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Abstract

This paper studies a two-hop decode-and-forward underlay cognitive radio system with interference

alignment technique. An energy-constrained relay node harvests the energy from the interference signals

through a power-splitting (PS) relaying protocol. Firstly, the beamforming matrices design for the

primary and secondary networks is demonstrated. Then, a bit error rate (BER) performance of the system

under perfect and imperfect channel state information (CSI) scenarios for PS protocol is calculated.

Finally, the impact of the CSI mismatch parameters on the BER performance is simulated.
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C
OGNITIVE RADIO (CR) has attracted a significant attention by being an intelligent

technology that can utilize radio spectrum and increase the spectral efficiency in wireless

networks [1]. The main idea of CR is to provide secondary users (SUs), which are unlicensed

nodes, with possibility to communicate in a licensed spectrum on the condition that primary

users (PUs) should not receive harmful interference [1], [2]. There are three types of spectrum

sharing CR paradigms, namely, interweave, underlay and overlay [1]. The interference mitigation

at receivers can be managed by a promising technique named interference alignment (IA). IA

provides free signaling dimensions by aligning the interference into one subspace [3], [4]. IA can

be also applied in CR to cancel interference at primary and secondary receivers. A mitigation of

the severe effect of interference at primary receivers allows secondary transmitters to increase

their transmit power which consequently leads to an improvement of the performance of the

secondary network (SN) [5]. In [6], degrees of freedom (DoFs) of the network were increased

by implementing an IA technique in a multiple-input multiple-output (MIMO) relay CR.

Another promising technique, known as energy harvesting (EH), which harvests energy from

ambient signals through time-switching (TS) and power-splitting (PS), was introduced in [7], [8].

IA and simultaneous wireless information and power transfer (SWIPT) in MIMO networks were

jointly studied in [9], where an improvement of the performance of the network was analyzed

through a dynamical selection of users as EH or information decoding (ID) terminals. The EH-

based CR network was studied in [10], where authors developed a spectrum sensing policy in TS

mode to guarantee EH possibility for SUs from primary signals. An identical system was studied

in [11], where an optimal information and energy cooperation methods between primary and

secondary networks was investigated. Finally, the work in [12] represented a resource allocation

method in EH-based CR network with imperfect channel state information (CSI) cases.

In this paper, we study an underlay IA-based CR with an energy-restricted relay operating

in PS mode. The performance of both the primary network (PN) and SN after interference

mitigation is analyzed. In particular, a bit error rate (BER) performance of the proposed system

model is calculated for PS relaying protocol under different imperfect CSI cases.



II. SYSTEM MODEL

The proposed system model is composed of a PN with two pairs of PUs and a SN with three

SUs. Each primary transmitter (Ti) transmits to its corresponding receiver by interfering with

another primary receiver (Rj) and relay as shown in Fig. 1. The SN is composed of a source

(S), a relay (R) and a destination (D) nodes. An energy constrained R operates in decode-and-

forward (DF) half-duplex mode by relaying the signal from S to D in two time periods. R

uses harvested energy from interference signals as its transmit power, while S and D supplied

with stationary power sources. Also, it is assumed that D is located far from PN and does

not receive any interference. All nodes of the network are assumed to have MIMO antennas.

We also assume that all interference at Rj are canceled by IA technique, thus, S and R are

not restricted by the level of transmit power. Another assumption is that the channels remain

constant during a transmission block time T , but vary independently from one block to another.

The definition of channel links between nodes can be denoted by the next. For channels of PN

nodes, H
[k]
j,i ∈ CNj×Mi, ∀i, j ∈ {1, 2} denotes the channel between Rj and Ti, where superscript

k indicates a certain time period when the data transmission occurs. Nj and Mi are the numbers

of antennas at Rj and Ti, respectively. For channels of SN nodes, HR,S and HD,R denote the

channel links related to the S-R and R-D transmissions while the inter-network channels are

given by Hj,R ∈ CNj×NR , Hj,S ∈ CNj×NS and HR,i ∈ CNR×Mi , where NS, NR and ND denote

the numbers of antennas at S, R and D, respectively. Each entry of any matrix H is assumed to

be independent and identically distributed (i.i.d.) random variables according to CN (0, 1), where

CN (0, 1) denotes the complex normal distribution with zero mean and unit variance. Also, note

that each channel link is characterized by the corresponding distance and path-loss exponent

denoted by dm,n and τm,n, ∀m ∈ {1, 2, R,D}, ∀n ∈ A = {1, 2, S, R}, respectively. We assume

that each node is deployed with N antennas (Mi = Nj = NS = NR = ND = N) and IA is

exploited at R and Rj , accordingly. Therefore, each transmit node l with the power Pl employs

a precoding matrix Vl ∈ C(Ml or Nl)×fl , with trace{VlV
H
l } = 1, ∀l ∈ A, where fl is the number

of the transmitted data streams. Then, each receive node, except D, employs the interference

suppression matrix Ut ∈ CNt×ft , ∀t ∈ {1, 2, R}, where ft is the number of data streams that

needs to be decoded at the corresponding receiver. Thus, the received signal at Rj , in two time
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Fig. 1. IA and EH-based CRN with two PUs and one SU sharing the spectrum simultaneously.

periods, can be written as

y
[k]
j =

√

Pj

d
τj,j
j,j

U
[k]H
j H

[k]
j,jV

[k]
j sj

︸ ︷︷ ︸

desired signal

+ A[k]
︸︷︷︸

interference from SN

+

√

Pi

d
τj,i
j,i

U
[k]H
j H

[k]
j,iV

[k]
i si

︸ ︷︷ ︸

interference from PN, i 6= j

+ñ
[k]
j , k ∈ {1, 2}, (1)

where the effective noise term ñ
[k]
j = U

[k]H
j n

[k]
j is a zero-mean additive white Gaussian noise

(AWGN) vector, with E{ñ[k]
j ñ

[k]H
j } = σ2

ñj
I, where E{·} denotes an expectation operator. More-

over, we have E{slsHl } = I, with l ∈ A, since sl is assumed to be a vector consisting of symbols

generated as i.i.d. Gaussian inputs. Finally, interference from SN to Rj can be determined as

A[k] =







√
PS

d
τj,S
j,S

U
[k]H
j Hj,SVSsS, if k = 1,

√
PR

d
τj,R
j,R

U
[k]H
j Hj,RVRsR, if k = 2.

(2)

The received signal at R, within transmission period of S-R, can be written as

yR =

√

PS

d
τR,S

R,S

UH
RHR,SVSsS

︸ ︷︷ ︸

desired signal

+

√

Pi

d
τR,i

R,i

2∑

i=1

UH
RHR,iV

[1]
i si

︸ ︷︷ ︸

interference from PN

+ñR, (3)

where ñR = UH
RnR is the effective noise after interference suppression beamforming at the



relay.

Then, R decodes and forwards the desired signal sS to D within R−D transmission period.

Thus, D obtains the following signal

yD =

√

PR

d
τD,R

D,R

HD,RVRsR + nD, (4)

where nD is the AWGN vector, with E{nDn
H
D} = σ2

DI.

The interference in receive nodes can be assumed to be completely canceled if the following

conditions are satisfied for Rj as [13], [14]

U
[k]H
j H

[k]
j,iV

[k]
i = 0, ∀i, j ∈ {1, 2}, ∀i 6= j, (5a)

U
[k]H
j J[k] = 0, where J[k] =







Hj,SVS, if k = 1,

Hj,RVR, if k = 2,

(5b)

rank
(

U
[k]H
j H

[k]
j,jV

[k]
j

)

= fj, ∀j ∈ {1, 2}, (5c)

and for R as

UH
RHR,iV

[1]
i = 0, ∀i ∈ {1, 2}, (6a)

rank
(
UH

RHR,SVS

)
= fS. (6b)

A. Beamforming Design

If the space of the desired signal is linearly independent from that of the interference signal,

then the desired signal can be easily decoded from the received one. Hence, the design of

precoding matrices should be in such a way that interference in all receivers need to span to

one another. Thus, in the first time period, the interference at R1, R2 and R can be spanned as

span
(

H
[1]
1,2V

[1]
2

)

= span (H1,SVS), span
(

H
[1]
2,1V

[1]
1

)

= span (H2,SVS) and span
(

HR,1V
[1]
1

)

=

span
(

HR,2V
[1]
2

)

, respectively, where span(X) is the vector space spanned by the column vectors

of X. After spanning all interference, the precoding matrices V
[1]
1 , V

[1]
2 and VS can be obtained



as [15]

V
[1]
2 = (HR,2)

−1HR,1V
[1]
1 , (7a)

VS = (H2,S)
−1H

[1]
2,1V

[1]
1 , (7b)

where V
[1]
1 is derived using V

[1]
1 = eig (Z), with Z = (HR,1)

−1
HR,2

(

H
[1]
1,2

)−1

H1,S(H2,S)
−1H

[1]
2,1

and eig(X) are the eigenvectors of X.

Interference suppression matrices U
[k]
j during two time slots, need to be orthogonalized to

the interference at Rj to meet conditions in (5). Similarly, UR needs to be orthogonalized to the

interference at R in S-R transmission period. Derivations of those matrices can be written as

U
[k]
j = null

([

H
[k]
j,iV

[k]
i

]H
)

, j 6= i, (8a)

UR = null

([

HR,1V
[1]
1

]H
)

. (8b)

In the 2nd time period, S stays silent, while R establishes its own communication. The design

of precoding and interference suppression matrices for this time period can be done by following

the same step in (7)-(8).

B. Imperfect CSI

The assumption of perfect CSI in wireless networks is highly idealistic due to channel

estimation error. Thus, the following model can be deployed for an imperfect CSI estimation [4]

Ĥ = H+ E, (9)

where Ĥ is the observed mismatched channel, H ∼ CN (0, I) represents the real channel matrix

and E is the error matrix which represents an inaccuracy degree in the estimated CSI. It is

also assumed that E is independent of H. Considering the signal-to-noise ratio (SNR), θ, E is

described as

E ∼ CN (0, λI) with λ = ψθ−κ, (10)



where λ is an error variance, κ ≥ 0 and ψ > 0 determine various CSI scenarios. Finally, the

real channel matrix, conditioning on Ĥ, [16], can be described as

H =
1

1 + λ
Ĥ+ H̃, (11)

where H̃ ∼ CN (0, λ
1+λ

I) is independent of Ĥ.

T

T/2

Data transmission (TS 1) Data transmission (TS 2)

Energy harvesting
R D data transmission→

PN

SN
S R data transmission→

T/2

Fig. 2. Time frame structure of PSR.

III. POWER-SPLITTING RELAYING

The PSR for SWIPT is shown in Fig. 2, where the total time is split into two equal portions,

one for the S-R and the rest for R-D data transmissions [?]. Within the 1st time fraction, an

energy portion of ρ, with 0 < ρ < 1, at R is allocated for EH, while the remaining power of

(1− ρ) is conveyed to data transmission purpose.

Hence, the R obtains the following signal for EH

yEH
R =

√

ρPS

d
τR,S

R,S

HR,SVSsS +
2∑

i=1

√

ρPi

d
τR,i

R,i

HR,iV
[1]
i si +

√
ρnR. (12)

The power harvested from the noise is insignificant which can be neglected. Thus, the

instantaneous harvested energy at R can be derived from (12) as [7]

PR = ηρ

(

PS

d
τR,S

R,S

||HR,SVS||2 +
2∑

i=1

Pi

d
τR,i

R,i

∣
∣
∣

∣
∣
∣HR,iV

[1]
i

∣
∣
∣

∣
∣
∣

2
)

, (13)

where || · || denotes the Euclidean norm. Then, by using (11), the received information signal

with power (1− ρ) at R can be derived as (14) at the top of the next page.

The corresponding signal-to-interference-noise ratio (SINR) for R from (14) is derived by



yIT
R =

√

1− ρUH
R

(√

PS

d
τR,S

R,S

(
1

1 + λ
ĤR,S + H̃R,S

)

VSsS +

2∑

i=1

√

Pi

d
τR,i

R,i

(
1

1 + λ
ĤR,i + H̃R,i

)

V
[1]
i si + nR

)

(14)

following

γR =

PS(1−ρ)

d
τR,S
R,S

(1+λ)2
||UH

R ĤR,SVS||2

PS(1−ρ)

d
τR,S
R,S

||UH
R H̃R,SVS||2 + IPN + σ2

ñR

, (15)

where IPN = Pi(1−ρ)

d
τR,i
R,i

∑2
i=1 ||UH

R H̃R,iV
[1]
i ||2 defines the interference from primary transmitters.

Then, the received signal at D can be written as

yD =

√

PR

d
τD,R

D,R

(
1

1 + λ
ĤD,R + H̃D,R

)

VRsR + nD. (16)

and SINR from (16) can be derived as

γD =

PR

d
τD,R
D,R

(1+λ)2
||ĤD,RVR||2

PR

d
τD,R
D,R

||H̃D,RVR||2 + σ2
D

, (17)

where σ2
D is the noise power.

Also, the received SINR for Rj is shown as

γ
[k]
j =

Pj

d
τj,j
j,j (1+λ)2

||U[k]H
j Ĥ

[k]
j,jV

[k]
j ||2

B[k] + C [k] + σ2
ñj

[k]
, (18)

where the intra-network interference of the PN due to the CSI mismatch is given by B[k] =

Pj

d
τj,j
j,j

||U[k]H
j H̃

[k]
j,jV

[k]
j ||2 + Pi

d
τj,i
j,i

||U[k]H
j H̃

[k]
j,iV

[k]
i ||2i 6=j while the inter-network interference from the

SN is expressed by

C [k] =







PS

d
τj,S
j,S

||U[k]H
j H̃j,SVS||2, if k = 1,

PR

d
τj,R
j,R

||U[k]H
j H̃j,RVR||2, if k = 2.

(19)

The BER of symbol sm for binary phase shift keying (BPSK) can be derived as [17]

BERm = Q(
√
γm), m ∈ {1, 2, R,D}, (20)



where Q(x) = 1/
√
2π
∫∞

x
exp(−t2/2)dt is the Gaussian-Q function.

IV. SIMULATION RESULTS

This section presents the simulation results for the proposed system model in Rayleigh fading

channels with BPSK modulation. The system parameters are as follows: dm,n = 3 and τm,n =

2.7 ∀m ∈ {1, 2, R,D}, ∀n ∈ {1, 2, S, R} and equal transmit power at Ti and S. The calculated

optimal values of ρ = 0.75 with η = 0.8 in [18] is considered. Furthermore, the following values

of (κ, ψ) such as (0, 0.001), (0, 0.05), (0.75, 10), (1, 10) and (1.5, 15) are used to investigate

the impact of CSI mismatch.

0 5 10 15 20 25 30
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10-1

100
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 R-D
 PU

Perfect CSI

B
ER

SNR (dB)

(a) BER performance for perfect CSI and SNR-independent
CSI mismatch ((0, 0.001) and (0, 0.005)).
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(b) BER performance for SNR-dependent CSI mismatch
((0.75, 10), (1, 10) and (1.5, 15)).

Fig. 3. BER vs. SNR of the primary user, the relay and the destination node operating in the
PSR protocol under different CSI scenarios.

Fig. 3 shows how imperfect CSI parameters impact on the BER performance of the PU and

SUs. For the case of SNR-independent CSI mismatch (when κ = 0, Fig. 3a), the BER degrades

as ψ increases because the channel error variance does not depend on the SNR and the BER

curves saturate after some SNR values, e.g. at 15 dB and 21 dB for 0.05 and 0.001, respectively.

Furthermore, it is worth to note that the BER performance is not affected by ψ in the low SNR

region, i.e. ψ starts playing a role at 3 dB and 6 dB for the BER of PU and SUs, respectively.

This can be explained by the fact that small values of ψ do not increase much the error rate of

the received signal at low SNR.
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Fig. 4. BER vs. the CSI mismatch parameters κ and ψ of SU at 20 dB.

In general, BER performance of PU outperforms those of R and D because of the power

portion 1 − ρ devoted for data transmission at R. The less the value of the allocated power

for data transmission is, the higher the probability of the incorrect data detection becomes. To

compare the performance of R and D at low SNR, R performs better than D because R transmits

its data with a certain number of errors which in turn affects the error rate of D. However, the

BER performances of SUs match after 10 dB due to the fact that R harvests more energy at

high SNR and D consequently receives a strong signal to detect. When κ 6= 0, the channel

error variance becomes SNR-dependent (see Fig. 3b), which implies no saturation of the BER

performance. An increase of κ leads to the BER improvement. At 30 dB, the BER performance

of SUs obtains 0.0353, 0.0079 and 0.0005 for (0.75, 10), (1, 10) and (1.5, 15), respectively.

A more deeper analysis on the impact of κ and ψ on the BER performance can be obtained

from Fig. 4, where the BER performance of SUs is built up as a function of different values

of κ and ψ at 20 dB. It can be noticed that the BER performance improves as κ increases,

while an increase of ψ results in the BER degradation. In the first subfigure, the BER curves for

different values of ψ approach 0.0019 at certain κ values. Meanwhile, in the second subfigure,

the BER performance for different κ degrades as ψ increases. It is observed that small values

of κ correspond to more abrupt BER degradation, and vise versa.



V. CONCLUSION

In this paper, we analyzed the BER performance of EH-based DF CRN with PS relaying

protocols and embedded IA technique. The five special scenarios of the imperfect CSI given by

(0, 0.001), (0, 0.05), (0.75, 10), (1, 10) and (1.5, 15) were studied to analyze the impact of the

CSI quality on the BER performance of PU and SUs. The presented results with ρ = 0.75 showed

that the BER of PU outperforms those of SUs in perfect and imperfect SCI cases. Moreover,

the BER curve degraded as ψ increased while rise of κ leaded to the BER improvement.
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