+
(
yk+1(eRk+1 + eCk+1qk+1(δk+1) + eT k+1δk+1

− µk+1δk+1) + µk+1γ + λyk+1δk+1

)
.

(12)
If we fix the λ, (12) becomes decomposable in δk, µk and
δk+1, µk+1, i.e., L = fk(δk, µk, λ) + fk+1(δk+1, µk+1, λ).
Therefore, we have

min
δk,δk+1,µk,µk+1

L = min
δk,µk

fk(δk, µk, λ)

+ min
δk+1,µk+1

fk+1(δk+1, µk+1, λ).
(13)

As a result we have
L(λ) = gk(λ) + gk+1(λ), (14)

where
gk(λ) = min

δk,µk

(
yk(eRk + eCkqk(δk) + eT kδk − µkδk)

+ µkγ + λyk
)
.

gk+1(λ) = min
δk+1,µk+1

(
yk+1(eRk+1 + eCk+1qk+1(δk+1)

+ eT k+1δk+1 − µk+1δk+1) + µk+1γ + λyk+1δk+1

)
.

In order to calculate λ, we need to form the dual problem as
follows. max

λ
(gk(λ) + gk+1(λ)). (15)

We can use the sub-gradient method to calculate the
optimal λ. In this method, the dual variable λ is updated by
the following iteration step:

λm+1 = λm + am(5gk(λ) +5gk+1(λ)), (16)
where am is the step size and m indicates the number of
iterations.

The sub-gradient of gk at λ is −yk, and the sub-gradient
of gk+1 at λ is +yk+1δk+1. Substituting the sub-gradients
into (16) yields λm+1 = λm+ am(yk+1− ykδk+1). However,
λm+1 = λm due to the tree structure and the assumption intro-
duced by (8). That means λ never changes in the iteration func-
tion and initial λ0 is the optimal λ for dual problem. Therefore,
it can be treated as a constant. As a result, the minimum values
and parameters of gk and gk+1 are not effected by λ and
therefore, gk and gk+1 can be calculated separately. Therefore,

min
{δi}

k+1∑
i=k

pi(δi, yi) = min
δk

pk(δk, yk) + min
δk+1

pk+1(δk+1, yk+1).

(17)
�

As a result of the theorem, the optimal solution for (3)
under assumptions (4) to (8) can be obtained in a distributed
manner with linear time complexity where each node selects
its data reduction rate to minimize its energy consumption
based on local information forming a fully distributed
optimization solution.

The importance of introducing the LCO model is that it can
provide very close approximate solution to the GO problem.
Although imposing the individual constraint at each node
may lead to consuming more energy in the network, under set
of practical network settings and assumptions the LCO model
performs very close to the optimality. In the next section,
we evaluate and verify the performance of the proposed
framework, LCO, under different parameter settings.

IV. EVALUATIONS

In this section, we present results for evaluating distributed
LCO modelled in (2). We assume that the full binary ag-
gregation tree rooted at node 1 is formed for the request of
information by a user. The full binary tree is considered for
the purpose of model verification. However, the LCO model
can be applied to any K-ary aggregation tree. The function
qi(δi) =

1
δi
−1, δi > 0 is considered to reflect the impact of the

data aggregation process on energy consumption. The packet
size and the data transmission rate are set 128 bytes and 250
kbps, respectively. We consider two different settings. In the
first setting, Case 1, the energy consumption for data reception,
transmission and computation are assumed to be equal (i.e.,
eR = eT = eC = 0.00024J) and in the second setting, Case 2,
ec = 1

2eT (i.e., eR = eT = 0.00024J, eC = 0.00012J). QoI
threshold γ is assumed to be 5 data packets for both cases.
We compare the LCO results to the optimal value of global
optimization (GO) in (1).

Fig. 3 reports the total energy consumption of the network in
these two cases. Imposing individual constraints on each node
and forcing them to satisfy the user QoI threshold leads to a
gap between energy consumption of the GO and LCO models.



Fig. 3. Impact of computation and transmission cost on total energy
consumption.

Fig. 4. Total energy consumption comparison of 127 nodes under three
different settings.

In Case 1 which is an extreme worst case, nodes under the
LCO model choose to send almost all of their data due to the
expensive computation cost (i.e., select a large data reduction
rate), and thus all of them have to transmit huge volume of
data. However, in the GO model, due to the centralized and
global decision, each node achieves the optimal reduction rate
and consumes a less amount of energy than the LCO model.
In Case 2, in spite of forcing individual constraints on each
node, the LCO model performs very close to the GO value.
The reason for this exciting result is, due to less expensive
computation cost, each node aggregates more data and as a
result, consumes less energy for data transmission.
Remark: In contrast to Case 1, parameters applied to Case
2 represent a practical network setting, i.e., computation cost
is generally less expensive than transmission cost. Therefore,
under a general network setting presented by Case 2, the LCO
performs very close to the global optimal value.

Moreover, we examine the heterogeneous case where nodes
are not identical in the LCO model. We consider the setting
of (eT = eR = 0.00024) for all nodes and change the eC
parameter for Intermediate Nodes (INs) and Leaf Nodes (LNs).
In Fig. 4, the bar labelled PIN (Powerful Intermediate Node)
shows the result when eC of INs are less expensive than that of
LNs. It can be clearly seen that the LCO performs very close
to the optimality provided by the GO. This is because, INs can
gather more data and aggressively reduce data due to the less
expensive computational cost. The bar labelled PL (Powerful
Leaves) presents the result related to the inverse setting of PIN
(i.e., eC of LNs are less expensive than that of INs). The HN

(Homogeneous Node) bar shows the result of having homo-
geneous nodes under parameter setting of Case 2 experiment.

As the results illustrate, the LCO model shows a promising
performance relative to the GO value. We also analysed the
performance bound of the LCO. However, due to the space
limitation, we omit this result here.

V. CONCLUSION

We formulated the problem of in-network processing (INP)
as a non-linear optimization problem in order to minimize
the total energy consumption by all associated nodes while
satisfying QoI requirements. Since this problem cannot be
solved efficiently by existing approaches due to intractability
and high interdependency among nodes, these inspired a
fully distributed system for our applications, for which we
introduced a distributed LCO framework, a Local Constrained
Optimization solution. Under a set of reasonable assumptions,
we have proven that the optimal data reduction rate can be
determined by each node based on local information in a
fully distributed manner. Computer simulations have been
conducted to illustrate the effectiveness of the LCO frame-
work. Numerical results show that the new framework, LCO,
can perform very close to the global optimum for parameter
settings where communication costs more than computation.

We plan to extend the framework to consider information
requests from multiple users as well as other QoI parameters.
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