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Abstract—Nowadays, the Bluetooth Low-Energy (BTLE) 
technology is integrated in numerous smartphones and 
beacons, but there is still an open challenge on delivering 
a presence-into-zone positioning system that facilitates 
the design and reconfiguration of the service zones and 
offers stable target tracking. In this paper, we report the 
experience gained from the deployment of a BTLE zone-
based positioning system in a retail setting with defined 
service objectives. The algorithm powering the positioning 
system requires previous calibration, which comes to be a 
tedious and long invasive process when it is accomplished 
in a space with high people flow. The paper describes 
our work to minimize the calibration effort, by analyzing 
the effect of calibration samples reduction and proposing 
the application of a on-the-move calibration strategy that 
facilitates the calibration dynamics preserving the system's 
correct recognition rate. 

Index Terms—Indoor location system, location-based 
services, positioning technologies, context-aware services, 
calibration 

I. INTRODUCTION 

Indoor positioning systems are becoming popular 
in different environments, in particular for retailers, 
who are interested in their potential for inventory, cus­
tomer/vendor behavioral analysis [1], physical space per­
formance or notifications handling (information, prox­
imity marketing, etc.). Delivering an operational indoor 
location system, capable of working with standard smart-
phones, requires to use the communication technologies 
available on these devices (i.e. Wi-Fi, Bluetooth). Since 
version 4.0, the Bluetooth specification enables the im­
plementation of a low energy version. On top of the 
Bluetooth Low Energy (BLTE) stack, three main com­
mercial location-oriented protocols have been developed 
and integrated in the smartphones: iBeacon [2], Eddy-
stone [3] and AltBeacon [4]. They all provide a basic 
location method that uses the received signal strength 
(RSS) to determine when a smartphone is close to a 
beacon, i.e. a small electronic device that periodically 
broadcasts a BLTE signal. 

Combining the RSS coming from different spatially-
distributed beacons, it is possible to estimate the position 
a movina taraet (i.e. smartphone or movina beacon) 

through the use of traditional positioning techniques. Re­
sults are similar to the ones obtained from other wireless 
technologies for accurate positioning, when the objective 
is to determine the coordinates of the moving target 
with respect to a reference system. Fingerprinting and 
channel modeling techniques have been widely explored 
and their limitations, documented in literature [5] [6] [7]. 
Due to the high variation of signal strength in indoor 
environments (because of reflections and absorption at 
surfaces), accurate location estimation (<l-2 m) is prac­
tically unfeasible with RSS-based techniques. Previous 
works such as [8] or [9] include systems and algorithms 
bechmarkings in semi-controlled scenarios. 

But, for many services, positioning systems only need 
to deliver basic proximity discovery, i.e. a digital esti­
mation which is activated when a smartphone detects 
a visible beacon, or in-zone presence detections, i.e. 
the zone where the moving target is, usually computed 
by merging information from different visible beacons. 
Most commercial solutions from beacons' vendors offer 
off-the-shelf tools that enables proximity discovery, but 
with them, it is not feasible to build a system that 
provides continuous and reliable estimations for non-
walled zones with sufficient reliability. In this paper, we 
describe our experience on the deployment of a BLTE 
positioning system in a real setting (a supermarket). 
Our positioning system is capable of providing both 
presence and proximity location to deliver notification 
and behavior analysis services on top of it. Our focus 
on the paper is not to go deep on the evaluation of the 
positioning strategy, but to provide some hints on how 
to improve and accelerate deployments in non-controlled 
scenarios, in particular by making easier and faster the 
calibration procedure. 

II. BTLE INDOOR POSITIONING SYSTEM 

A. System Requirements 

In our experience with indoor location systems, we 
have found that practical deployments may impose re­
strictions that are not necessarily considered in the 
theoretical sphere. In this case, we are going to present 
our conclusions from a deployment of a location system 



in a supermarket during work days. The design of the 
location system has been done following several require­
ments and restrictions, imposed by the deployment envi­
ronment and basically dictated by both communication 
constraints and the need to guarantee customer privacy; 
the most relevant ones are: 

1) For service purposes, the system must deliver both 
presence (zone-based) and proximity location esti­
mations. As it is explained in Section II I , the owner 
of the setting has identified 10 different zones of 
interest meaningful for the location service, which 
have a variable size and include different segments 
of corridors and open areas. 

2) Position has to be computed in the mobile device, 
so the user has full control over it (device-centric 
system). 

3) Information about the beacons composing the posi­
tioning infrastructure (in particular, their location, 
identifier and configured transmission power) has 
to be provided to the positioning algorithm in 
the mobile device, so it has to be available for 
download the first time that the user triggers the 
service and, in update mode, when modifications 
are done. 

4) Location estimates have to be managed in an 
anonymized way when sent to the server managing 
history and support services. 

5) The response time of the location must be suf­
ficiently low to permit to locate a user walking 
through the smallest subzones. 

6) The system has to be set with minimum effort, so 
deployment and calibration procedures have to be 
fast and automated. 

B. Positioning algorithm 

Our positioning system relies on an algorithm that 
estimates the zone where the mobile target is. The 
algorithm is referred within the text as threshold algo­
rithm and requires an array of RSS thresholds to be 
calculated for each beacon visible from a given zone. 
To be considered inside the zone, the RSS received 
in the smartphone needs to fulfill all the thresholding 
conditions with respect to each visible beacon. As many 
algorithms based on fingerprinting or channel modeling 
techniques, this algorithm needs calibration to estimate 
the thresholds between zones. Assuming that rm,n is the 
RSS from the beacon m in the area n, being M the 
number of beacons per zone, the average RSS in a zone 
is: 

1 
M 

M 

/ J 'm,n (1) 

Fig. 1. Views exemplifying the distribution of beacons in an aisle. 

of D = [di, di, ..., d'rn\ is the difference of rn(max) and 
r;

n, for every area An> where n ^ n, the algorithm wil l 
only provide a solution (L) i f the difference of RSS with 
respect to the average RSS in the rest of the areas is over 
a certain threshold, to avoid false positives: 

L = 

771 = 1 

The first step for the algorithm is to find the area 
An(max) in which the computed in-zone average RSS 
rn(max) is the highest. Considering that each element 

An(max) if dn/ > i/injn/, Vn ^ n' 
out — of — zone otherwise 

(2) 
As said before, each threshold ttiAB is computed 

from a number of simultaneous RSS sample pairs taken 
from beacons both in zones A and B, when the user 
is physically in zone A. Depending on the size and 
shape of zone A, the calibration wi l l require to repeat 
the sampling procedure in different positions distributed 
within the zone. Then, for every set of simultaneous 
measurements, the lower and upper bounds wil l be 
computed [th^in^th^ax], being the upper one the most 
restrictive. Representing the histogram of differences 
also enables to set different confidence levels different to 
100% (which may be assumable for specific use cases), 
avoiding the number of out — of — zone situations. 
Although other alternative algorithms are available (e.g. 
a bayesian algorithm that includes information about the 
possible transitions among zones) [10], the threshold 
algorithm has been chosen for the real deployment due 
to the trade-off between complexity and accuracy. 

C. System Components 

The delivery of a functional positioning system that 
fulfills the requirements above implies the deployment of 
a support infrastructure (beacons and central processing 
unit - a local server, in this case, although the solution 
is also available in cloud mode) and to include the 
necessary logic in the mobile device. The system is 
prepared to work with Estimote Proximity Beacons for 
in-zone presence estimation (Fig. 1) and RadBeacon Dot 
for proximity location (although it is easy to include new 
hardware). As required, the positioning algorithm has 
been coded both for Android and iOS (APIs are provided 



Fig. 2. Area to cover with the location system. PoI (point of interest) 
for proximity zones are in red, while green dots represent the position 
of the beacons. 

for integration with existing client applications). Both 
infrastructure and calibration data are downloaded to 
each smartphone running the positioning functionality 
when the application managing location is launched 
for first time in the area of coverage of the system, 
and updated when the infrastructure data has changed. 
Bidirectional communication with the server is required, 
not only to download the beacons’ information, but 
also to receive the results of the positioning procedure. 
In practical terms, this need requires the configuration 
of the setting’s network to enable the communication 
between mobile devices and server. 

I I I . BEACON DEPLOYMENT AND CALIBRATION 

The map showing the area to cover is represented 
in Fig. 2 (red line). The zones of interest comprise 
six master zones (Pets, Household, Cleaning, Beauty, 
Beverages and Cashiers), three of them with two or three 
sub-zones inside (ten subzones in total). In particular, 
zones are as follows: 

1 aisle, divided into three zones (2 x 1.7 m approx-
• 

imately), zones A 1 , A2 and A3 in Fig. 2. 
2 aisles, each of them divided into two zones (3 x 

• 

1.7 m approximately). Respectively E1 , E2 and H 1 , 
H2 in Fig. 2. 
Three open zones, C , P and Al respectively in 

• 

Fig. 2. 
For proximity location, the supermarket’s owner defined 
two points of interest in a pop-up set and in a section of 
permanent shelves that were located at zone A . 

The design phase included the design of the physical 
distribution for beacons (depending on the materials 
of the aisles and the products around), the number of 
beacons per zone (depending on the size and shape of 
the zone), the distribution of the calibration positions per 
zone and the number of samples to take per position, 

together with the sampling orientation. Prior to proceed 
with the deployment, information about the physical 
distribution of the setting and the building materials was 
gathered, but the retrieved data were too general so it 
was impossible to create a propagation model of the 
Bluetooth signal to determine the number and setting 
of the beacons to deploy beforehand. For this reason, 
the final deployment design was decided after a on-site 
visit and a basic test. 

So the initial step of the deployment was a propagation 
test to evaluate the signal fading due to the absorption of 
the aisles’ materials. Several beacons were first installed 
between the aisles in a comfortable position. In-zone 
presence beacons were all of them configured to transmit 
at their maximum power. For calibration and testing, two 
different models of smartphones were used (two Apple 
iPhones 6S and three Samsung Galaxy S5). Some short 
walks carrying the two mobile devices (on hands and 
inside a pocket) enabled to store a significant number 
of RSS samples that served to evaluate the propaga­
tion scenario. The signal fading induced by the aisles’ 
materials was favorable, so it was decided to deploy 
two beacons per zone (which is the minimum that the 
location algorithm needs to work in an stable way in 
laboratory tests). 

The second step was the physical installation of the 
beacons. For the presence beacons, they were located at 
the top height of the shelves (at the maximum 2.3-2.5 m), 
at mid-distance of the zone’s length and approximately 
one in front of the other in the case of the aisles (Fig. 2 
shows a pair of beacons). The two proximity beacons 
were installed in two totems in the zone A, to detect 
when the customer approaches to a promotional product 
to deliver tailored notifications. The final deployment is 
shown in the Fig. 2. 

The third step was the calibration of the presence 
location algorithms (proximity beacons did not require 
any calibration). Calibration requires the tester remains 
in a certain position and orientation, holding a smart-
phone to take the predefined number of RSS samples 
(the client application scans the RSS from all the visible 
beacons up to take a pre-defined number of samples). 
The process is repeated for each pre-established po­
sition and orientation. We have discarded the idea of 
building a dense fingerprint map for the deployment 
of the system, as the trade-off between time and ac­
curacy benefits is not favorable. So the objective is to 
select few meaningful calibration positions inside each 
zone. Regarding the number of samples per position, 
the system’s performance is supposed to increase with 
the samples volume up to a limit. In this unknown 
environment we opted by oversizing the sampling, so we 
were able to configure a sufficiently large dataset also 
for experimentation purposes. The calibration design 
finally included four positions in each zone; samples 



Fig. 3. Average Correct Recognition Rate (%) per zone with error bar 
of one standard deviation. 

in four different orientations were taken (North-East-
South-West), so 300 samples were finally stored for each 
calibration position. The entire process would have lasted 
more than three hours (300 samples × 4 positions × 
10 subzones = 12 000 seconds) if three testers were 
not have been simultaneously involved. The calibration 
was completed in about one hour and twenty minutes; 
as expected, it was a long task that was interrupted in 
several occasions by the people flow, customers willing 
to grab products from the shelves or to move around 
with their shopping carts. 

Calibration data were off-line processed and stored 
in the database to enable the dynamic download of 
the algorithm parameters to the clients. Some network 
configurations were needed to set the final working 
system, due to the NSP (network security policy) in the 
supermarket. For testing, an application enabling path 
recording was used. The application requires that the 
tester identifies the zone in which she will be moving 
before starting the recording process. Then, a log file 
stores the RSS raw measurements and the location esti­
mation results, with the timestamps. Testers were moving 
following a predefined path covering all the zones. 

When in central positions, the obtained correct recog­
nition rate (CRR) varies between 76% and 99%, depend­
ing on the zone (Fig. 3). The lowest CRR was obtained 
in zone H2, which was mainly confused with H 1 . The 
estimates were fairly stable, as it can be derived from 
the static deviation. 

I V . OPTIMIZATION OF THE CALIBRATION PROCESS 

The data collection for calibration was a time-
consuming and uncomfortable phase which is not usually 
optimized for in-lab experiments. We next describe how 
to reduce the necessary time to calibrate the system. 

A. Reducing the Number of Samples and the Sampling 
Positions 

Key issues for calibration are the reference positions 
and the number of samples to take in each of them. 
In each reference position, the goal is to reduce the 
number of samples to a minimum that guarantees a 

T A B L E I 
CLASSIFICATION OF CALIBRATION POSITION. 

Type A 
Type B 
Type C 
Type D 
Total 

Acc. 
> 90% 
> 90% 

60% — 90% 
< 60% 

# measures 
20-40 

100-260 
120-260 
120-260 

# positions 
25 
4 
6 
5 

Necess. time 
500 s 
660 s 
1200 s 
950 s 

55 min 

stable CRR. The stability requirement is relevant: the 
obtained CRR may be higher or lower, but it still needs 
to be converge towards a stable one in any case. To 
evaluate the influence of the number of samples, the set 
of samples taken during the test phase has been divided 
into groups of multiples of 20 measurements (20, 40, 60, 
. .. ). For each group, the thresholding conditions were 
calculated and finally we used the data obtained during 
the test as the input for the location algorithms. For the 
test, stable CRR meant that adding new samples, the 
CRR did not vary more than 3%. Analyzing the variation 
of the CRR in each zone, it was noted that 75% was 
reached with at most 40 samples, and that in 13 out of 
40 positions the CRR was 90% with the same number 
of measures. 

A classification of types for sampling position is 
gathered in TABLE I. Sampling positions of type A reach 
a CRR above 90% and achieve a stable CRR after a 
very low number of samples (20-40). B type-sampling 
positions also achieve very good CRR, but they need 
100-260 calibration samples enter in the stable part of the 
curve. C type-sampling positions obtain a CCR between 
60 and 90% with 120-260 samples and D type-sampling 
positions have a lower CRR with the same number 
of calibration samples. Fortunately, the most populated 
group is A-type sampling positions, gathering more than 
62% of positions in the deployment. Type A positions 
are those located well inside the zones under analysis, 
while D positions are close to the zone boundaries. B 
and C positions are in the middle, between A and D, 
with B close to A and C close to D. As it is show in 
TABLE I, the prior classification of sampling positions 
may significantly reduce the necessary calibration time 
by more than 72%. In our case, the full calibration 
process could be completed by a single person in 55 
minutes. 

Regarding the number of calibration positions, we 
were willing to check the effect of removing some 
A-type and D-type points to reduce the calibration 
time even more. Results show that removing the A-
type positions obtaining the lowest CRR have a general 
effect on the global CRR, which drastically decreases. 
Removing the A-type position with the highest CRR 
makes the CRR in zone to slightly improve. Removing 
the worst D-type position makes the CRR for that zone 
decrease. Removing the best D-type point, the CRR for 



Fig. 4. a) Lab environment. b) Evolution of the Correct Recognition 
Rate in zone B with the strategy on-the-move. 

T A B L E I I 
COMPARISON OF STATIC AND CALIBRATION ON-THE-MOVE 

STRATEGIES. 

Zone 
A 
B 
C 
D 

E 
F 
G 
H 

CRR (%) for static cal. 
63,11 
61,73 
56,24 
27,57 
30,25 
75,43 
36,63 
41,73 

CRR (%) for cal. on-the-move 
61,59 
70,95 
58,67 
82,26 
63,15 
46,59 
53,21 
72,71 

number of samples for calibration on-the-move, it can 
be seen that the CRR converges to a value when a 
number of samples are considered; for example, in 
Fig. 4b, convergence is appreciated from around 120 
samples on. A similar behavior has been obtained for 
the rest of zones. T A B L E I I shows the CRR for each 
calibration technique in the different zones, while using 
a) 6 calibration positions and 150 samples per position 
per zone for static calibration, b) 150 samples of the 10-
minutes walk (randomly sampled from the trajectory) 
and c) 500 samples for evaluation both for static and 
strategies on-the-move. Results with 25 samples per 
position for static calibration has also been computed 
(150 samples per zone), providing very similar results 
to the ones shown in T A B L E I I . From these data, it can 
be inferred that results with calibration on-the-move are 
better or at least similar to those obtained with the static 
procedure for almost all the zones under analysis, with 
the exception of zone F. This can be due to the fact 
that the walk was not including enough spatial diversity. 
This experiment shows that calibration on-the-move may 
achieve satisfactory results, reducing the calibration time 
to 2.5 minutes in this case (as CRR is not getting much 
better with additional samples). 

V. CONCLUSIONS 

Many RSS-based indoor location algorithms need to 
be tuned to the specific physical and electromagnetic 
characteristics of the space through calibration. The cal­
ibration procedure is usually tedious and may consume 
a good part of the deployment time. For this reason, any 
mechanism that may alleviate the task is welcome. In 
this paper, we have presented our experience during a 
real deployment and shown how to deal with calibration 
to optimize it, for the needs of our zone-based location 
algorithm. The optimization of the number of samples 
to be gathered on each position may significantly reduce 
the calibration time. Additionally, the correct choice of 
the calibration reference positions to guarantee spatial 
diversity may help to get better performance in terms of 
correct recognition rate. 

We have also described and shown the potential of 
calibration on-the-move which, from our experiments in 
the lab, may achieve better CRR than motionless ap­
proaches while optimizing time and calibration dynamics 
(it is always easier for a tester to take measurements in 
not so restrictive conditions). Calibration on-the-move 
enables to include a increased spatial diversity adapted 
to the service needs (i.e. particularly tuned for the 
areas where the user is really moving around in the 
space). It also makes possible to design strategies for 
permanent updating of the calibration, as any user may 
be gathering measurements that may be used for this 
purposes. We are already working on better defining 
how to perform calibration on-the-move for continuous 
update of the algorithm’s parameters (following the line 

that zone slightly improves. These results show that it 
is probably not worthy to remove positions to reduce 
the calibration time. The positions in which the lowest 
CRR are obtained provides important information to the 
system: removing them, not only deletes that information 
from the parameters, but it also gives more weight 
to the rest of points that do not provide that kind of 
information. This test suggests that it is worthy to have 
enough spatial diversity, while adjusting the number of 
samples in each calibration position may be helpful to 
reduce the calibration time. 

B. Introducing Calibration On-the-move 

The spatial diversity requirement suggests that an 
alternative to static calibration could be to take RSS sam­
ples when walking around within the areas where users 
will be wandering, depending on the space configuration 
and user’s practices. So after the in-shop deployment, 
we performed additional tests in our lab to compare 
the static calibration procedure with a strategy on-the-
move. The lab space is divided into 8 different non-
walled zones (Fig. 4a). We took 10-minutes walks of 
samples within each zone carrying two smartphones 
simultaneously, so 1000 samples were gathered for each 
area. When analyzing the effect of using an increasing 



of previous works such as [11]). Finally, the deployment 
experience has demonstrated the need to define a much 
more guided calibration methodology, as it is evident that 
it is necessary to avoid unnecessary deployment delays 
and even the presence of technicians in the deployment 
process. If sufficiently standardized, any location system 
administrator may perform its own calibration process, 
so we are working on tools to achieve this goal. 
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