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Abstract—Technological advances and innovative business
models led to the modernization of the cyber-physical concept
with the realization of the Internet of Things (IoT). While IoT
envisions a plethora of high impact benefits in both, the consumer
as well as the control automation markets, unfortunately, security
concerns continue to be an afterthought. Several technical chal-
lenges impedes addressing such security requirements, including,
lack of empirical data related to various IoT devices in addition
to the shortage of actionable attack signatures.
In this paper, we present what we believe is a first attempt ever
to comprehend the severity of IoT maliciousness by empirically
characterizing the magnitude of Internet-scale IoT exploitations.
We draw upon unique and extensive darknet (passive) data and
develop an algorithm to infer unsolicited IoT devices which have
been compromised and are attempting to exploit other Internet
hosts. We further perform correlations by leveraging active
Internet-wide scanning to identify and report on such IoT devices
and their hosting environments. The generated results indicate a
staggering 11 thousand exploited IoT devices that are currently
in the wild. Moreover, the outcome pinpoints that IoT devices
embedded deep in operational Cyber-Physical Systems (CPS)
such as manufacturing plants and power utilities are the most
compromised. We concur that such results highlight the wide-
spread insecurities of the IoT paradigm, while the actionable
generated inferences are postulated to be leveraged for prompt
mitigation as well as to facilitate IoT forensic investigations using
real empirical data.

I. INTRODUCTION

The Internet of Things (IoT) paradigm represents advances
in computing power, electronics miniaturization and network
bandwidth interconnection, which have armed physical
objects with the ability to collect, process and act upon
various types of information. The widespread deployment
of IoT devices ranging from refrigerators to light bulbs to
Internet-controlled insulin pumps and mining equipment
brings forward a plethora of benefits in an effort to improve
various aspects of our everyday life [1]. In fact, home
automation, powered by the IoT, have provided essential
support for elderly or disabled residents, while wearable
health monitoring devices have increased the quality of
medical service and enabled the real-time provisioning of
medication [2]. Further, hazardous industrial plants, which
might pose various health and safety risks to their employees,

have indeed adopted the IoT to notify their personnel, in near
real-time, about critical incidents to avoid [3]. Additionally,
many case studies report the significant impact of IoT on
disaster and crime prevention, reduction in traffic congestion
and parking time, and improvement of emergency services
[4, 5]. The IoT paradigm also addresses the issue of water and
energy consumption, thus reducing the cost for homeowners,
companies, and entire cities [6]. Indeed, this prominent
notion holds a commitment to transform the majority of
business models, and to improve efficiency, service levels,
and customer satisfaction.

Indisputable benefits proposed by the IoT paradigm, in
both, consumer environments as well as Cyber-Physical
Systems (CPS) realms (i.e., manufacturing plants, power
utilities, building automation, etc.), are nevertheless coupled
with serious security flaws [7]. Time-to-market and cost
considerations along with the scarcity of related legislation
have stimulated manufacturers to design and produce
potentially insecure IoT devices, leaving an open door for
future exploitation. This practice continues to enable exposure
of user-centric information and data such as unprotected video
streaming of baby monitors [8] and sensitive cryptographic
primitives [9]. Moreover, poorly designed devices can
quickly be recruited into malicious botnets by allowing
the execution of arbitrary commands or re-programming of
device firmwares [10]. Given the large-scale deployment of
IoT devices, such vulnerabilities could affect the security
and the resiliency of the entire Internet space. The latter has
recently received tremendous media exposure. For instance,
an IoT smart refrigerator have participated in launching
massive phishing campaigns [11], while the Mirai malware
[12] and its extension Hajime [13] have demonstrated
how unsecured IoT devices can serve as entry points for
conducting orchestrated Denial of Service (DoS) attacks
and other malicious misdemeanors. Undoubtedly, such and
other security breaches largely challenge the trust level in the
IoT paradigm, hindering its wide-spread implementation in
various sectors and critical infrastructure.

While the security and networking research and operational
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communities are undertaking several steps towards the goal
of immuning the IoT paradigm from participating in or
being the target of debilitating cyber threats, significant
security weaknesses continue to exist, impeding IoT’s ability
to achieve its intended goals. In fact, the preliminary task
of Internet-scale characterization of the magnitude of IoT
exploitations is still relatively obscured. This is especially
factual when attempting to assess the maliciousness of the
IoT paradigm deployed in critical CPS. Indeed, one can not
devise effective IoT-relevant detection capabilities without
initially understanding the scale of this issue. Nevertheless,
several obstacles hampers the realization of the latter task,
including, lack of visibility into local IoT realms, which
prevents accessing and analyzing IoT-relevant empirical data
and the general insufficiency of IoT-specific attack signatures
[14].

In this paper, we take a first step towards comprehending
the severity and scale of IoT maliciousness. To this end,
we scrutinize Internet-scale empirical unsolicited traffic to
identify exploited IoT devices and their hosting environments.
In summary, we frame the contributions of this paper as
follows:

• Proposing an innovative approach which fuses extensive
passive measurements with results from Internet-wide
scanning to shed the light on compromised IoT devices.
In this context, it is important to note that the approach
is also capable of generating IoT-relevant malicious
empirical data and attack signatures, which we hope
to be shared with the research community at large to
facilitate further forensic investigation and advanced IoT
data analytics.

• Developing and operating a probing inference algorithm
that is capable of fingerprinting malicious activities
which are generated from exploited IoT devices.

• Evaluating the proposed approach by employing 130
GB of real darknet data and reporting on more than
11 thousand exploited IoT devices that are currently in
the wild. Such results could indeed be leveraged for
immediate mitigation by local IoT operators.

The road-map of this paper is as follows. In the next section,
we review related works on various concerned IoT security
topics and demonstrate the added value of the proposed
approach. In Section III, we present the proposed methods
and techniques for inferring Internet-scale unsolicited IoT
devices. In Section IV, we discuss the obtained results, while
in Section V, we summarize our contributions and pinpoint
several research topics that aim at paving the way for future
work in this impactful IoT security research area.

II. RELATED WORK

In this section, we review the recent literature on various
concerned topics, including, IoT vulnerabilities, empirical
characterization of devices and IoT data capturing initiatives.

The majority of IoT security research work has been
dedicated to addressing IoT security flaws. To this end, Ur et
al. [15] analyzed IoT access control by studying numerous
types of home automation devices. The authors investigated
ownership rules, roles, and monitoring capabilities, which
unveiled various issues such as revoked access permissions,
insufficient auditing capabilities, and usability flaws. In
alternative work, Ho et al. [16] explored IoT smart lock
systems and demonstrated how network architectures, trust
models, and malicious replay traffic could unlock doors,
allowing unauthorized physical access. Further, the authors
noted that most of the investigated devices lacked access to
elaborative logging procedures, rendering it impossible for
users to know who have accessed their devices and what
type of traffic was generated. Moreover, Ronen and Shamir
[9] illustrated information leakage attempts by simulating
an attack on a set of smart LED light bulbs. The authors
were able to extract sensitive information from an air-gapped
infrastructure, including encryption primitives and passwords.
In a different work, Sachidananda et al. [17] conducted port
scanning, process enumeration, and vulnerability scans of
numerous IoT devices. Their investigations unveiled that a
plethora of devices have open ports, allowing attackers to
obtain information related to their vulnerabilities by means
of fingerprinting their deployed operating systems and device
types/firmwares. In this work, we extend such research efforts
by uniquely leveraging and correlating empirical data to
understand, macroscopically, the magnitude of Internet-scale
IoT exploitations.

In the area of empirical measurements for device
characterization, Cui and Stolfo [18] executed a large-scale
active probing of the Internet space to uncover close to half a
million vulnerable embedded devices. In more recent works,
Costin et al. [19] statically analyzed more than 30 thousand
firmware images derived from embedded devices to shed the
light on their insecurities, while Fachkha et al. [20] conducted
passive measurements to analyze attackers’ intentions when
targeting protocols of Internet-facing CPS. In a similar work,
Bodenheim et al. [21] evaluated the Shodan service, a search
engine for Internet-connected devices, in its capability to
scan and index online industrial control systems. In contrast,
in this work, we particularly address the IoT paradigm and
develop an algorithm operating an passive darknet data to not
only infer compromised IoT devices but also pinpoint their
activities as they attempt to exploit other Internet hosts.

In the context of IoT data capturing initiatives, the first
IoT tailored honeypot, namely IoTPOT, was designed and
deployed by Pa et al. [22]. IoTPOT emulates telnet services of



various IoT devices running on different CPU architectures.
IoTPOT demonstrated its capability to capture various types
of malware samples for the sake of performing in-depth
analysis of IoT targeted attacks. In alternative work, Guarnizo
et al. [23] presented the Scalable high-Interaction Honeypot
(SIPHON) platform for IoT devices. The authors demonstrated
how by leveraging worldwide wormholes and few physical
devices, they were able to mimic various IoT devices on
the Internet and to attract massive malicious traffic. The
authors further characterized such traffic by elaborating on
attackers’ frequency and their employed protocols. Auxiliary,
several attempts to fingerprint IoT devices were executed.
For instance, very recently, Meidan et al. [24] leveraged
network traffic analysis to classify IoT devices connected to
an organization’s network, by applying techniques rooted in
machine learning supervised data classification. In contrary,
our analysis draws upon pure passive darknet data to present
a first look on compromised IoT devices in both, consumer
and CPS environments. Further, the proposed approach is
envisioned to be leveraged to extract raw empirical data
related to various IoT devices to support supplementary
forensic investigations as well as capture tangible IoT attacks
signatures. The latter two artifacts are currently lacking in the
academic as well as the security operations communities.

III. PROPOSED APPROACH

In this section, we detail our proposed approach which
aims at leveraging passive empirical measurements to infer
unsolicited Internet-scale IoT devices.

A. Exploiting Darknet Data

Having access to empirical IoT data is indeed quite chal-
lenging. Several hurdles confirm the latter, including, the lack
of visibility into local IoT realms due to logistic and privacy
concerns, the general scarcity of malicious empirical data
related to unsolicited IoT devices [25], and the lack of tangible
IoT-specific attack signatures [14]. To this end, complementary
methods ought to be explored; without access to tangible IoT
empirical data, the notion of maliciousness in this context can
not be elaborated. In this work, we uniquely exploit passive
measurements rendered by analyzing darknet data to achieve
the latter task. A darknet (also commonly referred to as a
network telescope) is a set of routable and allocated yet unused
IP addresses [26, 27]. It represents a partial view of the entire
Internet address space. From a design perspective, a darknet is
transparent and indistinguishable compared with the rest of the
Internet space. From a deployment perspective, it is rendered
by network sensors that are implemented and dispersed on nu-
merous strategic points throughout the Internet. Such sensors
are often distributed and are typically hosted by various global
entities, including Internet Service Provides (ISPs), academic
and research facilities, and backbone networks. The aim of
a darknet is to provide a lens on Internet-wide unsolicited
traffic; since darknet IP addresses are unused, any traffic

targeting them represents anomalous traffic. Such traffic (i.e.,
darknet data) could be leveraged to generate various cyber
threat intelligence, including inferences and insights related to
probing activities [27]. Such events are indeed the very first
signs of infections and propagation [28]. In this context, a
darknet is capable of capturing some of the probes of Internet-
scale infected hosts. Recall, that the probing machine, while
spraying its probes, can not avoid the darknet as it does not
have any knowledge about its existence. Further, it is known
that it is extremely rare if not impossible for a probing source
to have any capability dedicated to such avoidance [29]. Thus,
the proposed approach endeavors to scrutinize darknet data to
infer probing activities which are generated from Internet-scale
unsolicited IoT devices as an indicator of their exploitations.
We are fortunate to have access to real-time darknet data
from a /8 network telescope through our collaboration with
the Center for Applied Internet Data Analysis (CAIDA)1.

B. Probing Inference

To infer probing activities from darknet data, we present
Algorithm 1, which exploits flow-based parameters.

Algorithm 1 Probing Inference Algorithm
1: Input: A set (F) of unique darknet flows (f ),
2: Each flow f contains packet count (pkt cnt) and rate (rate)

Tw: Time window
Pth: Packet threshold
Rth: Rate threshold,
Tn: Time of packet number n in a flow
pkt: Packet
Output: Probing flag, Pr flag

3:
4: for Each f in F do
5: pkt cnt ← 0
6: T1 ← pkt gettime()
7: Tf ← T1 + Tw
8: while pkt in f do
9: Tn= pkt gettime()

10: if Tn < Tf then
11: pkt cnt ← pkt cnt + 1
12: end if
13: end while
14: rate ← pkt cnt

Tw
15: if pkt cnt > Pth & rate > Rth then
16: Pr flag() ← 1
17: end if
18: end for

Algorithm 1 operates on darknet flows, which are defined
by a series of consecutive packets sharing the same source
IP address. The algorithm counts the number of packets per
flow to measure the rate of the suspicious activities within a
certain time window (Tw). If the flow packet count (pkt cnt) is
beyond a specific threshold, the flow is deemed as a probe. To
this end, we employ the packet count threshold from [30],
defined by 64 probed darknet addresses on the same port.
Please note, that typically, the probing engine would have also
required and established a rate threshold (Rth). Nevertheless,
we do not enforce one here, to enable the algorithm to
infer very low rate, possible stealthy activities. Indeed, the

1http://www.caida.org/home/
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Fig. 1: Distribution of IoT devices deployed in consumer and CPS realms

approach embedded in Algorithm 1 would fingerprint Internet-
scale probing traces. Please note that from a performance
perspective, when implemented “on the fly” on the darknet
data stream using the C libpcap library [31], the developed
inference algorithm can process close to 10,000 flows in
approximately 1 minute (average throughput of 150 flows/sec).

C. Correlation with Active Measurements

To infer probes that have been specifically generated from
exploited IoT devices, one needs to fingerprint IoT generated
traffic. Indeed, such task is currently an open research problem
and very few endeavors (if not nil) have addressed it. While
we continue to investigate this problem using real empirical
data, in this work, we approach this issue from a different
perspective by leveraging active measurements. This entitles
executing Internet-wide scanning, capturing the results and
filtering the replies from the destinations based on their nature.
Fortunately, the Shodan service [32] performs the latter and
indexes online IoT devices. To this end, we leverage Shodan’s
available database of IoT devices, which are deployed in both,
consumer environments as well as in CPS realms. In total,
we retrieve more than 900 thousand online IoT devices and
correlate them using their source IP information with IP data
retrieved by conducting probing analysis of the darknet data
as previously mentioned. Thus, one core outcome of such
proposed approach are inferred Internet-scale exploited IoT
devices, which are attempting to scan other Internet hosts (to
fingerprint or exploit them). Auxiliary outcomes, which are
currently work in progress, include (i) accessing IoT malicious
empirical data which can be extracted from darknet data
and shared at large with the research community to facilitate
forensic investigations of IoT-relevant data, and (ii) generating
tangible IoT-specific attack signatures, using tools such as
ssdeep [33], which can be deployed at local IoT realms to
aid with the task of prompt mitigation.

IV. EMPIRICAL EVALUATION

In this section, we employ the proposed approach of
Section III to elaborate on the generated insights and

inferences. We exploit close to 130 GB of darknet data
that was recently retrieved in the month of June 2017. We
executed queries using the Shodan service to index online
IoT devices, which are deployed in both, consumer and
CPS environments. On one hand, for the IoT consumer
market, we focused on 5 categories, namely, IoT cameras,
Digital Video Recorders (DVRs), routers, printers and home
media servers. We chose the latter as they seemed to be
widely deployed and well adopted in addition to showing a
history of exploitation (as in the case of the Mirai malware
abusing IP cameras and DVRs). In total, we have indexed
862,014 IoT consumer devices that were online at the time
of writing of this paper. On the other hand, from the CPS
perspective, we focused on 6 sectors as summarized in Table I.

CPS Sector Protocol

Building Automation BACnet, Tridium
Factory Automation CoDeSys

Industrial Automation Red Lion Controls, Siemens-S7, MELSEC-Q
Manufacturing OMRON, EtherNet/IP
Power Utilities Modbus
Water Facilities DNP3

TABLE I: IoT devices related to various CPS deployments

In total, we were able to index 72,554 IoT devices which
have been deployed and operated in those CPS sectors. Figures
1(a) and 1(b) illustrate the distribution of such IoT devices
in their numerous corresponding realms. It can be extracted
that IoT devices related to IP cameras, DVRs and routers
are quite well deployed. Further, it can be inferred that IoT
devices in building automation facilities, manufacturing plants
and power utilities render the majority of the IoT deployments.

We proceed by invoking the inference algorithm and the
correlation procedure as briefed in Sections III-B and III-C.
The outcome uncovers Internet-scale compromised IoT de-
vices in various sectors. Overall, we were able to infer 11,122
exploited IoT devices related to the consumer sector, while the
results further disclosed 510 vulnerable IoT devices in critical
CPS sectors. Figures 2(a) and 2(b) illustrate the distribution
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of such exploitations within their corresponding categories.
While the exploitation of IoT cameras is a reasonable outcome,
DVRs, which have been exploited earlier this year by the
Mirai malware, do not seem to be on top of the list of most
exploited. In fact, IoT routers and printers appear to be more
heavily compromised. This questions the fact if such devices
will soon be leveraged as new bots within numerous botnets
to launch similarly devastating attacks towards high priority
Internet assets. More alarming, the results also demonstrate
that IoT devices in manufacturing plants, building automation
facilities and power utilities are the most exploited. This is
indeed quite worrying, given that such vulnerabilities not
only could lead to theft of highly sensitive and possibly
classified intellectual property, but can also cause issues to
the power infrastructure of nations and even endanger human

life. By performing geo-location procedures using maxmind2,
we were able to attribute such IoT exploitations deployed
in various CPS realms to their hosting environments (i.e.,
ISPs and countries). Please note that since we are exploiting
probing intelligence as indicators of exploitation, the sources
render real, non-spoofed IP addresses [28]. Figure 3 reveals
that China, the United States, Canada and Spain host the
top most IoT exploitations while Figure 4 shows the top 6
corresponding ISPs hosting these compromised IoT devices.
To the best of our knowledge, the generated results herein
render a first attempt ever to shed the light on Internet-scale
IoT maliciousness. Indeed, empowered with such cyber threat
intelligence, one can share such information with local IoT
realms which are hosting these compromised IoT devices for
prompt eradication, thus providing effective IoT mitigation.

2https://www.maxmind.com/en/geoip2-databases
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It is noteworthy to mention that the overall ratio between
sampled (i.e., deployed) IoT devices and inferred exploited
IoT devices in both, the consumer market and CPS realms,
is computed to be around 2%. While this number seem to
be small, one should note that IoT projections for 2020 is
expected to reach 50 billion online IoT device, thus ominously
causing IoT exploitations to develop into a momentous cyber
security distress, to say the least.

V. CONCLUDING REMARKS

The Internet of Things (IoT) is an emerging paradigm of
technical, social, and economic significance. Projections for
the impact of IoT on the Internet and economy are impressive,
with plethora of enterprises and analysts anticipating billions
of connected IoT devices and a global economic impact of
more than $11 trillion by 2025. While IoT deployments in
the consumer sector have been receiving much hype, their
corresponding implementations in CPS settings will undoubt-
edly provide massive benefits in terms of increased efficiency
and cost reduction. Nevertheless, the initial priorities of IoT
vendors have been focused on providing novel functionality,
getting products to market, and making IoT devices more
accessible and easier to use. Unfortunately, security concerns
have not received as much attention. Motivated by the lack
of IoT-relevant empirical data, this paper strived to present a
first look on the scale and magnitude of IoT maliciousness.
By fusing Internet-scale unsolicited darknet data with the
results of active measurements, in addition to leveraging a
probing inference technique, this paper shed the light on
exploited world-wide IoT devices that have been deployed in
consumer as well CPS environments. Some of the outcomes
suggested the wide-spread compromise of IoT cameras and
routers as well as the alarming exploitations of IoT devices in
manufacturing and building automation facilities. This work
indeed presents a solid foundation, in which future efforts,
in this imperative IoT empirical security research area, are
currently being planned and pursued. Foremost, a large-scale
thorough characterization and analysis ought to be executed
to precisely determine the scope of this issue. Further, we
are currently investigating various IoT malware samples to

perform correlations with data that is extracted from this
work in an attempt to analyze the orchestration behavior of
such malicious IoT devices. Additionally, we are presently
developing a data sharing facility, where researchers can have
access to IoT-relevant empirical data to strongly support IoT
security research.
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vide Balzarotti, and Sophia Antipolis. A large-scale
analysis of the security of embedded firmwares. In
USENIX Security, pages 95–110, 2014.

[20] Claude Fachkha, Elias Bou-Harb, Anastasis Keliris, Nasir
Memon, and Mustaquel Ahamad. Internet-scale probing
of cps: Inference, characterization and orchestration anal-
ysis. In The Network and Distributed System Security
Symposium (NDSS), To appear, 2017. http://public.eng.
fau.edu/ebouharb/ndss-149.pdf.

[21] Roland Bodenheim, Jonathan Butts, Stephen Dunlap, and
Barry Mullins. Evaluation of the ability of the shodan
search engine to identify internet-facing industrial control
devices. International Journal of Critical Infrastructure
Protection, 7(2):114–123, 2014.

[22] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka,
Tsutomu Matsumoto, Takahiro Kasama, and Christian
Rossow. Iotpot: A novel honeypot for revealing cur-
rent iot threats. Journal of Information Processing,
24(3):522–533, 2016.

[23] Juan Guarnizo, Amit Tambe, Suman Sankar Bunia,
Martı́n Ochoa, Nils Tippenhauer, Asaf Shabtai, and Yu-
val Elovici. Siphon: Towards scalable high-interaction
physical honeypots. arXiv preprint arXiv:1701.02446,
2017.

[24] Yair Meidan, Michael Bohadana, Asaf Shabtai,
Juan David Guarnizo, Martın Ochoa, Nils Ole
Tippenhauer, and Yuval Elovici. Profiliot: A machine
learning approach for iot device identification based on
network traffic analysis. 2017.
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