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Abstract—Massive multiple-input multiple-output (massive
MIMO) and small cell densification are complementary key
5G enablers. Given a fixed number of the entire base-station
antennas per unit area, this paper fairly compares (i) to deploy
few base stations (BSs) and concentrate many antennas on each
of them, i.e. massive MIMO, and (ii) to deploy more BSs equipped
with few antennas, i.e. small cell densification. We observe that
small cell densification always outperforms for both signal-to-
interference ratio (SIR) coverage and energy efficiency (EE),
when each BS serves multiple users via L number of sub-
bands (multi-carrier transmission). Moreover, we also observe
that larger L increases SIR coverage while decreasing EE, thus
urging the necessity of optimal 5G network design. These two
observations are based on our novel closed-form SIR coverage
probability derivation using stochastic geometry, also validated
via numerical simulations.

Index Terms—massive MIMO, small cells , energy efficiency,
coverage probability, downlink, stochastic geometry, 5G.

I. INTRODUCTION

Performance improvements such as having wider coverage,
higher user data rate, higher energy efficiency and lower
latency are under an intensive investigation for the design of
the fifth generation (5G) and beyond cellular architectures.
These improvements are fundamental to achieve the dramatic
growth of connected devices and the tremendous amount of
data in applications such as voice, videos, and games [1],
as well as applications in wireless virtual-reality [2]. Novel
innovative network technologies are used to meet the required
performances. First, transmission with massive multiple-input
multiple-output (MIMO) [3] is considered as a candidate
technology for 5G. The key feature of this technology is
the use of a large number of antennas at the base station
compared to the number of users. The more antennas the
base stations are equipped with, the better the performance
is in terms of data rate and energy consumption [4]. A second
promising technology is small cell networks [5], that consists
of a dense number of small cell base stations in a given
area. Due to the short distance between the base station
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(BS) and the user terminals, small cell networks have a low
path loss thus yielding a low power consumption which can
improve the energy efficiency (EE). For a given total number
of BS antennas, interesting strategies in the deployment of
these two technologies are either i) low density deployment
of base stations with many antennas, i.e, massive MIMO or
ii) a higher density deployment of BSs equipped with fewer
antennas. Understanding which strategy is preferable is one
of the goals of this work.

In fact, many works analyzed the impact of the massive
amount of antennas on the EE. In particular, the work in [6]
solves the EE maximization problem for a multi-cell multi-
user MIMO network and shows that small cells yield higher
EE. In [6], the authors give insights on how the number of
antennas at the BS must be chosen in order to uniformly cover
a given area and attain maximal EE. Altough many works
study massive MIMO and small-cell densification, very few
have focused on comparing their performance. Our goal is to
analyze which one of the two technologies perform better in
terms of the coverage probability and energy efficiency.

A comparison has been recently presented in [7]. The mas-
sive MIMO and small-cell systems were compared in terms of
spectral and energy efficiency bounds. The authors observe via
simulations that for the average spectral efficiency, small-cell
densification is favourable in crowded areas with moderate to
high user density and massive MIMO is preferable in scenarios
with low user density. In contrast to the analysis in [7], we
derive exact expressions of the coverage probability and EE
by assuming other constraints on the model then we compare
between massive MIMO and small cell networks in terms
of these two metrics. One of the intersting constraint is to
assume multi-carrier transmission in which the total bandwidth
is divided into L ≥ 1 sub-bands. Then, instead of studying the
downlink performance when each BS serve a single user at
each time/frequency, we consider that each BS is scheduled to
serve simultaneously multiple users on each sub-band. We also
cancel the interference by using zero-forcing (ZF) processing.
In addition, instead of introducing massive MIMO and small-
cell systems separately, we examine the problem with a single
system model by varying the number of BS antennas under
the constraint of a fixed total number of BS antennas per978-1-5386-3531-5/17/$31.00 c© 2017 IEEE
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unit area. In this work, we derive analytic expressions for
the coverage probability and EE using a stochastic geometry
approach [8]. The key feature of this approach is that the base
station positions are all independent which allows to use tools
from stochastic geometry.

The rest of this paper is organized as follows. Section
II details our system model of downlink transmission using
linear processing ZF under perfect channel state information
(CSI) at each base station. General expressions for coverage
probability and EE are derived in Section III. In Section IV,
numerical results are used to validate the theoretical analysis
and make comparisons between massive MIMO and small cell
densification for both coverage probability and EE metrics.
Finally, the major conclusions and implications are given in
Section V.

The following notation is used in this paper. The expectation
operation with respect to a random variable and the absolute
value are denoted by E{.} and |.|, respectively. We denote by
IM the M×M identity matrix, and we use CN (0,Σ) to denote
a circularly symmetric complex Gaussian distribution with
zero-mean and covariance matrix Σ. The Gamma function
is denoted as Γ(.). The bold lower-case letters as h represent
vectors, whereas the bold upper-case as H are matrices.

II. NETWORK MODEL

The cellular network consists of BSs independently dis-
tributed according to a homogeneous Poisson point process
(PPP) Φ of intensity λBS (measured in BSs/km2), and is
depicted in Figure 1. Each base station is equipped with an
array of M antennas. We consider an independent collection
of single antenna mobile users, located according to another
independent stationary PPP Ψ with intensity λUE. We assume
that each user connects to its closest BS, namely each BS
serves the users which are located within its Voronoi cell [9].
In this section, assuming perfect CSI at each BS we study the
signal model for downlink system. With this goal in mind, we
first consider a typical user, which is connected to a tagged
BS (BS0). Since user locations are translation-invariant, we
consider that the typical user is always located at the origin.
This typical user’s received signal y is then given as

y = r−α0 hH0 x0︸ ︷︷ ︸
Desired signal

+
∑

BSi∈Φ\{BS0}

r−αi hHi xi︸ ︷︷ ︸
Interference

+n, (1)

where the stochastic vector hi ∈ CM denotes the small scale
fading between the i-th base station to the typical user. It
follows a complex generalized Gaussian distribution denoted
as hi v CN (0, IM ). The channel is considered to be noisy,
with the Gaussian noise n of variance K

P added to the received
signal. The variable ri is the distance from the typical user
to its closest base station BSi and α ≥ 2 is the path-loss
exponent. We denote xi ∈ CM an arbitrary symbol transmitted
from the i-th base station. In addition to the received signal

model in (1), we define the signal-to-interference-plus-noise
ratio (SINR) of the typical user as

SINR =
r−α0 hH0 x0∑

BSi∈Φ\{BS0}
r−αi hHi xi + n

. (2)

We suppose that the BSs must be deployed to match a given
finite user density of λUE UEs/km2, then each base station
serves in average K = λUE

λBS
users. The total bandwidth W

is divided into L ≥ 1 sub-bands. Therefore, K = K
L ≤ M

users are simultaneously served on each sub-band by each base
station. We assume that the total number of antennas λBSM
is fixed and should be deployed in a given area. Based on
this assumption, for simplicity we set λBSM= λUE, then the
number of antennas in each base station is given by M = λUE

λBS

which is always equal or greater than K. We suppose that P =
E[xHi xi] is the average transmit power per base station which
is given as Pmax

λBS
, where Pmax is the maximum power used

when all antennas are concentrated on a single base station.
In this scenario, to cancel out the interference while boosting
the desired signal power, each BS applies ZF transmission to
simultaneously serve K single antennas. Let si,k v CN (0, 1)
be the message (the symbol) determined for the user k from
the i-th base station. Then, the i-th BS multiplies the data
symbol si,k destined for the k-th user by wi,k. Therefore, the
linear combination xi of the symbols transmitted by the i-th
base station intended for the K users is

xi =

K∑
k=1

wi,ksi,k, (3)

where wi,k ∈ CM×1 is ZF beamforming vector. Then, the
received SINR at the typical user can now be expressed as

SINR =
r−α0 |h

H
0 w0,1|2∑

BSi∈Φ\{BS0}
r−αi

K∑
k=1

|hiwi,k|2 + K
P

=
r−α0 S

Ir + K
P

,

(4)

where Ir =
∑

BSi∈Φ\{BS0}
r−αi gi with gi =

K∑
k=1

|hiwi,k|2

denotes the interference channel power and S = |hH0 w0,1|2
is the desired channel power. Now, we introduce the metrics
we will investigate in the next sections.

Definition 1 (Coverage Probability). The coverage probability
of a typical user is the the probability that the SINR received
by the user is larger than a predefined threshold T such as

Pcov(T ) = P(SINR > T ). (5)

Definition 2 (Energy Efficiency). The EE is defined as

EE =
ASE

AEC
=

Area Spectral Efficiency [bit/symbol/km2]

Average Energy Consumption [Joule/symbol/km2]
,

(6)
where the area spectral efficiency (ASE) is expressed as

ASE = λBSKE[R], (7)
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Figure 1: An illustration of the network model.

in which λBS represents BS density, K is the number of users
that are served by the BSs and E[R] is the average data rate of
users. Moreover, average energy consumption (AEC) is defined
as similar to [10], that is

AEC =

(
P

η
+MPc +K3Ppre + P0

)
, (8)

where η denotes the power amplifier efficiency, Pc is the circuit
power per antenna, which indicates the energy consumption of
the corresponding RF chains. The term K3Ppre accounts for
the energy consumption for precoding which is related to the
number of users served simultaneously by each base station.
The term P0 is the non-transmission power, which accounts
for the energy consumption of baseband processing.

Remark 1. The goal in EE is to maximize the performance
while minimizing the energy consumption which are two
conflicting operations in 5G.

III. PERFORMANCE ANALYSIS

In this section we give the analytical expression of the
coverage probability on a typical mobile user. Afterwards, we
shall give the expression of the EE. We start by stating the
following Lemma that shall be used to derive our results.

Lemma 1 ([9]). The probability density function (PDF) of a
typical user’s association distance r0 is

fr0(r) =
dFr0(r)

dr
= e−λBSπr

2

2πλBSr. (9)

Proof. Each user is connected to its closest base station, then
all the interfering base stations are farther than a distance r.
Since the Poisson distribution helps in describing the chances
of occurrence of a number of events in a given space, then
the probability that no base station is closer than a distance r
within an area πr2, is e−λBSπr

2

, expressed as

P(r0 > r) = Fr0(r) = P[No BS within πr2] = e−λBSπr
2

(10)

Therefore, the PDF results from the derivative of the cumula-
tive distribution function Fr(R).

A. Coverage Probability

Before deriving the expression of the coverage probability,
we first derive the Laplace transform of both interference and
desired signal. The desired channel power S is distributed as
Γ(M − K + 1, 1) [11]. For the interfering signal, as wi,k
is a unit-norm vector and independent of hi, then |hiwi,k|2
is a squared-norm complex Gaussian, which is exponential
distributed. For tractability we neglect the correlation between
wi,k for different k, then the channel gain gi is the sum of K
independent exponential distributed random variables which
follows Γ(K, 1).
Lemma 2 (Laplace Transform of Interference). The Laplace
transform of interference LIr (s)=E[e−sIr ] is

LIr (s) = exp

[
−πλBSr

2
0

(
−1 + 2F1

(
K,
−2
α

;
−2
α

+ 1;−sr−α0

))]
,

(11)

where 2F1 is the Gauss-Hypergeometric function.

Proof. See Appendix A.

Lemma 3 (Laplace Transform of the Desired Signal). The
Laplace transform of the desired signal LS(s) = E[e−sS ] is

LS(s) =

(
1

1 + s

)M−K+1

. (12)

Proof. See Appendix B.

Combining the previous results given in Lemmas 1, 2 and
3 with the proof techniques proposed in [12], an expression
for the coverage probability can be derived and it is given in
the following theorem.

Theorem 1 (Coverage Probability in Downlink). The coverage
probability at a typical mobile user in the general cellular
network model described above is



Table I: DEFAULT SIMULATION PARAMETERS.

System Parameter Symbol Value

Power amplifier η 0.318

Circuit power per antenna Pc 14.8 W

Energy consumption for precoding Ppre 1.74 W

Nr. of Sub-bands L 1

Target SINR T 1 dBm

Non-transmission power P0 65.8 W

Maximum average power per BS Pmax 40 dBm

Users density λUE 32 per km2

BS density λBS 4

Path-loss exponent α 4

Pcov(T ) =

∫
r0>0

∫ ∞
−∞
LIr0 (i2πrα0 Ts) exp

(
− i2πr

α
0 TK

P
s

)
× LS(−i2πs)− 1

i2πs
fr0(r0)dsdr0,

(13)

where fr0(r0) is the PDF of the distance between the typical
user and the tagged base station (BS0), LIr0 (.) is the Laplace
transform of the interference and LS(.) is the Laplace trans-
form of the desired signal (Lemmas 1, 2 and 3 respectively).

Proof. See Appendix C.

B. Energy Efficiency
To facilitate the analysis of the EE, we consider fixed

modulation and coding schemes for each user by considering
a fixed SINR threshold T as in [13], providing the average
rate E[R] as a function of downlink coverage probability as

E[R] = log(1 + T )Pcov(T )

= log(1 + T )

∫
r0>0

∫ ∞
−∞
LIr0 (i2πrα0 Ts)×

exp

(
− i2πr

α
0 TK

P
s

)
LS(−i2πs)− 1

i2πs
fr0(r0)dsdr0,

(15)

By plugging the average rate expression into (7), we obtain
the ASE. Then, the expressions of EE can be readily obtained
and its final expression is given in (14) on the top of this page.

IV. NUMERICAL RESULTS

In this section, we conduct Monte-Carlo simulations to
validate the analytical expressions of coverage probability and
EE of our multi-user MIMO system. The default parameter
setting is given in Table I and shall be used unless otherwise
stated.

Figure 2a illustrates the coverage probability expression
provided in Theorem 1 as a function of target SINR for three
different path-loss values: α ∈ {3, 4, 5}. The curves reveal
that the coverage probability obtained by simulation behaves

exactly as the analytical results which confirm the accuracy of
our theoretical expressions. Also, increasing α increases the
coverage probability because the interference power decreases
faster as a function of α than the power signal [14].

Figure 2b shows the coverage probability as a function
of BS density. Several important observations can be made
from the results of this figure. First, for any given L, the
coverage probability can be greatly improved by increasing
the BS density, meaning that distributed network densification
is preferable over massive MIMO. Second, we note that the
coverage probability increases as L increases, thus showing
the importance of multi-carrier transmissions. However, it is
shown that for large L, both massive MIMO and small cells
provide the same coverage which is confirmed according to
Figure 2c. This phenomenon occurs since the number of
users K served by each BS decreases and become very small
compared to the number of its own antennas M .

Figure 2d shows the impact of varying λBS on the EE.
The curves show that for any given L, the EE can also be
improved by increasing the BS density, meaning that small
cells is also preferable over massive MIMO. In contrast with
the coverage probability, we can observe that in small cells
scenario, decreasing the number of sub-bands L increases the
EE but in massive MIMO scenario, large number of sub-bands
provides the highest EE. Finally, we notice also that both
massive MIMO and small cells provide the same performance
gain when L becomes very large which means that the EE
increase when the number of users served by the base station
approach the number of its base station antennas M . All these
observations show that the coverage and EE are conflicting
such that improvements in one objective lead to degradation
in the other objective for a fixed number of sub-bands L.

V. CONCLUSIONS

Our proposed model was based on stochastic geometry,
where the BS and user locations were distributed according
to PPP. Using tools from stochastic geometry, we derived the
coverage probability and EE expressions for downlink sce-
nario. The coverage probability expression was validated via
Monte-Carlo simulations. The comparison showed that for any
given sub-band L, small cell densification is preferable over
massive MIMO if both coverage probability and EE should
be increased. However, increasing L improves the coverage
probability but decreases the EE which shows that the two
metrics are conflicting. An interesting future work is therefore
to introduce a multi-objective optimization framework and
find (possibly) optimal number of sub-bands and BS density
that maximize the coverage probability and EE jointly for the
uplink and downlink scenarios. Future work will also look at
multiple antenna terminals which is still an open topic.
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APPENDIX A
PROOF OF LEMMA 2

Let f(g) and f(S) denote the PDF of gi =
K∑
k=1

|hiwi,k|2

and S = |hH0 w0,1|2 respectively. The Laplace transform of the



interference is LIr (s) = E[e−sIr ], where the average is taken
over both the spatial PPP and the interference distribution is
expressed as follows:

LIr (s) = EΦ,{gi}

exp

−s ∑
BSi∈Φ\{BS0}

r−αi gi

 ,
= EΦ,{gi}

 ∏
BSi∈Φ\{BS0}

[
exp(−sgir−αi )

] ,
(a)
= EΦ

 ∏
BSi∈Φ\{BS0}

Egi
[
exp(−sgir−αi )

] ,
(b)
= EΦ

 ∏
BSi∈Φ\{BS0}

1

Γ(K)

∫ ∞
0

e−gi(sr
−α
i +1)gK−1

i dgi

 ,
(d)
= EΦ

 ∏
BSi∈Φ\{BS0}

1

(1 + sr−αi )K

 ,
= exp

(
−2πλBS

∫ ∞
r0

(
1− 1

(1 + sv−α)K

)
vdv

)
(16)

where the step (a) follows from the i.i.d distribution of gi and
further independence from the point process Φ. The step (b)
follows from the PDF of gi v Γ(K, 1) given as

f(g) =
1

Γ(K)
gK−1e−gi . (17)

Moreover, the step (c) follows from the computation of the
integral by the means of integration by parts. The last step
follows from the probability generating functional of the PPP
with intensity λ [9], which states that for some function f(x)
we have

E

 ∏
BSi∈Φ\{BS0}

f(x)

 = exp

(
−λ
∫
R2

(1− f(x)dx)

)
.

(18)
The inside integral can be evaluated by using the change of
variables v−α → y and we obtain the result.

APPENDIX B
PROOF OF LEMMA 3

The Laplace transform of the desired signal is LS(s) =
E[e−sS ], where the average is taken over the desired signal
distribution expressed as follows:

LS(s) = ES [e−sS ]

=
1

Γ(M −K + 1)

∫ ∞
0

SM−Ke−S(1+s)dS,

a
=

(
1

1 + s

)M−K+1

,

(19)

where the first step follows from the PDF of the desired signal

f(S) =
1

Γ(M −K + 1)
SM−Ke−SdS. (20)

The step (a) follows from the computation of the integral by
the means of integration by parts.

APPENDIX C
PROOF OF THEOREM 1

The first part of the proof follows by conditioning on the
nearest BS being at a distance r0 from the typical user. Then,
the probability of coverage is

Pcov(T, λBS, α) =

∫
r0>0

e−πλBSr
2
0 P(

r−α0 S

Ir + K
P

> T ) 2πλBSr0dr0.

(21)
To evaluate P(

r−α0 S

Ir+K
P

> T ), we use the proof techniques
proposed in [14] and [12]. Some assumptions are required for
this computation:
A1) The desired signal S admits a square integrable density.
A2) Either the interference Ir or the noise admits a density

which is square integrable.
The interference and the noise are independent, then the

second assumption imply that Ir+ K
P admits a PDF fIr+K

P
(y)

that is square integrable. Therefore, the coverage probability
is expressed as follows:

P (SINR > T ) = P

(
r−αS

Ir + K
P

> T

)
,

= P
(
Ir +

K

P
< (Trα0 )−1S

)
,

= ES
{
P
(
Ir +

K

P
< (Trα0 )−1S

)}
,

(a)
= ES

{∫ S(Trα0 )−1

0

fIr+K
P

(y)dy

}
,

= ES
{∫ +∞

−∞
fIr+K

P
(y)1[0≤y≤S(Tr−α0 )−1]dy

}
.

(22)

where the step (a) above follows from the definition

P(a ≤ X ≤ b) =

∫ b

a

f(x)dx, (23)

where f is the density function of the variable X . Using the
Plancheral-Parseval theorem [15], we obtain

= ES

{∫ +∞

−∞
e−2πisIr exp

(
−2iπK

P
s

)
e2iπys(Tr

α
0 )−1

− e2iπys×0

2iπs
ds

}
,

= ES
{∫ +∞

−∞
LIr (−2iπTr

α
0 s) exp

(
−2iπK

P
Trα0 s

)
e2iπys − 1

2iπs
ds

}
.

Using Fubini’s theorem [16], and moving the expectation
inside

=

∫ +∞

−∞
ES
{
LIr (−2iπTr

α
0 s) exp

(
−2iπTrα0

K

P
s

)
e2iπys − 1

2iπs

}
ds,

=

∫ +∞

−∞
LIr (−2iπTr

α
0 s) exp

(
−2iπTrα0

K

P
s

)
LS(e2iπys)− 1

2iπs
ds.

Combining the last expression and (21) gives the result stated
in Theorem 1.
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