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Abstract—Deploying small cells in cellular networks, as a tech-
nique for capacity and coverage enhancement, is an indispensable
characteristic of future cellular networks. In this paper, a novel
online decentralized algorithm for enabling energy trading in multi-
tier cellular networks with selfish energy harvesting capable base
stations (BSs) is proposed. A BS uses the non-renewable energy
when it cannot harvest sufficient energy to serve its connected users.
To minimize the non-renewable energy consumption, we establish
a framework for trading energy such that BSs with energy deficit
are stimulated to compensate their energy shortage with the extra
harvested energy of other BSs. BSs with energy deficit are assigned
to BSs with extra harvested energy by using matching theory. The
extra harvested energy is distributed by the smart grid. Along
with energy trades, BSs gain more profit and their utility functions
enhance. Simulation results show that the waste of energy due
to limited batteries and the non-renewable energy consumption
decreases considerably when the proposed algorithm is applied.

I. INTRODUCTION

The exponential growth in the wireless data traffic has mo-
tivated the need for new approach that can boost the capacity
and coverage of wireless networks [1]. To solve this problem,
small cells are appeared to reduce distance between transmitters
and receivers, and therefore, they can improve the overall wireless
quality-of-service (QoS). This new type of cellular networks differ
from traditional macro-cellular networks in many ways. Small
cells have lower power consumption and cover smaller areas.
Depending on their capabilities, small cell BSs are classified
into different types such as microcells, picocells and femtocells.
Deploying small cells raises many technical challenges in terms of
resource allocation, outage management, distributed optimization
and implementation. One of the fundamental challenges in small
cell networks is power management. In contrast to traditional
cellular networks, Base Stations (BSs) of small cell networks
differ in transmission power. Therefore, power management in
this kind of cellular network is different from traditional networks.
The power control of small cells has been studied, for instance,
in [2], [3]. The decentralized power control of the femtocell
network is considered in [2], where higher traffic load increases
power consumption. Minimizing the transmit power of two-tier
networks is considered in [3], where users connected to different
tiers share the same spectrum. In addition, green cellular networks
have attracted lots of attention recently which is a way to reduce
using fossil energy resources and it leads to the reduction of green
house gases [4], [5]. Energy harvesting receivers are considered
in [6] where channel state information is used in order to find an
adaptive energy beamforming to supply energy to receivers.

As a green technology, small cells with energy harvesting
capabilities are alluring recent attention. In [7], a heterogeneous

This research is partly supported by Singapore University Technology and
Design (grant no. SUTD-ZJU/RES/02/2011).

network is studied where BSs in different tiers are self-powered.
If a BS has not harvested sufficient energy, it is kept OFF
for charging energy, and connected users to it are served by
neighbouring ON BSs. The availability region for a set of general
uncoordinated operational strategies is characterized. The energy
cooperation between two cellular BSs which are equipped with
harvesting and hybrid modules is explored in [8]. In [8], the energy
arrival and demanded energy are considered to be deterministic
and the optimal energy cooperation policy of BSs is found. The
joint design and combination of the physical layer technique of
the coordinated multi-point (CoMP) with two way energy trading
is studied in [9], where BSs are connected to the smart grid. In
contrary to these solutions which considers trade with smart grid,
in our framework, the harvested energy is not traded between the
BS and the grid. We propose a framework for energy exchange
among BSs by which one can combat the effect of the intermittent
nature of the harvested energy from non-renewable source. A
non-cooperative Stackelberg game between the residential units
of energy and the shared facility controller is proposed in [10] to
explore how both entities can benefit from their energy trading
with each other and the grid. Optimal energy management deci-
sions to minimize the total electricity cost and the operation delay
is investigated in [11] where users are connected to smart grid.

In this paper, we propose a novel online decentralized al-
gorithm for reduction of the non-renewable energy consumption
in multi-tier cellular networks with energy harvesting capability
where the harvested and the demanded energy from BSs are
stochastic. To reduce the non-renewable energy consumption,
selfish BSs are motivated to trade their extra harvested energy
with BSs that have not harvested sufficient energy. We define
BSs utility functions, and we find the prices of energy trades
accordingly. We propose appropriate transaction fees for energy
trades and by using it, we control prices of energy trades to keep
BSs with energy deficit motivated to trade energy. As long as
energy trades are profitable for involved BSs, the extra harvested
energy is shared to reduce the non-renewable energy consumption.
It is shown that the price of each energy trade is Nash equilibrium.
We demonstrate that the price of the harvested energy shared by
BSs per Joule is cheaper than the price of a unit of energy of
the non-renewable energy. Therefore, BSs with energy deficit are
motivated to buy required energy from other BSs. By using the
matching theory, BSs with energy deficit are matched to BSs with
the extra harvested energy. It is assumed that both the harvested
energy by a BS and the demanded energy from a BS are correlated
in time. BSs with high extra harvested energy sell their energy at
lower prices. This leads to selling extra energy quickly which
prevents the possible waste of energy due to the limited battery
capacities. Moreover, the priority for buying energy is assigned to
BSs with high energy deficit which increase energy distribution
fairness. The cost of installing large batteries is removed as the
proposed algorithm is applied.



II. SYSTEM MODEL

Consider the downlink of a multi-tier cellular wireless network
consisting a number of BSs, classified into K tiers. Each BS
belongs to tier k is with a maximum transmit power of Pk.
Serving connected users causes the power depletion in BSs, and
we ignore other types of energy consumption at BSs. We assume
that locations distribution of BSs operating in different tiers is
approximated as independent Poisson Points Processes (PPPs)
with density λk. Each BS is equipped with an individual energy
harvesting module and an energy storage device. We assume that
the BSs belonging to a given tier k have a similar battery capacity
ck. In the considered network, the distribution of the users location
also follows a PPP with density λu. Here, users are allowed to
connect to a BS of different tiers. Depending on tiers densities
and transmit power, the average number of users connected to a
BS of tier k is given by [7]:

Nk =
PcλuP

2
γ

k
K∑
j=1

λjP
2/γ
j

. (1)

where Pc is the coverage probability. The coverage probability
denotes the portion of the users connected to a BS with SIR
above than a threshold. The path loss exponent is shown by γ,
which typically lies in the range of 2 ≤ γ ≤ 6. To find the
above formula in [7], it is considered that shadowing attenuates
transmitted signals and it follows a lognormal distribution with
the same mean and variance for all tiers.

A. Demanded Energy Model

The traffic rate demand of user m connected to the ith BS
of tier k at time slot t is denoted by Rmi,k(t) and it is constant
in each time slot. Users may request different rates through
time slots. The total rate that BS i in tier k has to serve is
Ri,k(t) =

∑Ni,k(t)
m=1 Rmi,k(t), where N i,k(t) denotes the number of

connected users and it is a Poisson random variable [12]. Its mean
value is given in (1). The requested rates of users are considered
to be stochastic. The consumed power of the ith BS of tier k
at time slot t to provide user m with rate Rmi,k(t) is denoted
by pmi,k(t). Due to the stochastic nature of demanded rates of
connected users, the consumed power at BSs is stochastic. The
consumed power to serve each user connected to a BS can be
modeled as an arbitrary correlated process due to the correlation
in user traffic and usage patterns [8]. Serving all connected users
to a BS consumes pi,k(t) =

∑Ni,k(t)
m=1 pmi,k(t) Watt. Hence, pi,k(t)

is a function of two kinds of random variables, pmi,k(t), ∀m,
and N i,k(t). The consumed energy at time slot t is obtained as∫ T
0
pi,k(t) du = T pi,k(t) = T

∑Ni,k(t)
m=1 pmi,k(t) where T is the

time slot duration and the demanded power is constant in each
time slot. The energy stored in the battery of the BS i in tier k
at time slot t is denoted by ei,k(t). The shortage of energy in the
BS battery necessitates buying energy from other BSs or using
the energy of the non-renewable source.

B. Harvested Energy Model

The harvested energy by each BS can be modeled as an
arbitrary correlated random process. The total amount of the
harvested energy at the ith BS of tier k during time slot t is
µi,k(t). If the harvested energy by a BS is more than its needs,
the extra energy is stored at the BS battery. The energy is wasted
when the BS tries to store more energy than its battery capacity.
Therefore, the BS that has harvested energy more than its needs
is motivated to trade its extra energy. In the considered model,

BSs are allowed to sell the extra harvested energy to the BSs
that have energy shortage. If a BS which is in need of energy
finds no seller BS, it has to use the non-renewable energy to
serve connected users. It is also assumed that BSs are connected
to the smart grid. The smart grid is a technology that enables
more precise measurement of the electric power by using digital
devices which can communicate with each other. When the BSs
trade their energy by using the smart grid, the smart grid operator
charges a cost for such service. This cost is an increasing function
of distances as well as the amount of the shared energy [13].
When two BSs trade energy, the energy is transferred by the smart
grid and no energy is consumed by BSs while they trade energy.
Each BS knows distances between itself and other BSs. The stored
energy is updated as

ei,k(t+ 1) = (2)
min

{
max

{
ei,k(t)− T pi,k(t), 0

}
+ µi,k(t)± ET (t+ 1), ck

}
,

where ET (t + 1) is the amount of the traded (shared) energy at
the beginning of time slot t+1 and it is added if the BS is buyer,
or it is subtracted if the BS is seller. In (2), the maximum stored
energy in the battery is equal to the battery capacity. Furthermore,
the BS can not use more energy than the stored amount from its
battery. To enable a BS to compensate its energy deficit by the
harvested energy of other BSs, a framework for the energy trading
is established in the following section.

III. ENERGY TRADING SCHEME AMONG BSS USING A
MATCHING-GAME-BASED ALGORITHM

Energy harvesting is not a reliable method to supply energy to
BSs as a result of uncertainty in environmental conditions. In order
to minimize the non-renewable energy consumption, we stimulate
BSs to share their extra harvested energy. At the beginning of each
time slot, every BS broadcasts a message to the other BSs. This
message contains the information of the tier the BS belongs to, its
battery level and the amount of extra or needed energy to serve
connected users in that time slot. Based on these information, all
BSs are classified into two categories, i.e, seller BSs and buyer
BSs. Seller BSs have extra stored energy and buyer BSs are with
the energy shortage problem. The set of the seller BSs of tier k
is Sk = {s1k, s2k, . . . , s

nk
k } and the set of all buyer BSs of tier k′

is Bk′ = {b1k′ , b2k′ , . . . , b
n′
k′
k′ }, where nk and n′k′ are the number

of seller BSs and buyer BSs of tiers k and k′, respectively. The
set of seller BSs is S =

⋃K
k=1 Sk. The set of buyer BSs is B =⋃K

k′=1 Bk′ . Since it is known that a BS is seller or buyer at the
beginning of the time slot t, one can display the battery level,
the number of connected users and the demanded power from
a BS by using the BS index in the set of sellers or buyers of
the tier that the BS belongs to, Sk or Bk′ . Consequently, es

i
k(t),

Nsik(t) and ps
i
k(t) are used for a seller BS sik in tier k, and

eb
j

k′ (t), N bj
k′ (t) and pb

j

k′ (t) are used for a buyer BS bjk′ of tier
k′, respectively. The amount of energy that a seller BS sik from
any tier k ∈ {1, 2, . . . ,K} wants to sell at time slot t is

ρs
i
k(t) = es

i
k(t)− T ps

i
k(t). (3)

A buyer BS bjk′ from any tier k′ ∈ {1, 2, . . . ,K} wants to buy
the following amount of energy at time slot t

ρb
j

k′ (t) =
∣∣∣ebjk′ (t)− T pbjk′ (t)∣∣∣ . (4)

The total extra energy stored in BSs of the network at time slot t

is
K∑
k=1

nk∑
i=1

ρs
i
k(t) and the total needed energy of BSs with energy

deficit in the network is
K∑
k′=1

n′
k′∑

j=1

ρb
j

k′ (t). Each BS serves a number



of users connected to it, and the consumed energy to serve them
costs a known price of ζ units of money per Joule for users. A
BS receives requests from users at the beginning of each time
slot. Deployed BSs in the network are considered to be selfish. In
other words, regardless of other BSs, a BS wants to earn money
by serving connected users to maximize its utility function. Selfish
BSs do not share energy to help BSs with energy deficit. Earning
money from other BSs is an incentive for a seller BS to share its
extra energy.The smart grid usage to trade energy is not free for
BSs. The cost of transferring energy by the smart grid depends on
the distance between the seller BS and the buyer BS in meters,
denoted by gs

i
k,b

j

k′ , and the amount of shared energy among them.
It is assumed that the cost of energy transfer is a linear function
of the amount of transferred energy, ET (t), and an arbitrary
increasing cost function of distance denoted by Γ (gs

i
k,b

j

k′ ). The
cost of sharing ET (t) Joule energy is captured by ET (t)Γ (gs

i
k,b

j

k′ )
and it is paid by the buyer BS. Consider that a seller BS sik is
operating in the kth tier and it consumes ps

i
k(t) Watt to serve

users. Its utility function at time slot t is defined as follows

Us
i
k(η(ET (t)), t) = ζ T ps

i
k(t) + η(ET (t)), (5)

where η (ET (t)) is the price of ET (t) units of shared (traded)
energy. In the next subsection, the appropriate value of η(ET (t))
is obtained by using a game-theoretic approach. The seller BS
has enough energy to serve users connected to it. Consequently,
it serves Nsik(t) users and it sells its extra energy to gain utility of
size η(ET (t)). Similarly, we define the utility function of buyers.
The buyer BS gains utility by serving connected users to it which
consumes Tpb

j

k′ (t) Joule. The energy of the buyer BS is not
enough to serve all connected users. The utility function of a
buyer BS at time slot t is obtained as follows

U b
j

k′ (η(ET (t)), t) =

ζ T pb
j

k′ (t)− η(ET (t))− EN (t)ψ − ET (t) Γ (gs
i
k,b

j

k′ ), (6)

where EN (t) = ρb
j

k′ (t) − ET (t) is the non-negative amount of
energy which is not obtained from other BSs and purchased from
the non-renewable source. The price that the buyer BS pays to the
non-renewable source is EN (t)ψ where ψ is the price of a Joule
of the non-renewable energy. We assume that ψ should satisfy
the condition ζ +max

g
si
k
,b
j
k′
Γ (gs

i
k,b

j

k′ ) < ψ, ∀sik ∈ S, ∀b
j
k′ ∈ B.

This inequality is used to show that the non-renewable energy is
more expensive than the shared energy of other BSs, and thus,
a buyer BS is motivated to compensate its energy deficit by the
extra stored energy of other BSs.

We study the pricing of the shared (traded) energy, and
it is shown that the energy sharing between BSs reduces the
consumption of the non-renewable energy. In order to enable BSs
to pay money, a Credit Clearance Service (CCS) has been used
[14], [15], where all BSs have credit accounts with initial fund.
After the seller and the buyer BSs agree on a price, the price,
their tiers, their battery levels, the needed energy of the buyer and
the extra energy of the seller are submitted to the CCS as the
trade characteristics. The CCS moves the money from the buyer
BS credit account to the seller BS credit account according to
the agreed price. The CCS controls the agreed prices as well.
Distances among BSs are known by the CCS. Assume that the
buyer BS bjk′ starts negotiating with the seller BS sik as rational
game players. Since the buyer BS wants to compensate all its
energy deficit, the amount of the shared energy is the minimum
of the extra stored energy in the seller BS and the needed energy
of the buyer BS, min{ρsik(t), ρb

j

k′ (t)}. The BS sik proposes a
price to the BS bjk′ to maximize its utility function. The utility

function of the BS sik is an increasing linear function of η(ET (t)),
and thus, by proposing a higher price, it increases its utility
function. The BS sik can obtain the utility function of the BS bjk′ ,
since the BS bjk′ broadcasts its tier, battery level and its amount
of needed energy at the beginning of time slots. Moreover, the
cost of transferring energy by the smart grid and the amount
of shared energy is known. If the price is more or equal than
ET (t)ψ − ET (t) Γ (gs

i
k,b

j

k′ ), the BS bjk′ does not accept it. The
reason is that this price makes a lower or equal utility than buying
energy from the non-renewable source, i.e.,

ζ T pb
j

k′ (t)− η(ET (t))− EN (t)ψ − ET (t) Γ (gs
i
k,b

j

k′ )

≤ ζ Tpb
j

k′ (t)− ET (t)ψ − EN (t)ψ. (7)

To restrict the proposed price by a seller BS and motivate buyer
BSs to exploit the renewable energy, we use the transaction fee
concept introduced in [15] which is a paid money by the BS sik
to the CCS for updating accounts after the agreement. The utility
function of the seller BS is revised as

Us
i
k(η(ET (t)), t) = ζ T ps

i
k(t) + η(ET (t))− F (η(ET (t))), (8)

where F (η(ET (t))) is the transaction fee. According to seller and
buyer battery levels, the needed energy of the buyer and the extra
energy of the seller, the CCS can find the BSs utility functions
and the price of the shared energy. Using the transaction fee,
the CCS is able to affect the proposed price of the seller BS to
keep the buyer BS motivated to use the shared energy and avoid
wasting of the harvested energy. When the extra stored energy
in the battery of the seller BS is near to the battery capacity, the
proportion of the extra stored energy of the seller BS to its battery

capacity, ρs
i
k (t)
ck

, is near to one. Based on the battery level, two

cases are considered. In the first case, ρ
sik (t)
ck

is less than ϑ where
ϑ is an arbitrary parameter such that 0 ≤ ϑ ≤ 1. In the other

case, ρs
i
k (t)
ck

≥ ϑ. In this case, the CCS forces the seller BS to
offer lower prices. It leads to selling the extra energy faster which
reduces possible waste of energy in the next time slots due to
the correlation between harvested energy values. As the battery
capacity of the seller BS affects the price of the shared energy,
BSs are classified into tires. We propose appropriate transaction
fees for both cases and find prices of energy trades accordingly
in [16] which are Nash equilibrium.

IV. MATCHING BUYER BSS TO SELLER BSS

Based on the broadcasting BSs tiers, battery levels and the
extra or needed energy, buyer BSs start to find the price of the
shared energy with each rational seller BS as explained in previous
section. Next, buyer BSs rank seller BSs according to the amount
of the shared energy with each of the seller BSs and its price.
Assigning a number of buyer BSs to a seller BS in order to
buy energy can be well formulated as a many-to-one matching
problem. In the many-to-one matching problem, a subset of buyer
BSs B is assigned to a seller BS. A buyer BS is assigned to one
seller BS at most. In this problem, many-to-one matching is a
two-sided matching. The reason is that all involved BSs belong
to one of the two sets, sellers and buyers. Matching is defined in
[17] as:

Definition 1: Let S be a set of
K∑
k=1

nk sellers and B be a set

of
K∑
k′=1

n′k′ buyers. A matching is a mapping φ from the set S∪B

into the set of all subsets of S ∪B such that: (1) |φ(bjk′)| ≤ 1 and
φ(bjk′) ∈ S ∪∅ for all bjk′ ∈ B, (2) φ(bjk′) ∈ 2B ∪∅ for all sik ∈ S,



TABLE I. SUMMARY OF THE PROPOSED MATCHING ALGORITHM

Phase 1 - Initialization:
Each BS broadcasts its tier, the amount of energy in its battery and
the amount of energy it wants to sell or to buy to other BSs.
Sellers are stored in the set S. Buyers are stored in the set B.

Phase 2 - Matching Buyer BSs to Seller BSs
repeat:

Each buyer BS finds the amount of the shared energy and its price
with every seller BSs.
Each buyer BS ranks seller BSs according to its preference.
Each buyer BS sends a request to the first ranked seller BS.
Each seller BS ranks requested BSs with respect to its preference.

repeat:
A random seller accepts the first ranked requested buyer.
The extra amount of energy in the seller is updated.
The accepted buyer BS is removed from the ranked list.
The energy trade is saved and its characteristics are submitted to the CCS.

until the seller extra energy is finished or all requested BSs are processed
If a buyer BS buys its needed energy, it is removed from B.
If a seller BS sells all its extra energy, it is removed from S.
The CCS updates credit accounts according to submitted trade characteristics.
BSs in sets S and B broadcast their tiers, the amount of energy in their
batteries and the amount of energy they want to sell or to buy.

until the set S is empty or the set B is empty.
Phase 3 - The energy Distribution

The energy distribution is done according to saved energy trades.

and (3) φ(bjk′) = sik if and only if bjk′ is in φ(sik) for all sik ∈ S
and for all bjk′ ∈ B.

In the above definition, |A| denotes the cardinality of the set A.
Moreover, φ(bjk′) = ∅ means that the buyer bjk′ is not successful
in finding a seller BS and it is not matched.

A. Utility-Based Preferences

Each buyer BS bjk′ has a strict, transitive, and complete pref-
erence relation �bj

k′
over the members in S. The same argument

holds for preference of members in S which is denoted by �sik
over members of the set B. In order to obtain the preferences of
each BS, defined utility functions in previous section are used.
Based on the derived price of the shared energy between a seller
BS and a buyer BS, the buyer BS searches for a seller BS that
makes its utility maximum compared to other BSs. Therefore,
∀s1, s2 ∈ S and ∀bjk′ ∈ B, a buyer preference is

U b
j

k′ (η(ET1
), t) > U b

j

k′ (η(ET2
), t)⇔ s1 �bj

k′
s2, (9)

where η(ETi) is the shared energy price between the seller si
and the buyer bjk′ . According to its preference, a buyer BS ranks
sellers. The first ranked seller BS is the most wanted seller BS to
buy energy in the view of the buyer BS. Each buyer BS requests
the most wanted seller BS. Similarly, ∀sik ∈ S and ∀b1, b2 ∈ B,
the preference relation of a seller is defined as

Us
i
k(η(E′T1

), t) > Us
i
k(η(E′T2

), t)⇔ b1 �sik b2, (10)

where η(E′Ti) is the shared energy price between the BS sik and
the BS bj . Using (10), a seller BS ranks requested buyer BSs. In
the next subsection, we propose a matching-game-based algorithm
in order to assign buyer BSs to seller BSs. The proposed algorithm
matches buyer BSs to seller BSs such that BSs preferences are
satisfied as much as possible.

B. The Proposed Matching-Game-Based Algorithm

In the first phase of the algorithm, each BS broadcasts its
tier, battery level and the extra or needed energy, and BSs are
divided into two groups, i.e., sellers and buyers. In phase 2, buyer
BSs rank seller BSs according to their preference relations. Next,
they send a request to the first ranked seller BS, simultaneously.
Seller BSs receive a number of requests and they rank requested
BSs according to their preferences due to the fact that seller BSs
can calculate the price of the shared energy according to the
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Fig. 1. Comparison of the non-renewable power consumption in the network
with and without applying the algorithm by different battery capacities. Means of
harvested energy of different tiers are [23.3, 5.8, 1.1] Joule.

broadcasting. After ranking requested BSs, a random seller accepts
l top ranked requested buyer BSs such that the total requested
shared energy with l buyers is less or equal to its extra stored
energy and the total requested shared energy with l + 1 buyers
is more than its extra stored energy. If a seller depletes its extra
energy by selling, it is removed from S. Similarly, if a buyer BS
compensates its energy deficit, it is removed from B. Successful
energy trades are saved and the CCS updates credit accounts.
BSs in sets S and B broadcast the amount of energy in their
batteries and the amount of energy they want to sell or to buy
as well as their tiers, and the phase 2 is iterated until S = ∅ or
B = ∅. In the phase 3 of the algorithm, the extra harvested energy
is distributed according to saved energy trades. Summary of the
proposed algorithm is given in Table I. We assume a buyer BS
never requests more than its energy deficit. If it sends a request
more than its needed energy and a seller BS accepts its request,
the buyer BS reduces the amount of the extra energy for sell. This
action of a buyer BS results in additional number of iterations.
Therefore, the seller BS is prevented to help other buyer BSs.
To force players to agree on a price fast, utilities of players,
when agreement is not reached, are considered to be equal in
all iterations of the algorithm.

Definition 2: Suppose that M(S,B) is the set of all possi-
ble matchings. A many-to-one matching is blocked if ∃ φ′ ∈
M(S,B), sik ∈ S and bjk′ ∈ B s.t. φ′(bjk′) �bj

k′
φ(bjk′) and

φ′(sik) �sik φ(s
i
k). Many-to-one matching is stable if there is no

subset of buyer BSs and a seller BS in which the matching is
blocked.

Since buyer BSs request seller BSs according to their preference
relations, seller BSs are chosen by buyer BSs and seller BSs
accept request according to their preferences the matching can not
be blocked. Therefore, the matching is stable [18], and in each
iteration, a number of seller and buyer BSs are removed from S
and B. Consequently, the proposed algorithm converges.

V. PERFORMANCE RESULTS

In this section, the performances of the matching-game-based
algorithm is evaluated through simulations. We consider a three-
tier small cell network, including macrocells (tier 1), microcells
(tier 2) and picocells (tier 3). BSs of tiers are distributed according
to PPPs with densities [ 1

5002 ,
3

5002 ,
5

5002 ] m−2, respectively, in a
1.35 km × 1.35 km area. Moreover, users distribution follows
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Fig. 2. The cumulative utilities of a macrocell when matching algorithm is
applied. Means of the harvested energy of different tiers in the first profile
(corresponding to two below curves) are [20.1, 4.5, 1] Joule. Means of the
harvested energy of different tiers in the second profile are [23.3, 5.8, 1.1] Joule.

a PPP with density 80
5002 m−2. The transmit power of BSs,

depending on their tier, sorted as [40, 6.3, 1] Watt. The path-
loss exponent is considered to be 4, the coverage probability
is 0.65 and the time slot duration is one second. We consider
ϑ = 0.7 and β = 0.4. The cost of transferring one Joule

by the smart grid is Γ (gs
i
k,b

j

k′ ) =
4

√
gs
i
k,b

j

k′ . Means of the
demanded power of users connected to different tiers during a time
slot are [22.5, 5, 0.85] Watt, respectively. Gaussian processes are
correlated by Cholesky decomposition method. Both the harvested
energy and the demanded energy at each time slot are correlated
by their previous values at the last time slot and two previous time
slot. The effect of the proposed matching-game-based algorithm,
and battery capacities of tiers on the consumed non-renewable
power is depicted in Fig. 1. The sum of the harvested energy of
BSs in the network in all time slots are more than the demanded
energy from BSs in the network. Thus, the stored energy in BSs of
the network is sufficient to serve connected users in all time slots.
However, the harvested energy by a BS is not enough in some
time slots due to its stochastic nature. By using the proposed
algorithm, the consumed power from the non-renewable source
is reduced considerably as it compensate energy deficit of BSs
with the available extra stored energy. In the initial time slots,
the larger battery capacity is not influential. The reason is that
the extra stored energy is less than battery capacity. As more
time slots are elapsed, the extra stored energy increases, and
the larger battery capacities become more helpful. The proposed
algorithm distributes the extra stored energy among BSs with
energy deficit instead of storing the extra energy in the batteries.
Hence, BSs require smaller batteries to store energy when the
algorithm is applied. Applying the algorithm removes the cost
of installing large batteries. When the algorithm is not applied,
the non-renewable energy consumption increases as the harvested
energy is wasted in limited batteries. The run time of the algorithm
for 600 time slots is less than 4 seconds.

The cumulative utilities of a macrocell from serving connected
users and energy trades, when the demanded energy profile is
common and two different energy harvesting profiles are con-
sidered, are shown in Fig. 2. In this figure, we compare the
cumulative utilities in the presence of the proposed algorithm and
without it. The utility of the BS is found from (7) and (8) in each
time slot. The gained utility from serving connected users is 100
units of money per consumed Joule. The non-renewable source

offers 300 units of money per consumed Joule. When the proposed
algorithm is not applied, the macrocell gains negative utility values
in some time slots due to the high price of the non-renewable
energy. To stop negative utility, the macrocell can deploy larger
batteries which is an additional cost. Although higher ζ can avoid
negative utility, increasing ζ is out of a BS control. Since the
shared energy price per unit is always lower than ζ, and ψ is
three times more than ζ, negative utility values can be avoided
in time slots by using the algorithm. In Fig. 2, the mean of the
harvested energy of a BS is less than the mean of the demanded
energy in profile 1, and the mean of the harvested energy of a BS
is more than the mean of the demanded energy in profile 2. In
both cases, the cumulative utility increases as the matching-game-
based algorithm is applied.
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