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Abstract—In heterogeneous networks (HetNets), the load be-
tween macro-cell base stations (MBSs) and small-cell BSs (SBSs)
is imbalanced due to transmit power disparities and ad-hoc
deployment of SBSs. This significantly impacts the system per-
formance and user experience. Associating more users to the
SBSs is an effective way to solve this problem. In this paper,
we formulate the user-BS association problem as a distributed
optimization problem with proportional fairness as the objective.
Specifically, we propose a novel distribute algorithm based
on the belief propagation (BP) method to solve the user-BS
association problem via iteratively message passing between the
users and BSs. Also, we develop an approximation calculation
in the BP method to reduce the computational complexity and
transmission overhead of message passing. Simulation results
show that the proposed algorithm well approaches the optimal
system performance (by exhausting search) with low complexity
and fast convergence.

I. INTRODUCTION

The concept of LTE-Advanced-based HetNets has been
proposed as a promising solution to meeting the explosive
growth of data demand. It improves spectral efficiency per
unit area by increasing the cell density and provides a uniform
experience to users anywhere inside the cell. HetNets are
composed of regularly deployed MBSs and overlapped SBSs
(like picos, femtos and relays). These low-cost and flexibly
deployed SBSs eliminate the coverage holes and increase the
capacity in hot-spots. In HetNets without appropriate user
association, a majority of users are normally connected to
MBSs since they have larger transmit power compared to
SBSs. This unbalanced load results in sub-optimal system
performance and highly limits the benefits of cell splitting.

There have been many efforts in open literature toward this
load-balancing problem. One of the effective solutions is ad-
justing the coverage of small cells to make more users connect
to SBSs. Cell range expansion studied for LTE Advanced
[1] expands the coverage of small cells by adding a bias to
the received signal from SBSs. In [2], the authors propose a
‘Picocell First’ scheme to associate users to a SBS as long
as the signal-to-interference-plus-noise ratio (SINR) is larger
than a tuning parameter.

Meanwhile, many works formulate the user association
problem as an optimization problem. Different kinds of objec-
tive functions are adopted in related literature. For instance,
[3] chooses max-min fairness, [4] utilizes global proportional

fairness and proves it to be NP-hard, [2] and [5] transform
global proportional fairness to local proportional fairness, and
[6] encompasses several different utility functions.

In this paper, we formulate the user association problem as
a distributed optimization problem by utilizing proportional
fairness as the objective. Since the brief propagation algorithm
has showed its advantages to solve distributed optimization
problems [7], [8], we aim at optimizing user association via
BP in an effective and efficient manner. We first decompose
the global proportional fairness to local ones. Then we develop
a novel BP algorithm to address the formulated optimization
problem in a distributed manner.

The main contributions of this paper are summarized as
follows. (1) We develop a factor graph to model the user-
BS association problem, which decomposes the centralized
network-wide optimization into the maximization of local
functions at individual BSs. (2) We propose a novel distribute
algorithm based on the BP method via iteratively message
passing between the users and BSs. (3) We develop an approx-
imation scheme to reduce the computational complexity and
transmission overhead of message passing in the BP algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider the downlink in an LTE-Advanced
HetNet composed of MBSs, pico-cell and femto-cell BSs. The
pico-cell BSs are assumed to transmit at a much lower power
than MBSs, while the transmit power of femto-cell BSs is the
lowest. Some femto-cell BSs are considered be closed femtos,
that is, only allowing access to their closed subscriber group
(CSG) members. We make the following two assumptions:

1) Each user can only associate with one of the BSs.

2) Channels between users and BSs are considered to be
static during the optimization process of the association.

Let B denote the set of BSs and U denote the set of users.
Then the received SINR of user ¢ € U from BS j € B can be
written as
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where P; is the transmit power of BS j, Ny is the power
of additive white Gaussian noise, and g;; is the channel gain
between the user ¢ and BS j that includes the path loss, shadow



fading and antenna gain. Then, the spectral efficiency +;; can
be written as ;; = log (1 + SINR;;).

We denote the user association variable by x;;, where z;; =
1 if user 7 is associated with BS j, and x;; = 0 otherwise.
Also, we denote by I the bandwidth of BSs, by ¢;; the serving
time and by I7;; the rate that the user 4 obtained for BS j. So,
the effective transmission rate of user ¢ can be given by:
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We assume that all users have equal priority. Then the BSs
offer the same service to each user. Let the number of users
associated with the BS j be N;, and we have ¢;; = N% We
select proportional fairness as our global objective function,
which has been proved to be associated with the logarithmic

utility function [9]. We can get the problem formulation as
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III. FACTOR GRAPH MODEL AND BP ALGORITHM

In this section, we introduce the BP algorithm to solve this
optimization problem. In order to adopt this message passing
method, we first develop a factor graph model. Then we trans-
form the optimization problem into a marginal distribution
estimation problem, which can be solved by BP.

A. Factor Graph Model for Association Problem

We develop a factor graph model G = (V, E) to represent
the user association problem, as shown in Fig. 1. The vertices
V' consist of factor nodes (each BS’s local utility function)
and variable nodes (each user’s association variable). If the
received signal at the user ¢ from the BS j is no less than the
required signal strength, and BS j allows user 7 to access it,
then an edge (i,j) € E exists between them. We use H(v) to
denote the set of neighboring nodes of a node v.

1) Factor Nodes: Due to the one-user-one-BS constraint,
the optimization of a network-wide system utility can be
decomposed to the maximization of the local function in each
BS. Mathematically, we have
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where f; is the local utility function, and
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Therefore, in our model, the factor node corresponding to the
BS j represents the local utility function f;.
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Fig. 1. A Factor Graph Model of User Association.

2) Variable Nodes: The variable node, denoted by the set
x; = {x;n}, h € H(i), represents the association variable
for the user 7. This is because the optimization problem can
be viewed as the optimization of x; from the perspective of
the user i. We take USER3 in Fig. 1 as an example. USER3
can receive signals from BS2 and BS3. Due to the constraints
(4a) and (4c), the association variable x3 for USER3 has two
possible values, i.e., 1) x3 = [1,0], that is, USER3 connects
to BS2 instead of BS3; 2) x5 = [0, 1], that is, USER3 chooses
BS3. We define the set of the variable node in the factor graph
as X = {Xq,X2, XNy |-

Based on the above analysis on the factor graph model, the
network-wide optimization problem in (5) can be rewritten as:
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where X7 (;) represents set of all the user association variables
of those potential users connected with BS j.

B. Transform of Optimal Problem

To transform the optimization problem into a marginal
distribution estimation that can be solved by the BP, we
follow the approach in [7] and define a probability distribution
function based on the utility function in (7). That is

p() = 7 exp (WF (x)). ®

where p is a positive number, and Z is a function of p that
is used to normalize this expression. According to [7], the
result of large deviations shows that when u — oo, p(x)
concentrates around the maxima of F (x), that is,

lim E (x) = arg maxF (x) )
U—r 00 X

where E (x) denotes the expectation of variable x. In our
optimal problem, E (x) = {E (x1) ,E (x2),--- ,E (Xn,,) }-
From Eq. (9), once we obtain E (x), we will have a good
estimation for the maximization of F'(x). Furthermore, to
obtain the elemnt E (x;) in E (x), we need to calculate the
probability mass function (PMF) with respect to each x;,
denoted by p(x;), which can be solved by the BP algorithm.



C. Message Iterations in BP algorithm

Generally in the BP algorithm, the belief messages rep-
resent the estimation of marginal distribution of variables.
Specifically in our case, factor node f; only cares about
one association parameter x;; in the variable x;. That is,
factor node f; only updates the probability of the value
X, = [z;, = 0,2;; = 1], h € H(4)\j, which is denoted by
Pr(z;;). In other word, the message passing along the edge
(i,7) represents the probability that the user ¢ selects the BS
7.

1) message from user to BS: In the iteration ¢, user i tells
its possible serving BS j the probability of choosing it:
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This message is based on the messages sending from other
possible serving BSs except BS j. Here, @; (x;) is the nor-
malization function which make sure . P(x;=1) = 1.

leH
Obviously, we have m}_,; (x;; = 0) = 1 f( ) mi_; (xi; = 1).

Before the iteration begins, the user does not have any
information from the network. Therefore the initial message
can be set uniformly. For example, the user ¢ has 3 serving
BSs, the initial messages can be set as 1/3 for each BS.

2) message from BS to user:
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where the second equation is from Eq. (8).

From Eq. (11), we can see that message is connected to
the objective function of BS j when user ¢ makes certain
association choice on whether x;; equals to 1 or ). Based on
the two values of x;;, we have
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D. User Association Decisions

We assume there are 7 iterations in our BP alogrithm. After
T iterations, the probability that the user ¢ associates with BS
j can be calculated as

P(ziy=1)= H mj_>7 (i =0).
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Based on Eq. (14), association decision can be made, i.e.,
user ¢ selects the BS which has the maximum posterior
probability among all the association options as its serving
BS. After the association choices for all the users in the entire
network are determined, the maximization of system utility
function can be achieved.

T
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IV. PRACTICAL IMPLEMENTATION DISCUSSION
A. Approximation

In the message iterations above, the BS should send two
messages (Eq. (12) and (13)) to each of its potential users. The
calculation of them needs 2/7())I=1 combination cases of its
possible users, which leads to large amount of computation.
Besides, the message overhead is heavy if the BS sends 2
messages to each of it potential users.

Here we propose an approximation process to reduce the
computational complexity and make the messages transmit in
a broadcast manner. The likelihood ratio % can be
used to replace the two messages form BS j to user i, be-
cause Eq. (10) only depends on this ratio after normalization.
To reduce the complexity, we make approximations on the
likelihood ratio as
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Here, we assume p = 1 here, since it is a constant and does
not affect the approximations. And we use the approximation
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that E (exp (z)) = exp (E (x)) and log

log ( > oy
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From Eq. (15), we can see that the likelihood ratio sent from
BS j to user ¢ can be replaced by E [ > ;5 |, since the
leH(j)



parameters W, ;; and x;; are all known to user . Thus,

after approximation, the belief message transmitted by BS

j is written as m} = 37 mj ; (x;; = 1), which can be
leH(j)

transmitted in a broadcast manner. The likelihood can be easily

calculated by use as Eq. (15).

B. Discussion for the Dynamic Case

The wireless cellular network is dynamic, i.e. channel gains
vary, users arrive in, hand off and so on. In these cases, new
user-BS association decisions are required by user equipments.
We call the users who need to make or renew their association
decisions as ’new users’, oppositely, other users as ’existing
users’.

Compared with the static BP algorithm that involves all
users, it is practical to consider the dynamic case with only
assigns new users to certain BS without changing the associa-
tion of existing users. However, the information about existing
users are very important, because they contribute to the current
load and utility of this BS. For simplicity, in our dynamic
algorithm, the number of existing users in BS j, denoted by
K.

In this case, the real-time factor graph only consists of
these new users and their optional BSs. And all steps is the
same except the broadcasting value of E (Y'), which should
be updated as E(Y) = K; + > py;-.

k

V. NUMERICAL AND SIMULATION RESULTS
A. Parameters

We consider a HetNet which consists of a macro cell, and
several pico cells, with a square area of 700m. The total
users in this system is 100. We analyze the uniform layout,
i.e., the pico-cell BSs and users are uniformly distributed
in the HetNet. Detail physical layer parameters using in the
simulation are listed in the following Table I [10].

TABLE 1
Network Parameter
Parameter Macro Cell Pico Cell
Power 43dBm 30dBm
Carrier Frequency 2GHz
Antenna Gain 15dBi/macro cell 5dBi/pico cell
Minimum Distance 35m 10m
Noise Power -104dBm
Path loss 128.1+37.61g(d/1000) | 140.7+36.71g(d/1000)
Shadowing s.d 8dB 10dB
Minimum SINR -10dB

B. Other User Association Rules for Comparison

We also simulate some existing association rules and com-
pare them with the proposed BP association algorithm. A brief
description of them is given as follows:

1) Max-SINR (Max-Received Signal Power): User chooses
to associate with the BS ;5 which provide the strongest down-
link received signal power.

2) Range Extension (RE) in [11]: User associates with the
BS that has minimum path loss between them. It can be viewed
as a special case of CRE.

3) Near-Optimal results: The exhausting search is used to
find out the optimal user-association solution. Due to the
limit of MATLAB’s computation capability, we adopt a pre-
processing method. That is, the users who receive stronger
signal from any SBS than the MBS are pre-judged to associ-
ated with the SBS and excluded from the exhausting search.
From numerous tests, the result obtained by this lossy pre-
processing is proved to extremely close to optimal result.

C. Performance Metrics for Simulation

The performance metrics studied in our paper are as follows.

1) Percentage of users offloaded to small-cells: this value
reflects the load-balancing performance.

1) Geometric Mean Spectral Efficiency: it is proved that
maximizing our object function is equivalent to maximizing

the geometric mean rate of users, that is, N\/Hi]\; R;, where
N denote the total number of all users in this network.
2) Minimum Spectral Efficiency: the minimum spectral
efficiency among all users, that is, min {R;}. It reflects the
1

fairness among users from another perspective.

D. Simulation Results
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Fig. 2. Comparison of small-cell User Association Statistics in Two Layouts.

Fig.2 shows the percentage of users in the system which
associate with the pico-cell BSs based on three different
association algorithms. We consider both 4 pico-cell and 8
pico-cell cases. As we know, RE encourages users near the
pico-cell BSs to connect with them, because its criterion is
related to the distance between users and BSs. From the figure,
our BP algorithm achieves the best effect among the three
algorithms. In the following, we will show the the advantages
of the BP in other performance metrics in a 8 pico-cell case.

Fig. 3 depicts the CDF curves of the geometric mean
spectral efficiency for different user association schemes. Both
the RE and BP greatly increase the geometric mean spectral
efficiency in the HetNet, i.e, the proportional fairness of the
system. Also, the BP algorithm has much better performance
than the RE. This is because the BP algorithm is the so-
lution for the optimization problem, while RE only focuses
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on increasing the number of users associated with SBSs.
Most importantly, the result of the BP algorithm extremely
approaches the near optimal result achieved by exhausting
search with pre-process.
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Fig. 4. Minimum Spectral Efficiency With Three Association Rules.

Fig.4 compares the minimum spectral efficiency. RE does
not perform better than Max-SINR, while our BP algorithm
has almost three times gain compared with them and is close
to the near optimal result. Based on the above simulations,
we can see that the BP algorithm not only improves the
average rate of users, but also guarantees the baseline of users’
experience.

Fig. 5 shows the relative error USJ Yd  where Us and Uy
denote the utility using static algorithm and dynamic algorithm
respectively. This relative error reveals the gap between the
dynamic and static algorithms. We can see the gap between
them increases with the increasing number of new users.
However, this gap is still very small even if the percentage
of new users increases to 40 percent.

VI. CONCLUSION

In this paper, we developed a framework based on the BP
algorithm to solve the user association problem in HetNets.
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This distributed algorithm achieves a good result in load-
balancing, approaches the optimal result of maximizing the
system’s proportional fairness, and improves the minimum of
user rate. Meanwhile, it is proved to be low-complexity and
quick convergence, and it can easily satisfy the one-user-one-
BS constraint. The effective dynamic algorithm makes our
association strategy more practical.
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