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Fig. 1: System model of a small-cell network with high spatial reuse
through antenna directionality. BS1-5 are co-channel small-cell base
stations (BSs) serving multiple clients synchronously

In this paper we explore a low-overhead and efficient
way to integrate directionality into wireless small-cell
operations using compact, electronically reconfigurable
antennas. Unlike beamforming techniques that employ
multiple Radio Frequency (RF) chains to achieve di-
rectionality, reconfigurable antennas integrate multiple
miniature radiating elements on a single device, thereby
producing several distinct radiation patterns without
any additional RF circuitry. This makes reconfigurable
antennas immediately applicable for use with client-side
mobile devices, which usually have a single RF chain and
can use only one antenna at a time. To make small-cell
interference management practical with reconfigurable
antennas, we propose LinkPursuit, a novel wireless
network design that deploys reinforcement learning-based
antenna state selection methods on top of a synchronous
MAC protocol and adapts well to environmental changes.

The challenge of designing efficient MAC protocols
with directional antennas for wireless ad hoc networks has
been well studied [2]. A substantial number of directional
MAC protocols in the literature belong to the contention-
based, random access category. Our work focuses on
building a directional MAC protocol that coordinates
contention-free directional transmissions and receptions
to occur simultaneously in an optimal way. Along this
line, DIRC [3] and MiDAS [4] systems also explore
multi-beam adaptive antenna systems for simultaneous
transmissions in the same time slot. However, unlike ours,
these approaches rely heavily on protocol coordination
to assess and schedule antenna directions and are usually
not resilient to intermittent environmental changes.

Stochastic online learning using reinforcement learning
algorithms has recently gained significant attention in

Abstract—Beam-steering techniques using directional 
antennas are expected to play an important role in wireless 
network capacity expansion through ubiquitous small-cell 
deployment. However, integrating directional antennas into 
the existing wireless PHY and MAC stack of small cells has 
been challenging due to the added protocol overhead and 
lack of a robust antenna beam selection technique that can 
adapt well to environmental changes. This paper presents 
the design, implementation, and evaluation of LinkPursuit, 
a novel learning protocol for distributed antenna state 
selection in directional small-cell networks. LinkPursuit 
relies on reconfigurable antennas and a synchronous Time-
Division Multiple Access (TDMA) MAC to achieve simul-
taneous directional transmission and reception. Further, 
the system employs a practical antenna selection protocol 
based on the well known adaptive pursuit algorithm from 
the reinforcement learning literature. We implement a real-
time prototype of LinkPursuit on the WARP platform and 
conduct extensive experiments to evaluate its performance. 
The empirical results show that appropriate use of di-
rectionality in LinkPursuit can result in higher network 
sum rates than omnidirectional transmission under various 
degrees of cross-link interference.

I. INTRODUCTION

Network densification—the practice of deploying more
radio access nodes into a geographical area—is being
considered as a cost and bandwidth-effective method
to increase wireless network capacity. In a dense het-
erogeneous network, small-cell systems, (also known
as femtocells) co-exist and cooperate with high-power
macrocells to serve users’ traffic demands. To mitigate the
interference problem in such a dense deployment, many
advanced management techniques have been proposed, in-
cluding those that use antenna directionality [1]. By using
directional antennas, small-cell network nodes can focus
energy in only the intended direction, thereby creating less
interference between links and more potential for spatial
reuse. Nevertheless, bringing these techniques to practice
has been challenging for two reasons: (i) the difficulty of
integrating directional antennas into the existing wireless
physical layer (PHY) and medium access control (MAC)
stack of small cells, and (ii) the lack of robust antenna
beam-steering (or beam selection) techniques that can
cope well with the wireless channel’s stochastic nature
and dynamics in the operating environment of small cells.



the wireless community [5, 6]. The body of work
on applying multi-armed bandit (MAB) formulation
in wireless communications is also rich, encompassing
spectrum sensing and secondary user access [5], as
well as antenna subset selection [6]. However, these
studies are still primarily theoretical and simulation-
based. An experimental study using MAB with real
measured channels can be found in [7] for the problem
of antenna state selection, but the learning process also
appears to progress offline on channel traces. Furthermore,
the proposed antenna selection policies assume a non-
varying channel condition, which is not suitable for real-
world deployment. In contrast, we focus on modifying a
powerful reinforcement learning policy to operate in real
time and adapt well to dynamic interference conditions.

Our contributions in this paper are three-fold: First,
we present the LinkPursuit wireless architecture, which
employs reconfigurable antennas and a TDMA MAC
to achieve simultaneous directional transmission and
reception for interference avoidance and spatial reuse. For
antenna orientation, LinkPursuit relies on reinforcement
learning to dynamically select in each time slot the
optimal antenna states at both the transmitter and receiver
link ends with negligible protocol overhead. The system
model for LinkPursuit is shown in Fig. 1. Second, we
propose a concrete and robust antenna state selection
method for use in LinkPursuit. Unlike prior applications
of reinforcement learning in this area, we formulate
the antenna state selection task as a non-stationary
MAB problem, wherein the reward generating processes
associated with the bandit’s arms undergo changes over
time. Our solution uses a well-known selection policy
called adaptive pursuit [8], which we carefully tailor to
the distributed nature of a wireless link where decisions
need to be split between the transmitter and receiver. At
each decision-making epoch, a network node decides
on an active antenna mode based on observations of
the outcomes from previous choices, with the objective
to identify the optimal antenna state which maximizes
the Packet Delivery Ratio (PDR). Third, we implement
LinkPursuit on the Wireless open-Access Research Plat-
form (WARP) [9] and conduct a series of real-time over-
the-air experiments indoor to quantify its performance
with respect to both omnidirectional transmission and less
practical antenna state selection schemes. The empirical
results show that appropriate use of directionality in
LinkPursuit can result in higher network sum rates in
dense small-cell deployments, delivering on an average
70% increase in network-sum PDR over omnidirectional
transmission under various degrees of interference.

The paper is organized as follows: Sec. II describes
LinkPursuit system architecture. We present in details
the antenna selection protocol of LinkPursuit in Sec. III.
Sec. IV describes our experimental methods and results.
Finally, we conclude the paper in Sec. V.

II. LINKPURSUIT SYSTEM ARCHITECTURE

In this section we present the wireless network design
of LinkPursuit. The system constitutes a cross-layer
design which enables the MAC layer to assume control
of antenna orientations and schedule (select) the optimal
antenna configuration it perceives. It requires only a
single RF chain per radio node and is agnostic of the
PHY signaling method used, which makes LinkPursuit
applicable to both LTE small-cell and 802.11 networks.
Below we highlight several design decisions and the
rationale behind them.

A. Antenna Subsystem

The antenna subsystem of LinkPursuit is depicted in
Fig. 2a. First, the design relies on compact reconfigurable
antennas to realize directional beams using a single RF
chain. Unlike smart antenna systems which use multiple
RF chains to achieve directionality through beamforming,
reconfigurable antennas integrates multiple radiating
elements on a single device, with a switchable impedance
matching circuit for each supported configuration. This
enables the antennas to produce steerable directed beams
with lower processing overhead in a smaller form factor,
making it highly suitable for power and cost-constrained
client devices, such as smart phones and laptops. The
drawback is that only one antenna state can be used or
accessed at a given time.

Second, the antenna subsystem provides a number of
discrete antenna states, including one omnidirectional
mode and one or more directional modes. Wireless
network devices use the omnidirectional antenna mode
for idle listening, management packets, and control
packets. They use one of the directional modes for
data transmission and reception. These design choices
are based on the following observations: i) control
packets are often of broadcast nature, ii) directional
transmission and reception improve network capacity,
provided that suitable antenna orientations are used, and
iii) omnidirectional antenna state is needed to maintain
standard compliance in other traditional network settings.

Third, antenna control is delegated to the MAC layer,
which configures the antenna state prior to pushing a
packet into the PHY buffer for transmission. On the
receiving end, the MAC software also selects an antenna
state for reception in a given time slot. This packet-
based antenna control eliminates the need to augment the
physical layer to implement transmit antenna assessment
and receive diversity selection logic. It also enables the
LinkPursuit system to be immediately deployable on
existing PHY chipsets via a firmware upgrade.

B. MAC Layer Design

LinkPursuit divides time into time slots and employs
a TDMA-based MAC protocol to support antenna state
assessment and scheduling in a network-wide setting.
The MAC layer incorporates necessary mechanisms
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Fig. 2: LinkPursuit system architecture showing the interplay between the antenna subsystem and MAC protocol

for PHY control, time synchronization, time-frequency-
space resource scheduling, packet buffering, and antenna
selection logic. Here we highlight the important MAC
features that directly support custom antenna selection
policies, and refer the reader to [10] for a full description
of our prototype implementation, including all the listed
functional blocks.

TDMA Frame Structure: a TDMA frame constitutes
a series of time slots for packet transmission. As depicted
in Fig. 2b, it starts with a Sync signal from the main
BS (e.g., macrocell), followed by a number of Physical
Resource Blocks (PRBs), and ends with a Guard time
slot. Each PRB is further broken down into a number of
regular time slots (shown as two in Fig. 2b), which can
be used to send packets in different antenna orientations.
The small-cell BSs assign available PRBs in the TDMA
frame to their respective clients on a per-user per-link
(up- or downlink) basis, and links in the same collision
domain may be concurrently scheduled. However, the
antenna orientations used in each Data time slot of a
PRB by the scheduled sender and receiver are completely
up to the antenna state selection logic, which we will
discuss in details in Sec. III. Figure 2c illustrates the
MAC and antenna operations of an example network link
throughout the TDMA frame.

As designed, LinkPursuit MAC layer supports four
resource block types: Beacon, Ack, Data, and Empty.
Beacon PRBs are used by base stations to broadcast
BEACON control packets which carry resource schedules,
link statistics, and other control information from their
service set (each BS and its served clients form a service
set). Ack PRBs are used by clients to send ACK packets
for block-acknowledging data reception in previous Data
slots, as well as passing the clients’ link states. Note
that acknowledgements are not sent following each Data
packet, but must be aggregated in a single control packet
per TDMA frame for efficiency. In addition, control
packets from different service sets that are sent in the
same control time slot should be orthogonal either in time,
frequency, or code to ensure correct data link operations.
Data PRBs are used for data transfer in either up- or
downlink directions, and an Empty PRB denotes an
unallocated block. In our current implementation, each
TDMA frame consists one Beacon, one Ack, and 16
Data PRBs. Each PRB has two time slots of 1.6 ms each.
Under the reconfigurable antenna-equipped synchronous

wireless system described above, we next describe a
distributed antenna state selection policy based on the
concept of reinforcement learning.

III. ANTENNA SELECTION PROTOCOL

This section addresses the antenna state selection
requirement at all scheduled wireless nodes in each data
time slot. We cast the problem as a multi-armed bandit
optimization, a specific class of reinforcement learning
problems. MAB represents the classic trade-off between
exploitation and exploration in that an agent, through
repeated interactions with the unknown environment and
analyzing the received stochastic rewards, must choose
between (i) maximizing expected profit using current
knowledge of the environment, achieved by selecting
the currently perceived best arm (i.e., option), and (ii)
trying to learn more about the environment by exploring
other arms to improve the quality of its decisions. Many
well-known MAB selection policies, such as the family
of Upper Confidence Bound (UCB) policies [11], have
been shown to achieve the optimal performance on
the cummulative reward. However, these policies are
developed for the stationary bandit problem, in which the
reward generating processes are stochastic but stationary
over time. Below, we consider a non-stationary MAB
problem that is more suitable for a dynamic network
setting and propose to adapt and integrate the adaptive
pursuit selection policy, developed by Thierens [8], into
the complete wireless MAC/PHY stack in LinkPursuit.

A. Problem Formulation

Consider a small-cell network with an arbitrary number
of base station (BS) and client pairs operating in the
same wireless channel. Each BS serves a client for
whom it would like to maximize the downlink throughput
over a finite number of time slots. At the beginning
of each downlink time slot (uplink can be handled
similarly), the BS and client are presented with M and
N possible antenna states, respectively. The BS selects
a state for packet transmission, and the client selects
one for reception in that time slot. In MAB terms, the
combination of the Tx antenna state at the BS and Rx
antenna state at the client forms an M×N choice (or arm)

matrix A =

(
a11 ··· a1N

...
. . .

...
aM1 ··· aMN

)
. After making a choice in

time slot t, the BS-client link receives a numerical reward
R(t) depending on the selected arm aij in that time slot.



In this work we use PDR as the reward metric and
assume that the reward in time slot t for some selected
antenna state aij is drawn from an unknown Bernoulli
distribution: with probability µij(t) the packet is received
successfully, i.e. reward R(t) = 1; otherwise, R(t) = 0.
Further, the reward distribution mean for each arm aij
changes over time, that is, ∃t1, t2 ∈ [1, T ] and t1 6= t2,
such that µij(t1) 6= µij(t2).

Our objective is to develop a robust antenna state
selection strategy that can adapt well to the changes in the
reward distributions while at the same time maximizing
the expected reward output.

B. Adaptive Pursuit Method Overview

Algorithm 1 Adaptive Pursuit Selection Policy [8]
Input: M,N,Pmin, α, β
Output: {aīj̄} . Series of antenna states to select

1: Pmax ← 1− (M ·N − 1)Pmin; t← 0
2: for i← 1 to M do . Initialize P and Q matrices
3: for j ← 1 to N do
4: Pij(0)← 1

M·N ; Qij(0)← 1.0
5: end for
6: end for
7: while NOTTERMINATED( ) do . Main loop
8: aīj̄ ← PROPORTIONALSELECTSTATE(P(t))
9: R(t)← GETREWARD(aīj̄) . Update rewards

10: Qīj̄(t+ 1) = (1− α)Qīj̄(t) + αR(t)

11: i∗j∗ = ARGMAXij (Q(t+ 1)) . Update prob. of sel.
12: Pi∗j∗(t+ 1) = Pi∗j∗(t) + β [Pmax − Pi∗j∗(t)]
13: for i← 1 to M do
14: for j ← 1 to N do
15: if ij 6= i∗j∗ then
16: Pij(t+ 1)← Pij(t) + β [Pmin − Pij(t)]
17: end if
18: end for
19: end for
20: t← t+ 1 . Advance time index
21: end while

We propose to use the adaptive pursuit strategy due
to its fast convergence toward the current optimal so-
lution [8]. Originally proposed for learning automata,
the adaptive pursuit strategy is a probabilistic selection
policy; it identifies at each time step (slot) the optimal
selection probability Pij(t) for every antenna state aij
such that the expected cumulative reward is maximized
at the end of the run. The arms’ selection probabil-
ities are specified in an operator probability matrix

P(t) =

(
P11(t) ··· P1N (t)

...
. . .

...
PM1(t) ··· PMN (t)

)
, where 0 ≤ Pij(t) ≤ 1

and
∑

i,j Pij(t) = 1. Toward this reward maximization
goal, the adaptive pursuit algorithm maintains an operator

quality matrix Q(t) =

(
Q11(t) ··· QM1(t)

...
. . .

...
QM1(t) ··· QMN (t)

)
that keeps

a running estimate of the reward for each arm. Whenever
arm (antenna state) aij is selected, its current reward es-
timate Qij(t) is updated with the corresponding received

reward R(t) using an exponential, weighted averaging
mechanism as:

Qij(t+ 1) = (1− α)Qij(t) + αR(t) (1)

where the adaptation rate α, 0 < α ≤ 1 discounts the
past reward estimates obtained for arm aij .

At each time step t, the adaptive pursuit method biases
in its random selection toward the operator ai∗j∗ that
currently has the maximum estimated reward Qi∗j∗(t),
using a “winner take all” strategy: it increases the
selection probability of the best arm toward Pmax, while
decreasing all other selection probabilities toward Pmin,
0 < Pmin < Pmax < 1. The selection probabilities for
the next time slot are updated as follows:

Pi∗j∗(t+ 1) = Pi∗j∗(t) + β [Pmax − Pi∗j∗(t)] ,

for i∗j∗ = argmaxij{Q(t)}
Pij(t+ 1) = Pij(t) + β [Pmin − Pij(t)] , ∀ij 6= i∗j∗

(2)
under the constraint Pmax = 1− (MN − 1)Pmin. The
learning rate β determines the convergence speed and
accuracy, and the constraint ensures that if

∑
i,j Pij(t) =

1, the sum of the updated selection probabilities equals
one in the next time step. We summarize the adaptive
pursuit policy for antenna state selection in Algorithm 1.

C. LinkPursuit Antenna Selection Protocol

LinkPursuit employs a practical modification of the
adaptive pursuit selection policy presented above for its
antenna selection logic. We alter the selection policy
to be conducive to the distributed nature of a wireless
link: decisions are split between transmitter and receiver
and coordinated via a MAC protocol. In LinkPursuit,
every node in the network maintains two link-state tables
for each of its unicast links: a Send table to derive the
optimal antenna state for packet transmission to its link
counterpart and a Receive table to derive the optimal
antenna state for packet reception from that node. For a
downlink transmission, the BS will use its Send table,
and the client will use its Receive table to select the
optimal antenna states at both ends in any scheduled
time slot.

Each Send and Receive table contains two matrices:
an antenna state selection probability matrix P, and an
antenna state quality matrix Q (explained in Sec. III-B)
which keeps track of the reward estimates for all available
antenna state combinations. In a downlink scenario,
entries in the BS Send table’s matrix contain the pursuit
statistics for arms aij , representing the combination of
the BS’s Tx antenna state i and the client’s Rx antenna
state j. Similarly, the BS Receive table, which is used to
orient antennas in an uplink transmission, keeps pursuit
statistics for arm aji which is the combination of the
client’s Tx antenna state j and BS’s Rx antenna state i.

After synchronizing with the network, a node receives
resource allocation schedules through Beacons and knows
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when it is supposed to receive a packet. This scheduling
information forms the basis of our PDR reward metric: if
a packet is not correctly received by a network node (i.e.,
failing CRC check) in a scheduled receive time slot, the
node perceives a reward of 0 for that send-receive mode
combination. Otherwise, it receives a reward of 1. Other
major components of the antenna selection protocol are
summarized below.

Updating Pursuit Statistics: Since our reward metric
is the PDR, the actual reward outcome—whether a packet
is received or not in each time slot—is observable only
by the link receiver. Therefore, the Receive table at
the receiver node gets updated continuously following
each transmission. In contrast, the Send table at the
transmitter node is updated only through the MAC
protocol operations, when the receiver passes its most
recent Receive table via a control packet (Beacon or Ack).
Essentially the Send table at the transmitter is a cached
copy of the Receive table maintained online at the receiver.
For any unicast link, it is crucial to maintain coherency
between its transmitter’s Send table and receiver’s Receive
table by not letting them drift too far apart in time without
periodic updates, as they independently supply the pursuit
statistics for distributed selection of send antenna state at
the transmitter and receive antenna state at the receiver.
The pursuit statistics tables and their update processes
are shown in Fig. 3.

Distributed Antenna State Selection: The adaptive
pursuit algorithm assumes that in each time slot, both the
BS and client jointly select an arm aij , the combination
of Tx antenna state i and Rx antenna state j, from a
joint probability distribution specified by the operator
probability matrix P. However, this is not feasible in
practice due to the prohibitive overhead of maintaining
an up-to-date P at both link ends and jointly performing
the selection in each time slot. To reduce the coordination
overhead, LinkPursuit divides the joint antenna state
selection process into two separate phases, one for Tx and
the other for Rx antenna selection, following the definition
of conditional probabilities: Pr(S∩R) = Pr(S)·Pr(R|S),
where S and R are random variables representing the Tx

and Rx antenna states, respectively. As a result, the Tx
antenna state in time slot t is selected randomly according
to the pursuit marginal distribution of send modes PS(t),
specified as:

PS
i (t) = Pr(S = i) =

N∑
j=1

Pij(t), i = 1, . . . ,M (3)

The Rx antenna state is then selected conditionally from
the pursuit conditional distribution of receive modes,
given a preselected sending mode i (1 ≤ i ≤ M),
specified as:

PR
j (t) =

Pr(S = i ∩R = j)

Pr(S = i)
=
Pij(t)

PS
i (t)

, j = 1, . . . , N

(4)
Essentially, a unicast link transmitter preselects a

random send antenna mode for each scheduled PRB
of the link in the TDMA frame, according to the current
statistics in its Send table. Note that the chosen send
mode applies to all time slots in the PRB to keep the
network-wide interference condition relatively static for
that single PRB and enable the algorithm to converge. To
make this information available at the receivers for Rx
antenna selection, LinkPursuit delegates all Tx send mode
selections to the base station, including both downlink and
uplink data traffic in the TDMA frame. At the beginning
of the frame, since the BS has all needed pursuit statistics
in its Send table (for downlink send mode selections) and
uplink Receive table (for uplink send mode selections on
behalf of clients), it preselects send antenna modes for all
transmissions scheduled in the frame and broadcasts this
information together with the link schedule. On the other
hand, the link receiver selects a receive mode dynamically
in each time slot it is scheduled to receive, given the
chosen send mode in that slot and using its up-to-date
Receive table. This distributed antenna selection method
is pursuant to the update frequency of pursuit statistics at
both link ends (Send tables are updated once per TDMA
frame, while Receive tables in each time slot).

IV. IMPLEMENTATION AND EVALUATION

We implement LinkPursuit on the WARP platform by
augmenting its open-source 802.11 Reference Design with
our Reconfigurable Alford-Loop Antenna (RALA) [12]
and custom software layers for the TDMA and antenna
selection operations described in Secs. II and III. Our
RALA can radiate in both an omnidirectional pattern as
well as four directional beams at 90◦ separation. We add
to the FPGA-based 802.11 PHY design a programmable
antenna controller hardware, realized using a generic
16-pin GPIO header connecting to the antenna circuitry.
The MAC software framework is implemented using a
dual-core architecture with two embedded Microblaze
soft processor cores. Our testbed implementation details
can be found in [10]. The antenna selection procedure is
implemented according to Fig. 4.



Fig. 4: Flow diagram of the LinkPursuit antenna adaptation process

We evaluate LinkPursuit’s performance using real-
time over-the-air transmissions under both a single-link
scenario with no co-channel interference, and scenar-
ios involving two concurrent interfering links. In our
experiments presented below, we allocate all available
PRBs for downlink transmission, with multiple BSs
concurrently transmitting in each time slot. All control
packets (Beacons and Acks) belonging to the same control
time slot are further orthogonalized in time (ordered by
service set), but Data packets are allowed to interfere.
We conduct all experiments on WiFi channel 14 with
fixed PHY settings at QPSK with convolutional code
rate of 1/2, yielding a consistent PHY rate of 12 Mbps.
The adaptive pursuit parameters are set by default to be
α = 0.05, β = 0.1, and Pmax = 0.9. These parameters
are chosen based on practical observations of the protocol
performance.

A. Microbenchmark Verification

We set up a single BS-client link in a typical indoor
office environment to verify LinkPursuit’s ability to
estimate and adapt to changing reward conditions. The BS
uses a reconfigurable antenna, while the client operates
with an omnidirectional dipole antenna. The real-time
network operations are periodically frozen after 200
TDMA frames (6600 downlink packets) to inspect the
pursuit statistics on the antenna adaptation process and
induce artificial environmental changes, such as disabling
(grounding control pin to reduce antenna gain) the
currently perceived “optimal” Tx antenna mode. The
verification procedure starts with all Tx directional modes
active and then selectively disables among the remaining
modes the current best Tx mode with the highest reward
estimate after each 200-frame round.

Figure 5 shows the reward estimates and selection
counts of the four possible directional Tx antenna modes
as perceived and selected by LinkPursuit at the end of
each round. Since we used an omnidirectional antenna at
the receiving client, we aggregate the performance metrics

Fig. 5: Reward estimates (top plot) and the actual selection counts
(bottom plot) for the four possible directional Tx modes under
LinkPursuit’s learning policy. Each verification step encompasses 6600
downlink packets.

of each Tx mode across all Rx antenna modes and present
them. We observe that during each measurement round,
the number of times a Tx antenna mode is selected
consistently tracks its reward estimates. The current
highest-reward Tx mode is selected the majority of the
time, and a small fraction of time is necessarily spent
exploring the remaining modes for adaptation. Once a
mode becomes suboptimal, its reward is correctly updated
within a single 200-frame round.

B. Impact of Directionality on Spatial Reuse

We quantify LinkPursuit’s performance in an
interference-limited environment with two concurrent
BS-client links. We set up two BS-client links within the
same vicinity indoor, under the measurement topology
shown in Fig. 6a. All network nodes are equipped with
reconfigurable antennas. We conduct transmission rounds
of 100 TDMA frames, with 33 downlink and 1 uplink
data slots per frame, and measure the downlink PDR and
MAC goodputs MAC at each client. For each experiment,
we compare LinkPursuit’s performance to those of
omnidirectional, random selection, and exhaustive search
(ES) schemes. In the ES scheme, we sweep through all
available directional antenna state combinations (16 for
each link, and 256 for the two-link network) to determine
a posteriori the optimal configuration which achieves the
highest downlink sum rate.

In the first experiment, we sequentially increase the
transmit powers of both BSs to generate stronger cross-
link interference and observe the MAC layer goodputs.
Figure 6b shows the downlink PDRs of the different
transmission schemes across the range of Tx powers. In
the Omni scenario, due to severe cross-link interference,
only Link 2 can sustain a usable PDR. Client C1 is
completely dominated by the interfering signals from BS2
and fails to deliver any MAC goodput. In contrast, the
sum rate (total MAC goodput) of LinkPursuit consistently
exceeds that of Omni by 74% on an average. Most
of this sum rate improvement stems from the PDR



(a) Measurement setup (b) IF reduction at different Tx power levels (c) Downlink sum rates at different SINRs

Fig. 6: Two-link interference measurement results of the LinkPursuit protocol

increase of Link 1 - the weaker link in the Omni case.
Furthermore, this spatial reuse gain of LinkPursuit persists
across the range of transmission powers. We also note
that LinkPursuit consistently delivers close to 90% of
the sum rate achieved by the a posteriori search ES
scheme. The remaining performance gap is within reason
for our implementation of LinkPursuit adopts a 90/10
exploitation-exploration ratio.

To study LinkPursuit’s performance under asymmet-
rical interference conditions, we keep the Tx power of
BS2 constant at 15 dBm and gradually increase BS1’s
Tx power to generate fluctuating SINRs at both clients.
Figure 6c depicts the downlink sum rate achieved under
these conditions. In the Omni case, the throughput of
a link is highly dependent on its Tx power ratio to the
interference source. Due to its uniform proximity to both
BSs, client C1 experiences stronger interference than
C2 and yields much lower SINRs and throughput. This
topology-dependent SINR loss can be compensated by
increasing BS1’s Tx power with respect to BS2, but
at the price of a corresponding decrease in the second
link’s performance. In contrast, LinkPursuit delivers well-
balanced, close to optimal link throughputs across the
range of power ratios. This capability greatly simplifies
the task of interference management and ensures reliable
quality of service for users.

V. CONCLUSION AND FUTURE WORK

We have presented the design, implementation, and
evaluation of LinkPursuit, a novel learning protocol
for distributed antenna state selection in directional
small-cell networks. LinkPursuit incurs low overhead
and adapts quickly to environmental changes through
probabilistic selection at each time step. Our experimental
results confirm that coordinated directional transmission
provides significant advantages in terms of mitigating co-
channel interference over omnidirectional transmission.
However, LinkPursuit is not without limitations. The
system optimizes link throughput greedily on a per-
link basis, so it often disregards potential sum rate
improvement from network cooperation. Future work
can investigate automated parameter tuning of pursuit
operations in terms of adaptation rate α and learning rate

β, which will enable adaptive exploration-exploitation
ratios and can further improve performance. Effort is also
warranted to consider the benefits of network cooperation
in LinkPursuit.
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