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Abstract—This paper investigates closed-form expres-
sions to evaluate the performance of the Compressive Sens-
ing (CS) based Energy Detector (ED). The conventional
way to approximate the probability density function of
the ED test statistic invokes the central limit theorem and
considers the decision variable as Gaussian. This approach,
however, provides good approximation only if the number
of samples is large enough. This is not usually the case
in CS framework, where the goal is to keep the sample
size low. Moreover, working with a reduced number of
measurements is of practical interest for general spectrum
sensing in cognitive radio applications, where the sensing
time should be sufficiently short since any time spent
for sensing cannot be used for data transmission on the
detected idle channels. In this paper, we make use of low-
complexity approximations based on algebraic transforma-
tions of the one-dimensional Gaussian Q-function. More
precisely, this paper provides new closed-form expressions
for accurate evaluation of the CS-based ED performance as
a function of the compressive ratio and the Signal-to-Noise
Ratio (SNR). Simulation results demonstrate the increased
accuracy of the proposed equations compared to existing
works.

I. INTRODUCTION

Signal acquisition is a crucial processing step in
signal processing. Compressive Sensing (CS) techniques
have become increasingly prevalent in signal processing
over the past decade for their ability to perform data
acquisition and compression simultaneously [1], [2]. The
CS paradigm relies on the assumption that the signal
of interest has a sparse representation in some domain,
which is an inherent characteristic of the licensed radio-
frequency spectrum [3]. As a consequence, CS has been
explored within the context of several topics related
to signal processing and Cognitive Radio (CR), being
spectrum sensing one of the most popular [4]–[6].

In this paper, we focus on compressive signal pro-
cessing [7], where inference techniques are directly
applied on the compressed domain. The main advan-
tage of performing classical signal processing operations
directly on the compressive measurements is that it
avoids the computationally expensive reconstruction al-
gorithms in order to obtain the original non-compressed
signal. More specifically, in this paper we investigate
the Energy Detector (ED) [8] in conjunction with CS-
based signal acquisition, where only a small subset of

measurements is employed for signal detection. ED is
the optimal Neyman-Pearson (NP) detector (also known
as the likelihood-ratio test) for stochastic signals in
White Gaussian Noise (WGN) environments [9]. Herein
we focus on the derivation of the test statistic for the
CS-based ED and the formulation of the corresponding
equations related to the detection performance.

Most of the existing contributions in the context of
ED performance mainly focus on the non-compressed
scenario, and only a few contributions address the CS-
based counterpart. The performance evaluation of CS
signal detection has been previously considered in [7],
[10]–[12]. In [7], the primary signal is modeled as
deterministic and therefore the analysis of [7] does
not exploit the knowledge of the probability density
function (pdf) of the primary signal. Differently from
[7], our investigation assumes a stochastic signal model
that is suitable to current digital transmissions. Indeed,
as briefly summarized in [4], many primary signals
to be sensed are practically both white (their power
spectrum is almost constant) and Gaussian (they are
obtained as linear combination of hundreds of variables),
because many current standards employ Orthogonal
Frequency-Division Multiplexing (OFDM). Stochastic
signal models are used in [10] and [11], which both
exploit a sparse signal model (in a subspace domain and
in the frequency domain, respectively) to estimate the
unknown signal covariance and the unknown primary
signal, respectively. In [12], the central limit theorem is
used to approximate the pdf of the CS-based ED test,
thereby simplifing the expressions of the probability of
detection and the probability of false alarm. However,
the central limit theorem provides accurate estimates
only when the number of samples is sufficiently large
[13]. Therefore, the analysis of [12] is accurate only
when the undersampling caused by CS does not produce
a small number of observations.

In this paper, we extend the work in [12]–[14] by
merging the approximation techniques proposed in [13],
[14] with the CS framework presented in [12]. In particu-
lar, we propose novel analytical closed-form expressions
for the probability of detection of the CS-based ED
when the number of available measurements is too low

978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



to apply the central limit theorem. To this aim, we
exploit the power transformations with generic expo-
nents proposed in [13], [14], which have been shown
to be a good alternative for low-complexity devices.
Specifically, we formulate a family of equations to eval-
uate the CS-based ED performance, to easily quantify
the effect of the reduced number of samples, and to
determine the minimum number of samples needed to
achieve certain detection performance. We show through
numerical experiments that the power transformations
accurately approximate the central chi-squared random
variable resulting from the ED test statistic, also when
the number of observations is low. Note that, due to
different signal and noise power scenarios, a sensor may
have to dynamically self-adjust its threshold: hence, the
proposed expressions are very useful for low-complexity
sensors that cannot numerically invert a chi-squared pdf
due to their limited computation capabilities.

The remainder of this paper is structured as follows. In
Section II, we introduce the CS-based ED formulation
and derive the corresponding test statistic. In Section
III, we derive the exact performance of the CS-based
ED, while in Section IV we propose the power transfor-
mations to approximate the complicated exact analysis.
Finally, supporting numerical results are provided in
Section V, and Section VI states the conclusion.

II. CS-BASED ENERGY DETECTOR

We consider the compressive acquisition of a received
signal x ∈ RN , assuming that this has a sparse repre-
sentation in some domain. In this case, the information
contained in x can be inferred from a small set of M
(M � N ) linear measurements y ∈ RM , y = Φx, where
Φ ∈ RM×N represents the sensing matrix. Depending
on the hypothesis H0 or H1, the received signal is
expressed by x = w or x = s + w, respectively, where
s ∈ RN denotes the signal to be detected, which is
assumed to be a Gaussian random process with zero
mean and variance σ2

s , i.e., s ∼ N
(
0, σ2

sIN
)
, and

w ∼ N
(
0, σ2

wIN
)

is the WGN independent of the signal
s. Thus, the CS-based ED can be formulated as{ H0 : y = Φw,

H1 : y = Φ (s + w) . (1)

The resulting compression ratio is defined as ρ = M/N .
For example, if ρ = 0.25, then 4× undersampling is
achieved.

A. Derivation of the Test Statistic

Since y in (1) is zero-mean Gaussian distributed
with covariance σ2

wΦΦT or (σ2
s + σ2

w)ΦΦT for the
hypotheses H0 and H1, respectively, the pdf of y is
expressed by [12]

H0 : f0(y) =
exp
(
− 1

2 yT (σ2
wΦΦT )

−1y
)

√
|σ2
wΦΦT |(2π)M

,

H1 : f1(y) =
exp
(
− 1

2 yT ((σ2
s+σ

2
w)ΦΦT )

−1y
)

√
|(σ2

s+σ
2
w)ΦΦT |(2π)M

.

(2)

Note that the pdf expressions in (2) are different from
those in [7], due to the different signal model.

In this work, we focus on sensing matrices that satisfy
ΦΦT = 1

ρ IM . These are sensing matrices whose rows
are orthogonal and whose columns have unit norm.
Note that this is approximately satisfied by the popular
matrices composed of zero-mean i.i.d. random variables
with variance 1/M , and also by the widely used sensing
matrices employed in the multi-coset sampler [15], [16].
In Section V, we show simulation results for both cases,
i.e., for sensing matrices that satisfy the assumption
ΦΦT = 1

ρ IM either exactly or approximately.
According to the previous discussion, the correspond-

ing NP decision statistic is given by,

L(y) =
[

σ2
w

σ2
s+σ

2
w

]M/2

exp
((

σ2
s

2 1
ρσ

2
w(σ2

s+σ
2
w)

)
‖y‖22

)
.

(3)
Clearly, the log-likelihood ratio L(y) in (3) can be
replaced by the simpler ED test statistic

T (y) = ‖y‖22 =

M∑
i=1

y2i . (4)

To decide the signal presence or absence, the test in (4)
is compared to a threshold η′: when T (y) ≥ η′, the
CS-based ED decides that s is present, otherwise s is
assumed as absent.

III. EXACT PERFORMANCE ANALYSIS

Herein we derive the Receiver Operating Characteris-
tic (ROC) of the CS-based ED. By exploiting ΦΦT =
1
ρ IM in (2), the test T (y) in (4) is a central chi-squared
random variable with M = ρN degrees of freedom.
Hence, the probability of detection PD is expressed by

PD = Pr{T (y) > η′;H1} = 1− FρN
(

η′ρ

σ2
s + σ2

w

)
,

(5)
where FρN (x) is the cumulative distribution function
(cdf) of a central chi-squared random variable with ρN
degrees of freedom, expressed by

FρN (x) =

∫ x/2
0

νρN/2−1 exp(−ν)dν

Γ (ρN/2)
. (6)

Similarly to (5), the probability of false alarm PFA can
be expressed as

PFA = Pr{T (y) > η′;H0} = 1− FρN
(
η′ρ

σ2
w

)
. (7)

By inverting (7), we obtain an analytical expression for
the threshold η′, expressed by

η′ =
σ2
w

ρ
F−1ρN (1− PFA) , (8)

where F−1ρN (x) is the inverse of FρN (x) with respect to
the argument x. By inserting (8) into (5), we obtain the
exact ROC expression, given by

PD = 1− FρN
(

σ2
w

σ2
s + σ2

w

F−1ρN (1− PFA)

)
. (9)



Since the number of degrees of freedom ρN in (9)
is proportional to the compression ratio ρ, clearly the
probability of detection PD increases with ρ.

Note that the threshold η′ in (8) and the probability of
detection PD in (9) can be evaluated using mathematical
software toolboxes (e.g., MATLAB, or Mathematica).
One possible approach is to calculate η′ and PD using
a powerful computing machine, and then load the pre-
computed threshold η′ onto the low-complexity sensor.
However, in many cases, this approach is impractical.
For instance, when a constant false alarm rate is re-
quired, the threshold must be updated taking into account
the noise power σ2

w, which can be different depending
on many conditions (e.g., temperature). In addition, η′
heavily depends on the number of degrees of freedom
ρN , and therefore, the threshold has to be updated
also when the sample size changes. In other words, a
low-complexity sensor would need a two-dimensional
lookup table with large memory to store all the possible
precomputed thresholds. Hence, a more clever approach
is to let the sensor calculate or update its threshold η′.
Unfortunately, the computation of the exact threshold
can be hardly performed by a low-complexity low-
memory sensor. Indeed, (8) requires the inverse function
F−1ρN (x) of the cdf FρN (x), which is a two-dimensional
function with one continuous parameter x, and one
discrete parameter ρN . Basically, for each value of ρN ,
a different one-dimensional inverse function F−1ρN (x) is
necessary. Therefore, in order to reduce the complexity
and the memory requirements of the sensor, in the next
section we propose accurate approximations of (9) and
(8), aiming at avoiding the use of F−1ρN (x) and FρN (x).

IV. APPROXIMATED PERFORMANCE ANALYSIS

Several approximations of (9) are possible, including
the popular Gaussian approximation [12]. Clearly, Gaus-
sian approximations are accurate at large sample size
and therefore, can be inaccurate when either N or the
compression ratio ρ is small. Here, we make use of the
power transformation approach [13], [14]. Basically, the
power transformation approach approximates a central
chi-squared random variable with the rth power of a
Gaussian variable with appropriate mean and variance.
The statistical relations between chi-squared random
variables and power-transformed Gaussian variables are
well known in the statistical literature [17]–[19], but
have been investigated only recently for CR applications
[13], [14]. Specifically, FρN (x) is approximated as

F̂ρN (x) = 1−Q
(

[x/(ρN)]1/r −mr(ρ,N)

[Vr(ρ,N)]1/2

)
, (10)

where Q(x) = (2π)−1/2
∫ +∞
x

exp
(
−ν2/2

)
dν, and the

mean mr(ρ,N) and the variance Vr(ρ,N) in (10) are
expressed by

mr(ρ,N) = 1− r − 1

r2ρN
, Vr(ρ,N) =

2

r2ρN
. (11)

Note that r = 1 corresponds to a Gaussian approxima-
tion [12], while r = 3 corresponds to a cube-of-Gaussian
approximation [13]. By inverting (10), we obtain

F̂−1ρN (x) = ρN
{

[Vr(ρ,N)]1/2Q−1(1− x) +mr(ρ,N)
}r
.

(12)
An approximated expression for the threshold η′ can

be obtained by replacing F−1ρN (x) with (12), and inserting
it into (8), thereby obtaining

η̂′ = σ2
wN

{
[Vr(ρ,N)]1/2Q−1(PFA) +mr(ρ,N)

}r
.

(13)
Differently from (8), the approximation (13) depends on
the one-dimensional function Q−1(x), and consequently
F̂−1ρN (x) is easier to calculate than F−1ρN (x) and easier to
store in a lookup table.

The equations (10) and (12) can be exploited in order
to obtain an analytical approximation for the ROC.
By replacing FρN (x) and F−1ρN (x) with (10) and (12),
respectively, and by inserting them into (9), we obtain

P̂D = Q
(
Sr(σ

2
s , σ

2
w)Q−1(PFA)−

[
1− Sr(σ2

s , σ
2
w)
]
Rr(ρ,N)

)
,

(14)

Sr(σ
2
s , σ

2
w) =

(
σ2
w

σ2
s+σ

2
w

)1/r
, Rr(ρ,N) = mr(ρ,N)

[Vr(ρ,N)]1/2
,

(15)
where mr(ρ,N) and Vr(ρ,N) are expressed by (11).
Like the approximated threshold (13), the approxi-
mated ROC (14) depends on one-dimensional functions
only, such as Q(x) and Q−1(x). Using (11), the ratio
Rr(ρ,N) in (15) can be expressed as

Rr(ρ,N) = r

(
ρN

2

)1/2

− r − 1

r(2ρN)1/2
, (16)

which depends on the product M = ρN , rather than on
ρ and N separately.

We now make use of (14) to calculate an analytical
expression for the the number of samples N̂ required
for a desired performance (PFA, PD). We assume that
the primary signal power σ2

s , the noise power σ2
w, and

the compression ratio ρ, are fixed. By defining

br(PFA, PD, σ
2
s , σ

2
w) =

Sr(σ
2
s ,σ

2
w)Q−1(PFA)−Q−1(PD)
1−Sr(σ2

s ,σ
2
w) ,

(17)
and by inverting (14), we obtain

br(PFA, PD, σ
2
s , σ

2
w) = Rr(ρ, N̂). (18)

Equation (18), together with (16), leads to a quadratic
equation in N̂1/2, whose positive solution is

N̂ =
1

ρ

(
br

21/2r
+

√
b2r
2r2

+
r − 1

r2

)2

, (19)

where br = br(PFA, PD, σ
2
s , σ

2
w) is expressed by (17)

and (15). Equation (19) shows that the required number
of samples N̂ increases when the compression ratio
ρ is reduced, and when br in (17) increases. From
(19), the required compression ratio ρ̂ for a desired
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Fig. 1: Relative error on PD versus SNR for PFA =
10−3, N = 200 and ρ = 0.15.

performance (PFA, PD) with a fixed number of samples
N is expressed by

ρ̂ =
1

N

(
br

21/2r
+

√
b2r
2r2

+
r − 1

r2

)2

. (20)

Note that (20) is valid only when the solution ρ̂ ≤ 1.
Clearly, a different choice for the power exponent r

leads to a different approximations (13), (14), (19), and
(20). In the next section, we make use of simulation
results to check the accuracy of different choices for r
in the context of CS-based ED.

V. SIMULATION RESULTS

To illustrate the accuracy of the proposed CS-based
ED performance when dealing with very low number of
measurements, we consider a total number of samples
of N = 200 and a very ambitious compression ratio of
ρ = 0.15. First, we assume that the sensing matrix Φ
exactly satisfies ΦΦT = 1

ρ IM and, thus, the equations
derived in Section IV exactly apply.

Fig. 1 shows the relative error ε on the probability
of detection obtained with the proposed approximations,
as a function of the SNR, when PFA = 10−3. The
relative error is defined as ε = |P̂D − PD|/PD, while
the SNR is defined as SNR=

σ2
s

σ2
w

. The conventional
Gaussian approximation [12] is also depicted in Fig.
1 for comparison purposes. Note that the conventional
Gaussian approximation provides the highest error, being
the weakest approximation of the plot. This is because
the central limit theorem does not hold anymore for very
low number of samples, in this case for M = ρN = 30.
Specifically, in Fig. 1, the relative error of the conven-
tional approximation is always between 2% and 20%.
Differently, the proposed power approximations produce
a significantly reduced relative error on the probability
of detection. We evaluated several values of the exponent
r, and the most relevant results were included in Fig. 1:
the best approximation is obtained when r = 2.9, which
provides a relative error always below 0.2%.

Fig. 2 compares the relationship between PFA and
PD provided by the proposed approximations for SNR=
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Fig. 2: ROC (PD versus PFA) for SNR= −6dB, N =
200 and ρ = 0.15.

−6dB, N = 200 and ρ = 0.15. In Fig. 2, the
exact relationship (9) has been included, as well as
the conventional Gaussian approximation, for compar-
ison purposes. We also plot in Fig. 2 the empirical
results obtained from 100, 000 Monte Carlo runs with
random and deterministic Φ matrix. Note that for a CS-
based acquisition system, Φ can be either composed
of random variables or deterministic. For the random
case, we assumed Φ with entries being a zero-mean
i.i.d. Gaussian random variables with variance 1/M ,
so that ΦΦT ≈ 1

ρ IM . For the deterministic case, we
used Φ = 1√

ρ [IM 0M×(N−M)] so that the assumption
ΦΦT = 1

ρ IM is exactly satisfied. Clearly, the curve cor-
responding to the approximation with r = 2.9, and the
empirical curve that perfectly satisfies the assumption,
both overlap with the curve of the exact performance. On
the other hand, for the random Φ, where the assumption
does not perfectly hold true, we observe a slight loss of
accuracy.

Fig. 3 compares the PD versus SNR curve obtained
with the conventional Gaussian approximation, the one
obtained with the proposed power approximation with
r = 2.9 and the empirical results obtained from 100, 000
Monte Carlo runs with random and deterministic Φ ma-
trix as described above. In Fig. 3, we fixed PFA = 10−3,
N = 200 and ρ = 0.15. It can be observed from Fig.
3 that, although the proposed curve does not perfectly
match with the empirical curve when the assumption
is approximately satisfied, it provides a much better ap-
proximation to real world CS-based ED system than that
obtained by the conventional Gaussian approximation.
The discrepancy between the empirical random case and
the proposed theoretical curve is due to the weakness of
the sensing matrix assumption. How to amended this
error based on the knowledge of Φ is left for future
works.

Finally, Fig. 4 illustrates the usefulness of (20) for
determining the required compression ratio ρ to achieve
a certain detection performance (PFA, PD). The results
in Fig. 4 assume N = 200, r = 2.9 and SNR= 2dB.
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As expected, the compression ratio increases as PD
increases and PFA decreases. It can be observed that,
for a particular detection performance point (PFA, PD),
the accuracy of the proposed expression allows to use
a lower number of samples than that estimated with the
conventional Gaussian approximation.

VI. CONCLUSION

We have provided accurate approximations to evaluate
the performance of the CS-based ED for small number
of measurements. Essentially, we have made use of
low-complexity power transformations to estimate the
cdf of the central chi-squared random variable resulting
from the CS-based ED test statistic. Simulation results
have demonstrated the effectiveness of the proposed
approach when dealing with significantly reduced data
measurements and have proven its superiority versus a
conventional Gaussian approximation.
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