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Abstract—We investigate the spectrum sharing problem of a
radio frequency (RF)-powered cognitive radio network, where
a multi-antenna secondary user (SU) harvests energy from RF
signals radiated by a primary user (PU) to boost its available
energy before information transmission. In this paper, we con-
sider that both the PU and SU are rational and self-interested.
Based on whether the SU helps forward the PU’s information,
we develop two different operation modes for the considered
network, termed as non-cooperative and cooperative modes. In
the non-cooperative mode, the SU harvests energy from the PU
and then use its available energy to transmit its own information
without generating any interference to the primary link. In the
cooperative mode, the PU employs the SU to relay its information
by providing monetary incentives and the SU splits its energy for
forwarding the PU’s information as well as transmitting its own
information. Optimization problems are respectively formulated
for both operation modes, which constitute a Stackelberg game
with the PU as a leader and the SU as a follower. We analyze
the Stackelberg game by deriving solutions to the optimization
problems and the Stackelberg Equilibrium (SE) is subsequently
obtained. Simulation results show that the performance of the
Stackelberg game can approach that of the centralized optimiza-
tion scheme when the distance between the SU and its receiver
is large enough.

I. INTRODUCTION

Cooperative cognitive radio (CR) technique has been treated
as a promising technology to improve the performance of
CR networks [1]. The basic idea is that the secondary user
(SU) helps the primary user’s (PU’s) data transmission, and in
return the SU can transmit its own information by utilizing the
PU’s spectrum. To further enhance the spectrum efficiency of
cooperative CR networks, the idea of implementing multiple
antennas at the secondary transmitter (ST) has been proposed
and studied in [2], [3], which can provide additional degree
of freedom by enabling the ST to relay the PU’s information
in addition to transmitting its own information concurrently.

The performance of cooperative CR systems may be largely
constrained if the SU has limited energy to assist the PU’s
data transmission. Powering the cooperative CR network with
radio frequency (RF) energy provides a spectrum-efficient and
energy-efficient solution [4]. In a RF-powered cooperative CR
network, with the embedded energy harvesting component, the
SU is enabled to harvest and store energy from RF signals
radiated by the PU and thus has more opportunities to help
the PU’s data transmission. The authors in [5] proposed an
information and energy cooperation scheme for CR networks,
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where the PU and SU are cooperative with each other and the
PU can not only send information for relaying but also feed
the SU with energy via RF energy transfer. Three schemes
that enable information as well as energy cooperation were
proposed. By assuming that the PU and SU are selfless and
fully cooperative, the optimal resource allocation problems for
the proposed three schemes were formulated and addressed to
maximize the SU’s rate subject to PU’s rate and ST’s power
constraints [5]. However, the PU and SU can be rational and
self-interested in practice. In this case, incentives should be
provided by the PU to employ the SU as its information relay.
The SU needs to evaluate the tradeoff between the benefits
of relaying PU’s information and that of transmitting its own
information. To the best knowledge of the authors, there is
no report in open literature that characterizes the strategic
interactions between the rational PU and SU in RF-powered
CR networks. This gap motivates this paper.

In this paper, we investigate the spectrum sharing of a RF-
powered CR network, where the PU and the energy harvesting
SU are assumed to be rational and only aim to maximize their
own utilities. Game theory is employed to study the considered
network since it offers a set of mathematical tools to model
the complex interactions among the rational players. Note that
game theory has been applied to investigate different setups
of RF-powered communication networks in [6]–[9]. But none
of them considered the RF-powered CR networks. The main
contributions of this paper are summarized as follows: Based
on whether the SU helps the PU to relay its information,
two different operation modes, named non-cooperative and
cooperative modes, are identified. For both modes, optimiza-
tion problems are respectively formulated, which constitute a
Stackelberg game with the PU as a leader and the SU as a
follower. We then analyze the Stackelberg Equilibrium (SE)
of the formulated game by deriving elaborated solutions to
the optimization problems. Simulation results show that the
performance of the formulated Stackelberg game can approach
that of the centralized optimization scheme when the distance
between the SU and its receiver is large enough.

Notations: Throughout this paper, we adopt the following
notations. We use boldface lowercase and uppercase letters to
represent vectors and matrices, respectively. ‖ · ‖ denotes the
Frobenius norm. (·)† denotes the conjugate transpose and E[·]
denotes the expectation.
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Fig. 1. The non-cooperative and cooperative operation modes.

II. SYSTEM MODEL

We consider a CR network consisting of one PU pair
and one SU pair. The PU pair is composed of one primary
transmitter (PT) and one primary receiver (PR). The SU pair
has one ST and one secondary receiver (SR). The ST is
assumed to be equipped with N ≥ 2 antennas as well as an
energy harvesting component, where N denotes the number
of antennas. Other terminals are equipped with only single
antenna. Channel reciprocity is assumed. We use hP , hPS , hS ,
gP , gS to denote the channel gains between the PT and the
PR, the PT and the SR, the PT and the ST, the ST and the PR,
the ST and the SR, respectively. hS , gP and gS are assumed
with the size of N×1. The duration of one transmission block
is denoted by T , over which the channel gains are assumed
to be constant. Without loss of generality, we normalize the
transmission duration T to be unity hereafter, i.e., T = 1.

As illustrated in Fig. 1, we identify two different operation
modes for the considered network, named non-cooperative and
cooperative modes, based on whether the SU assists the PU’s
information transmission. In the non-cooperative mode, the PT
transmits information to its PR using the entire transmission
block. The ST first harvests energy from the PT with a
duration α, 0 ≤ α ≤ 1, and transmits its own information
to the SR during the remaining time without bringing any
interference to the PR. Note that when the ST transmits to
the SR, the SR has to suffer the interference from the PT.
In the cooperative mode, each transmission block is divided
into three phases. The first phase is set with a fraction τ ,
0 ≤ τ < 1, during which the PT transmits information to
the PR and the ST harvests energy from the PU’s signal. The
motivation behind this energy transfer phase is that the initial
energy of the SU is too small to effectively assist the PU’s
information transmission. The second and third phases have a
same duration of (1−τ)/2 by assuming that the amplify-and-
forward (AF) relaying protocol is adopted at the ST. During
the second phase, the PT broadcasts its information to the PR
as well as the ST. During the third phase, the ST will split
a portion β, 0 < β ≤ 1, of its available energy1 to forward
the PT’s information received in the second phase. The PT
will be silent during this phase, while the ST amplifies and
forwards the PT’s information to the PR using the portion

1The available energy at the ST can be the sum of its initial energy and
the harvested energy from the PT.

β of its energy. At the same time, the ST transmits its own
information to the SR by using its remaining energy with the
portion 1− β.

To achieve an efficient spectral sharing between the PU
and SU pairs, the antenna weights at the ST should be well
designed in both modes. For the combination of signals (in-
formation/energy) received at the ST from the PT, the optimal
weight design should be the maximum ratio combining (MRC)
scheme. For the signal (information) transmitted from the ST,
we first denote by wP and wS the transmit weight vectors with
the same size N×1 that are applied to the PT’s signal and the
ST’s signal, respectively. The transmit weight vectors wP and
wS should be designed such that the interference caused by
the PT’s signal (if the ST has) to the SR and the interference
caused by the ST’s signal to the PR are respectively mitigated.
To achieve this, there are several techniques that can be
employed, such as dirty paper coding (DPC) [10] and zero
forcing (ZF) [11]. In this paper, we follow [2], [5] and adopt
the ZF approach due to its simplicity and low complexity. With
reference to [2], the transmit weight vectors for ZF approach
can be expressed as

wP =
Z⊥PgP∥∥Z⊥PgP∥∥ and wS =

Z⊥S gS∥∥Z⊥S gS∥∥ , (1)

where Z⊥P and Z⊥S are the projection matrices for the PR and
SR, given respectively by

Z⊥P =

(
I− gS

(
g†SgS

)−1
g†S

)
, (2)

and
Z⊥S =

(
I− gP

(
g†PgP

)−1
g†P

)
. (3)

We now derive the achievable rate per unit bandwidth of
the PU pair and the SU pair in both modes, respectively. In
the non-cooperative mode, the achievable rate at the PR can
be expressed as

RNCP = log2

(
1 +

P |hP |2

σ2

)
, (4)

where P is the PT transmit power and σ2 is the noise power,
which is assumed to be the same for all channels without loss
of generality. The achievable rate at the SR is

RNCS = (1− α) log2 (1 + γ (α)) , (5)

with the signal-to-interference-plus-noise ratio (SINR)

γ (α) =

(
αη
(
P ‖hS‖2 + σ2

)
+ E0

)∥∥Z⊥S gS∥∥2
(1− α)

(
P |hPS |2 + σ2

) , (6)

where 0 < η < 1 is the energy conversion efficiency and E0

is the initial energy at the ST. In the cooperative mode, the
achievable rate at the PR can be expressed as (7) on top of
next page2 with

E (τ) = τη
(
P ‖hS‖2 + σ2

)
+ E0, (8)

2The details are omitted due to space limitation. We refer the interested
readers to [2], [5].



RCOP = τ log2

(
1 +

P |hP |2

σ2

)
+

1− τ
2

log2

(
1 +

P |hP |2

σ2
+

2P‖hS‖2βE (τ)
∥∥Z⊥PgP∥∥2

P‖hS‖2(1− τ)σ2 + 2βE (τ)
∥∥Z⊥PgP∥∥2 σ2 + (1− τ)σ4

)
.

(7)

which is the ST’s available energy aggregated by the harvested
energy and its initial energy. The achievable rate at the PR is

RCOS =
1− τ
2

log2

(
1 +

2(1− β)E (τ)
∥∥Z⊥S gS∥∥2

(1− τ)σ2

)
. (9)

III. STACKELBERG GAME FORMULATION

A Stackelberg game is formulated in this section. Recall that
the PU pair and the SU pair are assumed to be rational and
self-interested. We model the non-cooperative and cooperative
optimizations of the PU pair and the SU pair as a Stackelberg
game, in which the PU pair is modeled as the leader, as it
has the priority to use the channel, and the SU pair is the
follower. To formulate the Stackelberg game, we first present
the optimization problems in both modes, respectively.

In the non-cooperative mode, the utility of the PU pair is a
constant, which can be expressed as

UNCP =λPR
NC
P , (10)

where the weight λP > 0 is the gain per unit achievable rate
of the PU pair. The SU pair can decide the duration of energy
harvesting by adjusting α to maximize its achievable rate. The
utility function of the SU pair can be written as

UNCS (α) =λSR
NC
S (α) , (11)

where the weight λS > 0 is the gain per unit achievable rate
of the SU pair. The optimization problem of the SU in the
non-cooperative mode can thus be given by

max
α

UNCS (α), s.t. 0 ≤ α ≤ 1, (12)

whose optimal solution is denoted by α?.
In the cooperative mode, we consider a pricing-based re-

source allocation to model the utilities of the PU and SU pairs
as monetary incentives [12], [13] should be provided by the
PU to hire the SU as its information relay. We assume that
the PT would like to provide a price µ > 0 per unit energy to
hire the SU as its relay. Besides, the PT (leader) could decide
the duration of τ to control the time allocation of the three
phases. The ST (follower) will choose a splitting ratio β to
maximize its own utility based on the given price and time.
Then, the utility function of the PU pair can be expressed by

UCOP (τ, µ) = λPR
CO
P (τ)− µβE (τ) . (13)

The utility function of the SU pair thus can be written by

UCOS (β) =λSR
CO
S (β) + µβE (τ) . (14)

Then, the optimization problems for the PU pair and the SU
pair in the cooperative mode can be respectively formulated as

max
τ,µ

UCOP (τ, µ), s.t. 0 ≤ τ < 1, µ > 0, (15)

and

max
β

UCOS (β), s.t. 0 < β ≤ 1, (16)

whose optimal solutions are denoted by (τ?, µ?) and β?.
A Stackelberg game thus can be formulated by putting the

optimization problems given in (12), (15) and (16) together.
Once a Stackelberg game is formulated, the next step is to find
the Stackelberg Equilibrium (SE) point from which neither the
leader nor the follower has incentives to deviate. It is worth
noting that as the leader, the PU pair can decide the strategy to
fulfil either the non-cooperative mode or the cooperative mode
by comparing the maximized utilities of these two modes. If
UCOP (τ?, µ?) > UNCP and UCOS (β?) > UNCS (α?), the PU
pair will choose the cooperative mode and the SE of the game
will be (τ?, µ?, β?); otherwise, the PU pair will choose the
non-cooperative mode and the SE will be α?.

IV. STACKELBERG GAME ANALYSIS

In this section, we will derive the SE by solving the opti-
mization problems (12), (15) and (16). The optimal solution
α? to the optimization problem (12) can be readily obtained
by conducting a one-dimensional exhausted search, i.e.,

α? = arg max
α∈[0,1]

UNCS (α) . (17)

We thus focus on the optimization problems (15) and (16) in
the cooperative mode in the following.

First, we solve the optimization problem (16) with given µ
and τ as shown in the following proposition.

Proposition 1. Given µ and τ , the optimization problem (16)
has a valid solution conditioned on3

µ >
XY

X + 1
, (18)

and the optimal solution β? to the problem (16) can be
expressed by

β? =

{
β∗ if XY

X+1 < µ ≤ XY ,
1 if µ > XY ,

(19)

where

X =
2E (τ)

∥∥Z⊥S gS∥∥2
(1− τ)σ2

, Y =
λS(1− τ)
2E (τ) ln 2

, (20)

and

β∗ =
1

X
− Y

µ
+ 1. (21)

Proof: The proof is omitted due to space limitation.

3The condition in (18) is to ensure that the optimal value of β is large than
zero. Otherwise, the SU may reject to cooperate.



Then, we can replace β by its optimal value β? in
UCOP (τ, µ) to solve the optimal µ? and τ?. As β? has two
expressions conditioned on the different intervals of µ, we
thus can write the expression of UCOP (τ, µ, β?) as

UCOP (τ, µ, β?) =

{
UCOP (τ, µ, β∗) if XY

X+1 < µ ≤ XY ,
UCOP (τ, µ, 1) if µ > XY ,

(22)
where UCOP (τ, µ, β∗) is given in (23) on top of next page and

UCOP (τ, µ, 1) =λP τ log2A− µE (τ)

+ λP
1− τ
2

log2

(
A+

B

C +D

)
,

(24)

with A > 0, B > 0, C > 0 and D > 0, respectively, given by

A = 1 +
P |hP |2

σ2
, (25)

B = 2P‖hS‖2E (τ)
∥∥Z⊥PgP∥∥2 , (26)

C = P‖hS‖2(1− τ)σ2 + (1− τ)σ4, (27)

D = 2E (τ)
∥∥Z⊥PgP∥∥2 σ2. (28)

The maximization problem (15) is then updated as

max
τ,µ

UCOP (τ, µ, β?) , s.t. 0 ≤ τ < 1, µ >
XY

X + 1
. (29)

When µ > XY
X+1 , since β? is a continuous function of µ,

UP (τ, µ, β?) is a continuous function of µ as well. To solve
the problem (29), we first find the optimal relationship between
τ and µ by expressing µ as a function of τ . By regarding τ
as a constant first, we can have the following maximization
problem,

max
µ

UCOP (τ, µ, β?) , s.t. µ >
XY

X + 1
. (30)

We use µ̃(τ) to denote the optimal solution to the problem
(30), which can be obtained in the following proposition.

Proposition 2. Given 0 ≤ τ < 1, the optimization problem
(30) has a valid solution conditioned on

µ∗ >
XY

X + 1
, (31)

and the optimal solution µ̃(τ) to the problem (30) can be
expressed by

µ̃(τ) =

{
µ∗ if XY

X+1 < µ∗ ≤ XY ,
XY if µ∗ > XY ,

(32)

where µ∗ is given by (33) on the top of next page.

Proof: The proof is omitted due to space limitation.
Finally, by conducting a one-dimensional exhausted search,

we can obtain

τ? = arg max
τ∈[0,1)

UCOP (τ, µ̃(τ), β?) , (34)

and µ? = µ̃ (τ?). We then have obtained the SE of the
formulated Stackelberg game by combining (17), (19), (32)
and (34). Note that if the conditions in (18) and (31) are not
satisfied, then the SE will be degraded to α∗.
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Fig. 2. The effects of changing the distance between the ST and the SR,
i.e., dS , on the utilities of the PU and SU pairs, respectively.

V. SIMULATION RESULTS

In this section, we present the performance results of the
formulated game via computer simulation. We assume that
all the channels experience quasi-static flat Rayleigh fading
and adopt a distance-dependent pass loss model such as
Ld = 10−3(d)−ϕ, where d denotes the distance between
arbitrary two nodes and ϕ is the pass loss factor. Using the
same setting in [5], unless otherwise specified, we consider the
distances from the ST to all the other terminals are 1m, while
the distance from the PT to the PR is 2m and ϕ is chosen as
3.5. The transmit power of the PT is 30dB. The initial energy
E0 at the ST is 10dB. The noise power σ2 is normalized to
unity, i.e., σ2 = 1. The weights λP and λS are set to be the
same equal to 100 and the energy conversion efficiency η is
0.5. In the sequel, all the shown results are averaged over 104

channel realizations.
Fig. 2 depicts the effects of changing the distance between

the ST and the SR, which is denoted by dS , on the utilities
of the PU and SU pairs, respectively. It can be observed in
Fig. 2(a) that with the increasing of dS , the PU pair’s utility
is improved. This is because, when dS increases, the SU pair
prefers to sell a portion of its energy to assist the PU’s data
transmission, instead of using the energy to transmit its own
information and obtain a marginal achievable rate. Conversely,
it is shown in Fig. 2(b) that the SU pair’s utility decreases
with the increasing of dS . This is because compared with
the gained revenue from selling energy, the reduction of the
achievable rate due to the worse channel condition dominates
the performance of the SU pair’s utility. Furthermore, we can
observe from both Fig. 2(a) and Fig. 2(b) that the performance
of the game always outperforms that of the non-cooperative
mode. In addition, the number of antennas at the ST N = 6
brings more advantages to both the PU and SU pairs than
that N = 4 due to the beamforming. Note that changing the
number of antennas at the ST will not affect the PU pair’s
utility in the non-cooperative mode as shown in Fig. 2(a).

Fig. 3 illustrates the social welfare performance versus the
distance between the ST and the SR, i.e., dS . The social



UCOP (τ, µ, β∗) = λP τ log2A+ λP
1− τ
2

log2

(
A+

µB
(

1
X + 1

)
−BY

µC + µD
(

1
X + 1

)
−DY

)
− µ

(
1

X
+ 1

)
E (τ) + Y E (τ) . (23)

µ∗ =
1

2A
(
C +D

(
1
X + 1

))2
+ 2B

(
1
X + 1

) (
C +D

(
1
X + 1

)) (2ADY (C +D

(
1

X
+ 1

))
+BY

(
C + 2D

(
1

X
+ 1

))

+

√√√√B2C2Y 2 +
2λP (1− τ)BCY(
1
X + 1

)
E (τ) ln 2

(
A

(
C +D

(
1

X
+ 1

))2

+B

(
1

X
+ 1

)(
C +D

(
1

X
+ 1

)))
(33)
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Fig. 3. The social welfare performance versus the distance between the ST
and the SR (dS ) with the number of antennas N = 4 and N = 6 at the ST.

welfare is defined as the aggregation of both PU and SU pairs’
utilities. We choose a centralized optimization method refer-
ring from [5] as a benchmark to compare with the performance
of the game. The centralized optimization approach adopted
herein is conducted by greedy search to maximize the social
welfare. It is shown in Fig. 3 that with the increasing of dS ,
the performance of the game achieves a better performance
than that of the non-cooperative mode, and approaches to the
maximum social welfare optimized by the centralized method.
This is because, when dS is small, the SU pair experiences
a good channel between the ST and the SR. It will selfishly
use the majority of its energy (harvested and initially has)
to transmit its own information. When dS is larger, selling a
portion of its energy to assist the PU pair’s data transmission
becomes a better choice to the SU pair, and thus the SU pair
would like to help relay the PU pair’s data transmission. Then
a good social welfare performance can be achieved due to the
cooperation. Besides, it can be observed that the social welfare
performance with N = 6 always outperforms that with N = 4,
which benefits from the beamforming.

VI. CONCLUSION

In conclusion, we formulated a Stackelberg game to char-
acterize the spectrum sharing of a RF-powered CR network
with rational and self-interested PU and SU pairs, where the

PU pair is the leader and the energy harvesting SU pair is the
follower. We modeled the utility functions and formulated the
corresponding optimization problems for both non-cooperative
and cooperative modes of the considered network. By solving
the optimization problems of both modes, we obtained the
SE of the game. In simulations, it is shown that with the
increase of the distance between the ST and the SR, the
performance of the game can approach that of the centralized
optimization scheme.
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