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Abstract—Recently, the so-called cell-free Massive
MIMO architecture has been introduced, wherein a very
large number of distributed access points (APs) simultane-
ously and jointly serve a much smaller number of mobile
stations (MSs). A variant of the cell-free technique is the
user-centric approach, wherein each AP just decodes the
MSs that it receives with the largest power. This paper
considers both the cell-free and user-centric approaches,
and, using an interplay of sequential optimization and
alternating optimization, derives downlink power-control
algorithms aimed at maximizing either the minimum users’
SINR (to ensure fairness), or the system sum-rate. Numer-
ical results show the effectiveness of the proposed algo-
rithms, as well as that the user-centric approach generally
outperforms the CF one.

I. INTRODUCTION

Cell-free (CF) massive MIMO is a recent system
concept [1], [2] addressing the cell-edge problem: a
very large number of distributed APs (connected via
a backhaul network to a central CPU) simultaneously
and jointly serve a much smaller number of MSs; each
AP uses local channel estimates obtained from received
uplink pilots and applies channel inversion beamforming
to transmit data to the users. Papers [1], [2] show that the
CF approach provides better performance than a small-
cell system in terms of 95%-likely per-user throughput.
Additionally, the paper [3] has analyzed the performance
improvements granted by the use of a zero-forcing
precoder in the downlink. In [4] the CF approach is
extended to the case in which multiple antennas are
employed and propose the use of a channel-independent
beamformer at the MSs, so that channel estimation is
performed only in the uplink at the APs, and channel
reciprocity induced by time division duplex is exploited
at the APs to implement coherent signal reception at the
MSs. The paper [4] also introduces a user-centric (UC)
approach wherein each AP chooses to serve only a pre-
determined number of MSs. The UC approach is shown
to provide larger achievable rates (with respect to the
CF approach) to the vast majority of the users, and, also
works with reduced backhaul overhead; a comparison
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between the CF and the UC approaches in a single-
antenna setting is provided in [5]. While the papers [4],
[5] consider a simple uniform power control allocation
on the downlink, in this paper we provide power control
algorithms aimed at maximizing either the minimum rate
across the users – to ensure fairness – or the system
sum rate. The considered optimization problems are non-
convex and involve a very large number of variables
(equal to the product of the number of APs times
the number of MSs); to address these challenges, the
frameworks of sequential optimization and alternating
optimization are combined in a suitable way. Our results
show that the proposed power control algorithms are
effective, as well as that the UC approach generally
outperforms the CF one.

II. SYSTEM MODEL

We consider an area with K MSs and M APs.
MSs and APs are randomly located. The M APs are
connected by means of a backhaul network to a central
processing unit (CPU) wherein data-decoding is per-
formed. The TDD protocol is used and the channel
coherence interval is divided into three phases: (a) uplink
channel estimation, (b) downlink data transmission, and
(c) uplink data transmission. In phase (a) the MSs send
pilot data in order to enable channel estimation at the
APs. In phase (b) the APs use channel estimates to
perform channel-matched beamforming and send data
symbols on the downlink; while in the CF architecture
the APs send data to all the MSs in the system, in the
UC approach each AP sends data only to a subset of the
MSs in the system. Phase (c) is not described since the
focus of this paper is only on the downlink.

A. Channel model

We denote by the (NAP ×NMS)-dimensional matrix
Gk,m the channel between the k-th MS and the m-th
AP. We have

Gk,m = β
1/2
k,mHk,m , (1)

with βk,m a scalar coefficient modeling the channel shad-
owing effects and Hk,m an (NAP ×NMS)-dimensional
matrix whose entries are i.i.d CN (0, 1) RVs. Path loss978-1-5386-3531-5/17/$31.00 c© 2017 IEEE
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and shadow fading are modeled by the large scale
coefficient βk,m in (1), according to the formula [2]

βk,m = 10
PLk,m

10 10
σshzk,m

10 , (2)

where PLk,m represents the path loss (expressed in
dB) from the k-th MS to the m-th AP, and 10

σshzk,m
10

represents the shadow fading with standard deviation
σsh, while zk,m will be specified later. For the path loss
we use the following three slope path loss model [6]:

PLk,m =


−L− 35 log10 (dk,m) , if dk,m > d1

−L− 10 log10

(
d1.51 d2k,m

)
, if d0 < dk,m ≤ d1

−L− 10 log10
(
d1.51 d20

)
, if dk,m < d0

,

(3)
where dk,m denotes the distance between the m-th AP
and the k-th user, L is

L = 46.3 + 33.9 log10 (f)− 13.82 log10 (hAP)−
[1.11 log10 (f)− 0.7]hMS + 1.56 log10 (f)− 0.8,

(4)
f is the carrier frequency in MHz, hAP and hMS denote
the AP and MS antenna heights, respectively. In real-
world scenarios, transmitters and receivers that are in
close vicinity of each other may be surrounded by
common obstacles, and hence, the shadow fading RVs
are correlated; for the shadow fading coefficient we thus
use a model with two components [7]

zk,m =
√
δam+

√
1− δbk, m = 1, . . . ,M, k = 1, . . . ,K,

(5)
where am ∼ N (0, 1) and bk ∼ N (0, 1) are independent
RVs, and δ, 0 ≤ δ ≤ 1 is a parameter. The covariance
functions of am and bk are given by:

E [amam′ ] = 2
−
d
AP(m,m′)
ddecorr E [bkbk′ ] = 2

−
d
MS(k,k′)
ddecorr ,

(6)
where dAP(m,m′) is the geographical distance between
the m-th and m′-th APs and dMS(k,k′) is the geographical
distance between the k-th and the k′-th MSs. The param-
eter ddecorr is a decorrelation distance which depends on
the environment, typically this value is in the range 20-
200 m.

B. Uplink training

During this phase the MSs send uplink training pilots
in order to permit channel estimation at the APs. This
phase is the same for both the UC and CF approaches.
We denote by τc the length (in samples) of the channel
coherence time, and by τp the length (in samples) of the
uplink training phase. Of course we must ensure that
τp < τc. Denote by Φk ∈ CNMS×τp the pilot sequence
sent by the k-th MS, and assume that ‖Φk‖2F = 1; we
also assume that the pilot sequences assigned to each
user are mutually orthogonal, so that ΦkΦ

H
k = INMS ,

while, instead, pilot sequences from different users are
non-orthogonal. The signal received at the m-th AP in

the n-th signaling time is represented by the following
NAP-dimensional vector:

ym(n) =

K∑
k=1

√
pkGk,mΦk(:, n) + wm(n) , (7)

with
√
p
k

the k-th user’s transmit power during the train-
ing phase. Collecting all the observable vectors ym(n),
for n = 1, . . . , τp into the (NAP × τp)-dimensional
matrix Ym, and assuming simple pilot-matched (PM)
single-user channel estimation, the estimate, Ĝk,m say,
of the channel matrix Gk,m is obtained at the m-th AP

according to Ĝk,m =
1
√
pk

YmΦH
k .

C. Downlink data transmission

After that each AP has obtained estimates of the
channel matrix from all the MSs in the system, the
downlink data transmission phase begins. The APs treat
the channel estimates as the true channels, and channel
inversion beamforming is performed to transmit data to
the MSs. Denoting by Pk the multiplexing order (i.e., the
number of simultaneous data-streams) for user k, and by
xDL
k (n) the Pk-dimensional unit-norm vector containing

the k-th user data symbols to be sent in the n-th sample
time, and letting Lk = IPk ⊗ 1NMS/Pk , the downlink
precoder at the m-th AP for the k-th MS is expressed
as

QDL
k,m =

Ĝk,m

(
ĜH
k,mĜk,m

)−1
Lk√

tr
(

LHk

(
ĜH
k,mĜk,m

)−1
Lk

) . (8)

1) UC massive MIMO architecture: In the user-
centric approach, we assume that each AP communicates
only with a fixed number N of MSs. The generic m-th
AP, based on the knowledge of the channel estimates
Ĝk,m, for k = 1, . . . ,K, sorts them in descending order
according to the Frobenius norm, and selects the first N .
We denote by K(m) the set of MSs served by the m-th
AP. Given the sets K(m), for all m = 1, . . . ,M , we can
define the set M(k) of the APs that communicate with
the k-th user:

M(k) = {m : k ∈ K(m)} (9)

So, in this case, the signal transmitted by the m-th AP
in the n-th interval is the following NAP-dimensional
vector

sucm (n) =
∑

k∈K(m)

√
ηDL,uc
k,m QDL

k,mxDL
k (n) , (10)

with ηDL,uc
k,m a scalar coefficient representing the power

transmitted by the m-th AP to the k-th MS. The generic



k-th MS receives signal contributions from all the APs
and so the observable vector is expressed as

ruck (n) =

M∑
m=1

GH
k,msucm (n) + zk(n)

=
∑

m∈M(k)

√
ηDL,uc
k,m GH

k,mQDL
k,mxDL

k (n)+

K∑
j=1,j 6=k

∑
m∈M(j)

√
ηDL,uc
j,m GH

k,mQDL
j,mxDL

j (n) + zk(n) .

(11)
In (11), the NMS-dimensional vector zk(n) represents
the thermal noise and out-of-cluster interference at the
k-th MS, and its entries are modeled as i.i.d. CN (0, σ2

z)
RVs. Based on the observation of the vector ruck (n), a
soft estimate of the data symbols xDL

k (n) is obtained at
the k-th MS as

x̂DL,uc
k (n) = LHk ruck (n) . (12)

2) CF massive MIMO architecture: In the CF archi-
tecture all the APs communicate with all the MSs in the
systems, so the CF case can be obtained as a special
case of the UC approach letting N = K, which leads
to K(m) = {1, . . . ,K}, for all m = 1, . . . ,M and
M(k) = {1, . . . ,M}, for all k = 1, . . . ,K.

III. DOWNLINK POWER CONTROL

From (11), we have that the achievable rate for the
user k in the user-centric case is written as

Rk =W log2 det
[
I + R−1k Ak,kA

H
k,k

]
, (13)

where Rk = σ2
zL

H
k Lk +

K∑
j=1,j 6=k

Ak,jA
H
k,j , and

Ak,j= LHk
∑

m∈M(j)

√
ηDL,uc
j,m GH

k,mĜj,m

(
ĜH
j,mĜj,m

)−1
Lj .

(14)
In order to obtain the achievable rate expressions for the
classical cell-free MIMO case, it suffices to consider in
the above expressions M(k) = {1, 2, . . . ,K}, for all
k = 1, . . . ,K.

The rest of this work will be concerned with the
optimization of the downlink transmit powers for the
maximization of the system sum-rate and minimum
users’ rate, subject to maximum power constraints.
Mathematically, the sum-rate maximization problem is
formulated as the optimization program:

max
η

K∑
k=1

Rk(η) (15a)

s.t.
∑
k∈Km

ηk,m ≤ Pmax,m ,∀ m = 1, . . . ,M (15b)

ηk,m ≥ 0 ,∀ m = 1, . . . ,M, k = 1, . . . ,K (15c)

whereas the minimum rate maximization problem is

max
η

min
1≤k≤K

Rk(η) (16a)

s.t.
∑
k∈Km

ηk,m ≤ Pmax,m ,∀ m = 1, . . . ,M (16b)

ηk,m ≥ 0 ,∀ m = 1, . . . ,M, k = 1, . . . ,K (16c)

with η the KM×1 vector collecting the transmit powers
of all access points. Both problems have non-concave
objective functions, which makes their solution challeng-
ing. Moreover, even if the problems were concave, the
large number of optimization variables, KM , would still
pose a significant complexity challenge1. In order to face
these issues, we will resort to the framework of succes-
sive lower-bound maximization, recently introduced in2

[9], and briefly reviewed next.

A. Successive lower-bound maximization

The main idea of the method is to merge the tools of
alternating optimization [10, Section 2.7] and sequential
convex programming [11]. To elaborate, consider the
generic optimization problem

max
x∈X

f(x) , (17)

with f : Rn → R a differentiable function, and X a
compact set. As in the alternating optimization method,
the successive lower-bound maximization partitions the
variable space into M blocks, x = (x1, . . . ,xM ), which
are cyclically optimized one at a time, while keeping the
other variable blocks fixed. This effectively decomposes
(17) into M subproblems, with the generic subproblem
stated as

max
xm

f(xm,x−m) , (18)

with x−m collecting all variable blocks except the m-
th. It is proved in [10, Proposition 2.7.1] that iteratively
solving (18) monotonically improves the value of the
objective of (17), and converges to a first-order optimal
point if the solution of (18) is unique for any m, and if
X = X1 × . . .×XM , with xm ∈ Xm for all m.

Clearly, alternating optimization proves useful when
(18) can be solved with minor complexity. If this is
not the case, the successive lower-bound maximization
method proposes to tackle (18) by means of sequen-
tial convex programming. This does not guarantee to
globally solve (18), but can lead to a computationally
feasible algorithm. Moreover, it is guaranteed to preserve
the properties of the alternating optimization method [9].
The idea of sequential optimization is to tackle a difficult

1Although polynomial, the best known upper-bound for the com-
plexity of generic convex problems scales with the fourth power of the
number of variables, while many classes of convex problems admit a
cubic complexity [8].

2In [9] the method is labeled successive upper-bound minimiza-
tion, since minimization problems are considered.



maximization problem by solving a sequence of easier
maximization problems. To elaborate, let us denote by
gi(xm) the i-th constraint of (18), for i = 1, . . . , C.
Then, consider a sequence of approximate problems
{P`}` with objectives {f`}` and constraint functions
{gi,`}Ci=1, such that the following three properties are
fulfilled, for all `:
(P1) f`(xm) ≤ f(xm), gi,`(xm) ≤ gi,`(xm), for all i

and xm;
(P2) f`(x

(`−1)
m ) = f(x

(`−1)
m ), gi,`(x

(`−1)
m ) =

gi(x
(`−1)
m ) with x(`−1)

m the maximizer of f`−1;
(P3) ∇f`(x(`−1)

m ) = ∇f(x(`−1)
m ), ∇gi,`(x(`−1)

m ) =

∇gi(x(`−1)
m ).

In [11] (see also [9], [12]) it is shown that, subject
to constraint qualifications, the sequence {f(x(`)

m )}` of
the solutions of the `-th Problem P`, is monotonically
increasing and converges. Moreover, every convergent
sequence {x(`)

m }` attains a first-order optimal point of
the original Problem (18). Thus, the sequential approach
enjoys strong optimality properties, fulfilling at the same
time the monotonic improvement property for the ob-
jective function, and the Karush Kuhn Tucker (KKT)
first-order optimality conditions for the original problem.
Nevertheless, its applicability hinges on determining
suitable lower bounds for the original objective to maxi-
mize, which fulfill all three properties P1, P2, P3, while
at the same time leading to manageable optimization
problems.

In conclusion, the successive lower-bound maximiza-
tion method can be formulated as variation of the alter-
nating optimization method, in which each subproblem
(18) is not globally solved, but instead is tackled by
sequential optimization theory. It is proved in [9] that
successive lower-bound maximization has the same op-
timality properties as the true alternating optimization
method, under similar assumptions, even though each
subproblem might not be globally solved3.

B. Sum-rate maximization

Consider Problem (15) and define the variable blocks
ηm, m = 1, . . . ,M , collecting the transmit powers of
access point m. Then, the sum-rate maximization with
respect to the variable block ηm is cast as

max
ηm

K∑
k=1

Rk(ηm,η−m) (19a)

s.t.
∑
k∈Km

ηk,m ≤ Pmax,m (19b)

ηk,m ≥ 0 ,∀ k ∈ Km (19c)

The complexity of (19) is significantly lower than that of
(15), since only the M transmit powers of access point m

3Of course, this holds provided the additional assumption of the
sequential method are fulfilled in each iteration

are being optimized. Nevertheless, Problem (19) is still
non-convex, which makes its solution difficult. Indeed,
defining

Ak,j,m = LHk GH
k,mĜj,m

(
ĜH
j,mĜj,m

)−1
Lj , (20)

the k-th user’s achievable rate can be expressed as

Rk(η)=W log2

∣∣∣∣∣∣σ2
zL

H
k Lk+

K∑
j=1

∑
m,`

√
ηj,mηj,`Ak,j,mAH

k,j,`

∣∣∣∣∣∣︸ ︷︷ ︸
g1(η)

(21)

−W log2

∣∣∣∣∣∣σ2
zL

H
k Lk+

K∑
j=1,j 6=k

∑
m,`

√
ηj,mηj,`Ak,j,mAH

k,j,`

∣∣∣∣∣∣︸ ︷︷ ︸
g2(η)

,

which can be seen to be non-concave, also with respect
to only the variable block ηm. Thus, following the suc-
cessive lower-bound maximization, (19) will be tackled
by sequential optimization. To this end, it is necessary
to derive a lower-bound of the objective of (19), which
fulfills Properties P1, P2, and P3, while at the same time
leading to a simple optimization problem. To this end,
the following lemma proves useful.

Lemma 1. The function f : (x, y) ∈ R2 → √xy is
jointly concave in x and y, for x, y > 0.

Proof: The proof follows upon computing the Hes-
sian of

√
xy and showing that it is negative semi-definite.

Details are omitted due to space constraints.
Lemma 1, coupled with the facts that the function

log2 |(·)| is matrix-increasing, and that summation pre-
serves concavity, implies that the rate function in (21) is
the difference of two concave functions. This observation
is instrumental for the derivation of the desired lower-
bound. Indeed, recalling that any concave function is
upper-bounded by its Taylor expansion around any given
point ηm,0, a concave lower-bound of Rk is obtained as

Rk(η) = g1(ηm)− g2(ηm) (22)

≥ g1(ηm)− g2(ηm,0)−∇Tηmg2|ηm,0(η − ηm,0)
= R̃k(ηm,ηm,0) .

Moreover, it is easy to check that R̃k fulfills by con-
struction also properties P2 and P3 with respect to Rk.
Thus, Problem (19) can be tackled by the sequential
optimization framework, by defining the `-th problem of
the sequence, P`, as the convex optimization program:

max
ηm

K∑
k=1

R̃k(ηm,ηm,0,η−m) (23a)

s.t.
∑
k∈Km

ηk,m ≤ Pmax,m (23b)

ηk,m ≥ 0 ,∀ k ∈ Km (23c)



Algorithm 1 Sum rate maximization
1: Set i = 0 and choose any feasible η2, . . . ,ηM ;
2: repeat
3: for m = 1→M do
4: repeat
5: Choose any feasible ηm,0;
6: Let η∗m be the solution of (23);
7: ηm,0 = η∗m;
8: until convergence
9: ηm = η∗m;

10: end for
11: until convergence

For any ηm,0, Problem (26) can be solved by means of
standard convex optimization theory, since the objective
is concave, and the constraints are affine. The resulting
power control procedure can be stated as in Algorithm
1. Moreover, based on the general theory reviewed in
Section III-A, the following result holds.

Proposition 1. After each iteration in Line 6 of Al-
gorithm 1, the sum-rate value

∑K
k=1Rk is not de-

creased, and the resulting sequence {
∑K
k=1Rk} con-

verges. Moreover, every limit point of the sequence
{ηm}m fulfills the KKT first-order optimality conditions
of Problem (19).

Two remarks are now in order. First of all an extreme
case of Algorithm 1 is that in which only one variable
block is used, namely optimizing all of the transmit
powers simultaneously. In this scenario, Algorithm 1
reduces to a pure instance of sequential optimization,
and no alternating optimization is required. Nevertheless,
as already mentioned, the complexity of this approach
seems prohibitive for large M and K. Then, another
extreme case is that in which the KM transmit powers
ηk,m are optimized one at a time, thus leading to
considering KM variable blocks. The advantage of this
approach is that each subproblem (23) would have only
one optimization variable, and thus could be solved in
closed-form. This brings drastic computational complex-
ity savings and proves to be useful especially in the
CF scenario, since in this case each variable block ηm
always has dimension K.

C. Minimum rate maximization

Consider Problem (16). Following similar steps as
in Section III-B, Problem (16) with respect to variable
block ηm becomes

max
ηm

min
1≤k≤K

Rk(ηm,η−m) (24a)

s.t.
∑
k∈Km

ηk,m ≤ Pmax,m; ηk,m ≥ 0 ,∀k ∈ Km

(24b)

Algorithm 2 Minimum rate maximization
1: Set i = 0 and choose any feasible η2, . . . ,ηM ;
2: repeat
3: for m = 1→M do
4: repeat
5: Choose any feasible ηm,0;
6: Let η∗m be the solution of (26);
7: ηm,0 = η∗m;
8: until convergence
9: ηm = η∗m;

10: end for
11: until convergence

Besides the difficulties already encountered in the sum-
rate scenario, Problem (24) poses the additional chal-
lenge of having a non-differentiable objective due to the
min(·) operator. To circumvent this issue, (24) can be
equivalently reformulated as the program:

max
ηm,t

t (25a)

s.t.
∑
k∈Km

ηk,m ≤ Pmax,m (25b)

ηk,m ≥ 0 ,∀ k ∈ Km (25c)
Rk(ηm,η−m) ≥ t ,∀ k = 1, . . . ,K . (25d)

At this point, it is possible to tackle (25) by the sequen-
tial method. Leveraging again the bound in (22) leads to
considering the approximate problem

max
ηm,t

t (26a)

s.t.
∑
k∈Km

ηk,m ≤ Pmax,m (26b)

ηk,m ≥ 0 ,∀ k ∈ Km (26c)

R̃k(ηm,ηm,0,η−m) ≥ t ,∀ k = 1, . . . ,K . (26d)

For any ηm,0, Problem (26) can be solved by means of
standard convex optimization theory, since the objective
is linear, and the constraints are all convex. The resulting
power control procedure can be stated as in Algorithm
2, which enjoys similar properties as Algorithm 1.

IV. NUMERICAL RESULTS

In our simulation setup, we consider a communication
bandwidth of W = 20 MHz centered over the carrier
frequency f0 = 1.9 GHz. The antenna height at the
AP is 15 m and at the MS is 1.65 m. The standard
deviation of the shadow fading is σsh = 8 dB, the
parameters for the three slope path loss model in (3) are
d1 = 50 m and d0 = 10 m, the parameter δ in (5) is 0.5
and the correlation distance in (6) is ddecorr = 100 m.
The additive thermal noise is assumed to have a power
spectral density of −174 dBm/Hz, while the front-end
receiver at the AP and at the MS is assumed to have
a noise figure of 6 dB. The shown results come from
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Figure 1. Downlink achievable sum-rate for the case of uniform power
allocation and of sum-rate maximizing power allocation.
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Figure 2. Downlink average achievable rate per user CDF for the case
of uniform power allocation and of minimum-rate maximizing power
allocation.

an average over 100 random scenario realizations with
independent MSs and APs locations and channels. We
quantitatively study and compare the performance of the
CF and UC massive MIMO architectures. We consider
M = 60 APs and K = 15 MSs spread over a square area
of 800× 800 sqm.; we assume NAP = 4, NMS = 2 and
Pk = 2, ∀k = 1, . . . ,K. The MSs transmit power is 0.1
W during uplink channel estimation, and the pilot length
is τp = 32. Fig. 1 reports the system sum-rate, versus
the downlink maximum transmit power per AP PT , for
the CF and UC approaches, and for the case in which
uniform power allocation or sum-rate maximizing power
allocation is used. Both the cases of perfect channel state
information (CSI) and of partial (i.e., estimated) CSI are
considered. Results show that the sum-rate maximizing
power allocation provides much better results than the
uniform power allocation, especially for the case of

partial CSI. Also, while the CF and UC approaches are
practically equivalent in the perfect CSI scenario, the UC
approach outperforms the CF one in the relevant scenario
of partial CSI. Indeed, for partial CSI, APs that are very
far from the MS of interest perform very noisy channel
estimates, and so their contribution to the communication
process is detrimental; this effect is instead not observed
in the case of perfect CSI. Fig. 2 shows the CDF of the
rate-per-user for the case of uniform power allocation
and minimum rate maximizing power allocation. It is
seen that the latter strategy is effective in increasing
the system fairness and in maximizing key performance
measures such as the 95%-likely-per-user throughput. As
an example, for the case of UC approach with partial
CSI, when the proposed power control algorithm is
used in place of uniform power allocation, this number
increases from 12.6 Mbit/s to 16.5 Mbit/s (+30%).

V. CONCLUSION

Downlink power control algorithms aimed at maxi-
mizing either the sum-rate or the minimum rate for a
CF massive MIMO system have been introduced, and
sample numerical results have been provided. Current
work is focused on the consideration of power allocation
strategies maximizing the system energy efficiency.
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