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Abstract—The aim of this paper is to handle the multi-
frequency synchronization problem inherent in orthogo-
nal frequency-division multiple access (OFDMA) uplink
communications, where the carrier frequency offset (CFO)
for each user may be different, and they can be hardly
compensated at the receiver side. Our major contribution
lies in the development of a novel OFDM receiver that
is resilient to unknown random CFO thanks to the use
of a CFO-compensator bank. Specifically, the whole CFO
range is evenly divided into a set of sub-ranges, with
each being supported by a dedicated CFO compensator.
Given the optimization for CFO compensator a NP-hard
problem, a machine deep-learning approach is proposed
to yield a good sub-optimal solution. It is shown that the
proposed receiver is able to offer inter-carrier interference
free performance for OFDMA systems operating at a wide
range of SNRs.

I. INTRODUCTION

In orthogonal frequency-division multiple access
(OFDMA) uplink communications, every user to the
receiver link may suffer carrier frequency offset (CFO),
which introduces inter-carrier interference (ICI) as well
as mutual interference between users. Concerning the
CFO for every user to be random and independent, it
is often hard to conduct frequency synchronization at
the receiver side; and this is referred to the well-known
multi-frequency synchronization problem [1].

Given the receiver-side knowledge of CFOs, fre-
quency synchronization might be applied onto each
individual user’s signal, which is obtained through the
use of filter-bank [2]. However, the filter-bank approach
cannot capture the signal energy leaked into others’ user
band; and this is the main reason to cause imperfectness
for the frequency synchronization. A possible way to
enhance the filter-bank approach is through the com-
bination of iterative multiuser detection and frequency
synchronization [3]–[5]. The fundamental bottleneck lies
in the demand for accurate CFO and multiuser channel
estimation as well as the decoding accuracy.

It might also be possible to conduct frequency syn-
chronization at the transmitter side through the use
of CFO pre-compensation approach, which turns the
multi-frequency synchronization problem into a much
simpler single-frequency synchronization problem [6],
[7]. This approach lies in the hypothesis of accurate

CFO knowledge at the transmitter side, which is however
hardly the case in practice due to the feedback delay and
CFO dynamics. Moreover, the feedback for multiuser
CFOs introduces extra signalling overhead, which is not
favourable for advanced wireless applications such as
5G, IoT or Tactile Internet that are demanding for a
short frame length [8].

In this paper, we introduce a novel OFDM receiver
architecture to handle the multi-frequency synchroniza-
tion problem. Basically, the proposed receiver employs a
new component named CFO-compensator bank, which
consists of a set of parallel CFO compensators, with
each in charge of a certain range of CFO; and ag-
gregately the CFO-compensator bank covers the whole
CFO range. More specifically, the CFO-compensator
bank is able to operate on two modes corresponding to
blind frequency synchronization or non-blind frequency
synchronization, respectively. The former assumes no
receiver-side knowledge of CFOs, and in this case the
received signal is fed into every CFO compensator. The
output of the CFO-compensator bank is a number of
parallel streams, which are demodulated and decoded
individually. The decoded bit-stream that passed CRC
is considered to be frequency synchronized. It is worth
highlighting that the blind synchronization approach
involves computation redundancy, which are sometimes
considerable for a multiuser receiver. Alternatively, the
non-blind frequency synchronization approach can be
employed to minimize the computational redundancy.
Given the receiver-side knowledge of CFOs, a specific
CFO-compensator instead of all is chosen to conduct
the frequency synchronization. The CFO knowledge can
be obtained by employing any existing pilot-assisted
or non-pilot assisted CFO estimation algorithms (e.g.
[2], [6], [9]–[13] and many others). Here, we highlight
that the proposed CFO-compensator is not sensitive to
the CFO estimation accuracy as long as the estimation
error falls into an acceptable range (e.g. 0.05 or smaller
in absolute bias for the normalized CFO). This is one
of remarkable advantages of the proposed frequency
synchronization approach.

The major challenge for the CFO-compensator bank
design lies in the optimization for each CFO compen-



sator, which is a NP-hard problem. In order to handle this
problem, a machine deep learning approach is proposed
to suggest a good sub-optimum solution. The CFO
range for each compensator is also carefully determined
based upon both analytical and simulation work. The
performance of the proposed receiver is evaluated in
both the additive white Gaussian noise (AWGN) and
mobile fading channels. It is demonstrated that the
proposed receiver is able to offer ICI-free performance
for OFDMA systems operating at a wide range of SNRs
(e.g. SNR≤ 25 dB in mobile fading channels).

II. OFDMA UPLINK COMMUNICATION MODEL AND
PROBLEM FORMULATION

Consider an OFDMA system where a set of users
transmit their signals to the uplink receiver. Assuming
the timing mismatch between users to be smaller than
the length of cyclic prefix (CP), the received signal after
CP removal can be expressed by the following matrix
form [14]

y =

L−1∑
l=0

ΩlHlxl + v (1)

with the subscript l denoting the user index, and L the
number of users. In addition, xl is the post-IDFT signal
block sent by the lth user with the size (M)× (1) (M :
the IDFT size), Hl the circulant Toeplitz channel matrix
between the lth user and the receiver, v the AWGN;
and finally, Ωl is the (M)× (M) diagonal matrix with
its diagonal corresponding to the CFO for the lth user.
In detail, the diagonal of Ωl can be expressed by the
following vector form

Ωl= diag(ωl), (2)

ωl= Ωl exp
([

1, ...,
j2πωl(M − 1)

M

]T)
(3)

where ωl is the CFO normalized by the OFDM sub-
carrier spacing with ωl ∈ [−0.5, 0.5], Ωl the lth user’s
CFO-related phase shift due to the CP removal, and the
superscript [·]T stands for the matrix transpose.

Prior to the DFT operation at the receiver, the CFO
term Ωl should be removed; or otherwise the ICI arises
from the DFT operation. Given the knowledge of Ωl,∀l,
joint frequency synchronization and multiuser detection
can be conducted by minimizing the following Euclidean
distance

x̂l = arg min
xl

∥∥∥∥∥y −
L−1∑
l=0

ΩlHlxl

∥∥∥∥∥
2

(4)

where ‖ ·‖ denotes the Euclidean norm. This maximum-
likelihood approach is optimum, however it does not take
advantage of the OFDM structure, and it’s computational
complexity scales exponentially with the block size M .
It is also possible to employ the iterative frequency
synchronization and multiuser detection algorithm to
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Fig. 1. Block diagram of the proposed OFDM receiver for multi-
frequency synchronization.

yield a sub-optimum solution [3], [4]. However, the com-
putational complexity is still considerably high, and the
frequency synchronization performance highly depends
on the CFO and channel estimation accuracy.

The motivation of this work lies in our hypothesis
of existing a (quasi-)linear frequency synchronization
approach that can offer near-optimum multi-frequency
synchronization performance for a wide range of SNRs.
If this hypothesis gets supported, it is important to un-
derstand working conditions for the proposed approach.

III. THE MULTI-FREQUENCY SYNCHRONIZATION
ALGORITHM AND ITS OPTIMIZATION THROUGH

DEEP LEARNING

A. The Proposed Receiver Structure

Fig. 1 (b) illustrates the block diagram of the proposed
CP-OFDM receiver structure. To highlight the technical
novelty, the block diagram of the conventional CP-
OFDM receiver is also shown in Fig. 1 (a). Mathemat-
ically, the proposed receiver can be described through
two steps. The first step includes two linear-processing
components with the key objective for the CFO and
channel equalization. Given the Fourier decomposition
H = FHΛF, where F denotes the (M) × (M) nor-
malized DFT matrix, Λ the diagonal matrix consisting
of the channel frequency response, and [·]H the matrix
Hermitian transpose, the first step can be expressed by
the following matrix form

y(1) = Λ−1 (W(1)y + b(1))︸ ︷︷ ︸
Linear Layer

(5)

where the channel equalization component is simply
the channel inverse Λ−1, and the linear layer in (5) is
responsible for the CFO compensation as well as the
time-to-frequency domain transform. The term linear
layer comes from the concept of neural network, where
W(1) is the weighting matrix of this layer, and b(1) the
bias vector.

The second step includes multiple nonlinear layers
forming a neural network, which are responsible for
the signal classification. Basically, the demodulation or



decoding process is modeled by a signal classification
process. An OFDM signal having M subcarriers with
each carrying a Q-state symbol can be classified into
N(= QM ) bins, which can be represented by J(=
M log2Q) bits. Therefore, the output of the second step
is a binary vector with the size of (J)× (1).

While the principle of the proposed CP-OFDM re-
ceiver will be introduced in Section III-B, it is worth-
while to highlight that the proposed receiver can be
regarded as the generalized version of the conventional
CP-OFDM receiver. The CFO and FFT component in the
conventional CP-OFDM receiver is generalized by using
the linear layer, and the demodulator is now replaced
by the multi-layer neural network. More remarkably,
every component in the CP-OFDM receiver is optimized
individually. Thanks to the use of deep neural network
(DNN) structure, every layer in the proposed receiver
will be jointly optimized through the deep learning
algorithm introduced in Section III-C. It will be shown
that the joint optimization makes a big difference for the
frequency synchronization.

B. Principle of The DNN-based Receiver

Concerning the linear layer in Fig. 1 (b) to be equiv-
alent to a linear transform, we can represent the linear
layer with

W(1)y + b(1) = Γy (6)

where Γ is the linear transform matrix with the same
size as W(1). Then, the input to the signal classifier is

y(1)= Λ−1Γy (7)
= Λ−1ΘΛs (8)

with
s = Fx; Θ = ΓΩFH (9)

Note that the user index l is omitted as far as the
single-user case is concerned, and we only consider
the noiseless case for convenience. Moreover, the block
s is the frequency-domain symbol block. Our interest
is to understand: to what extend s can be determined
given y(1). This defines the feasibility condition for the
classifier to work appropriately.

Basically, the DNN-based classifier is trained accord-
ing to the maximum posterior probability. Assume s to
be drawn from a finite set A = {s(1), ..., s(N)}. After
the offline training, the DNN drops y(1) into the bin
labeled with s(n) given

s(n) = arg max
s

p(s|y(1)) (10)

Define Θ = Λ−1ΘΛ that varies randomly with respect
to Λ and Ω. The classification error occurs when there
exists an candidate s(n1), n1 6= n, fulfilling

y(1) = Θ
(n1)

s(n1) = Θ
(n)

s(n) (11)
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Fig. 2. Supervised deep learning for the receiver optimization.

The probability for this case must be minimized for
the sake of the classification reliability; and this is the
responsibility of the linear layer in the equalization
component, with the objective of finding the matrix
Γ that minimizes the probability. This task involves
the linear programming problem, which is NP hard.
Nevertheless, the DNN receiver can be trained through
the supervised deep learning.

C. Deep Learning for Receiver Optimization

Fig. 2 illustrates the block diagram of the supervised
deep learning for the DNN-based CP-OFDM receiver
optimization. The DNN includes three layers: one linear
layer, one hidden layer and one output layer, with
their weighting matrices and bias vectors being updated
through the stochastic gradient descent (SGD) algorithm
with Adam optimizer at the learning rate α = 0.001,
β1 = 0.9, β2 = 0.999 and ε = 10−8 (see [15] for
the detailed description of parameters). The activation
function for the hidden layer is ReLU, and that for the
output layer is Sigmoid. It is found that such configura-
tion offers the best performance in computer simulations.
Moreover, the channel equalization layer is simply the
frequency-domain channel equalization with Λ−1, which
varies with respect to the channel matrix H. The input
to the DNN is the CP-removed OFDM signal corrupted
by the channel, random CFO as well as AWGN. The
output is the (J)× (1) vector y(2), with every (log2Q)
consecutive elements forming a group corresponding to
a symbol in s. The loss is measured by the categorical
cross-entropy between y(2) and s. It is worthwhile to
note that OFDM signals are complex, and they should be
converted into real-equivalent signal in the DNN training
procedure [16].

In the offline learning procedure, the DNN was trained
for the CFO range ω ∈ (ω(0), ω(0) + δ), where δ(> 0)
is the bias from ω(0). Section IV shows that the receiver
performance generally degrades with the increase of δ.
However, there exists a threshold δ0, below which the
performance degradation is not considerable. Inspired by
this observation, we propose a CFO-compensator bank,
which consists of a parallel set of CFO compensators,
with each covering a certain range of CFO; for instance,
the first compensator covers ω ∈ [ω(0), ω(0) + δ), and
the second covers ω ∈ [ω(0) + δ, ω(0) + 2δ), etc.
Concerning there is only a frequency shift between CFO-
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compensators, the DNN training is only applied to the
CFO compensator operating at ω ∈ [ω(0), ω(0) + δ),
and all the others are just applied with a corresponding
frequency shift.

Fig. 3 illustrates the block diagram of the pro-
posed CFO-compensator bank. Basically, the CFO-
compensator bank can operate in two modes. The first
operating mode assumes no knowledge of the CFO. The
received signal after CP removal is fed into all CFO
compensators, with their output being further fed into the
CRC. The one passed CRC is accepted as the frequency
synchronized result. In case there is no one passed CRC,
a retransmission can be requested as usual. The sec-
ond operating mode assumes a coarse CFO estimation,
with the aim to select one or two appropriate CFO
compensators for the frequency synchronization. The
coarse CFO estimation does not need to be accurate. The
estimation error can be roughly at the same level as δ.
Sometimes, the CFO estimation can just be simply based
on users’ mobility given sufficiently stable oscillators.

D. Frequency Synchronization for OFDMA Uplink

The proposed CP-OFDM receiver in Section III-C
largely mitigates the multi-frequency synchronization
problem in OFDMA uplink. Assuming: A1) all the
uplink users have their CFO falling into the same range,
i.e. ωl ∈ [ω(0) + kδ, ω(0) + (k + 1)δ), ∀l, k, we can
simply feed the received multiuser signal (1) into the
proposed receiver shown in Fig. 3; as in this case, the
proposed receiver renders the multi-frequency synchro-
nization problem equivalently to the single-frequency
synchronization problem.

It is worth noting that the assumption A1) holds when
users within the same mobility range are grouped into
the same frequency band using the network slicing,
which is one of promising candidates for the 5G mobile
technology [17]. Moreover, Section IV will show that
the bias δ is large enough to support this assumption.
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Fig. 4. BER vs. the CFO bias (δ) at the offline deep-learning stage.

IV. SIMULATION RESULTS AND DISCUSSION

The primary objective of our computer simulations
is to evaluate the performance of the DNN-based CP-
OFDM receiver for both the offline training procedure
and the online communication procedure. The OFDM
system is configured by: M = 32 subcarriers, the CP
length of 8, L = 1 or 4 users with each having (M)/(L)
consecutive subcarriers. The modulation schemes are
either BPSK or gray-coded 16-QAM, respectively. The
communication channel is either AWGN or a 8-tap
mobile fading channel with the power delay profile
specified by 3GPP Pedestrian A [18]. Specifically, com-
puter simulations are divided into the following three
experiments.

Experiment 1: This experiment is mainly to conduct
the supervised deep learning for the DNN-based CP-
OFDM receiver according to the setup specified in
Section III-C and Fig. 2. The SNR at the deep-learning
stage is: Eb/No= 7 dB for the AWGN channel, and 15
dB for the mobile fading channel; as this configuration
is found to be the best for the deep learning.

Fig. 4 demonstrates the deep learning result (in terms
of the bit error rate, BER) as a function of the CFO
bias δ with the fixed configuration for Eb/No. It is
observed that the performance generally degrades with
the increase of δ; this is what as expected since the
linear layer is not able to synchronize a wide range of
CFOs. The remarkable result appears within the range
of δ ≤ 0.05, with which the performance degradation is
not considerable. This interesting phenomenon motivates
us to consider δ = 0.05 to be the best configuration
for the CFO bias. This is because the configuration of
δ < 0.05 results in the use of more CFO compensators
without a considerable performance gain, and the config-
uration of δ > 0.05 results in considerable performance
loss. Based upon this result, we divide the whole CFO
range (−0.5, 0.5) into 20 sub-ranges to form the CFO-
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compensator bank for the communication procedure in
Experiment 2 & 3.

Experiment 2: The objective of this experiment is
to evaluate the DNN-based receiver in the single-user
OFDM system. Throughout the simulation, we employ
the receiver structure shown in Fig. 3 (b) for the fre-
quency synchronization; the similar performance can be
obtained for the receiver structure shown in Fig. 3 (a).
The BER performance is obtained by averaging over
sufficient Monte-Carlo trials. The BER performance for
the AWGN channel is depicted in Fig. 5, and that for the
mobile fading channel is depicted in Fig. 6. To facilitate
our comparison, we also plot the theoretical-BER for
BPSK/16QAM as well as the CFO-free CP-OFDM
performance (considering the conventional CP-OFDM
receiver) in both figures. Simulation results show:

1) There is a gap between the theoretical-BER for
BPSK/16QAM and the BER for the CP-OFDM system.
This gap is due to the power consumption for CPs.
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Fig. 7. BER for 16QAM-OFDMA (L = 4) as a function of Eb/No
in the mobile fading channel.

2) For the BPSK-OFDM system, the proposed re-
ceiver can offer almost CFO-free performance through-
out the whole SNR range both in the AWGN and mobile
fading channels. There is only a very small performance
gap (around 0.04 dB) at high SNRs (e.g. Eb/No = 25 dB
in the fading channel), which are however much higher
than the typical SNR range for the BPSK-OFDM system.

3) The proposed receiver shows a bit worse perfor-
mance when working for the 16QAM-OFDM system. In
the AWGN channel, the almost CFO-free performance
appears for Eb/No≤ 6 dB; and in the mobile fading
channel, the performance is reasonably good for Eb/No≤
16 dB. The major reason for having the seemingly worse
performance lies in the use of Eb/No for the performance
evaluation. Given the same symbol energy to noise ratio
(i.e. Es/No), Eb/No for 16-QAM is 6 dB lower than that
for BPSK. In other words, the proposed receiver does
not really get worse performance in terms of Es/No.

4) It is perhaps worth highlighting that the con-
ventional pilot-assisted frequency synchronizer is very
sensitive to the noise. Their CFO compensation per-
formance is often poor at low SNRs due to the worse
CFO estimation performance. Figs. 5-6 show that it is
not the case for the proposed receiver. This is because
the proposed receiver is designed in the way that is not
sensitive to the CFO estimation error.

Experiment 3: The objective of this experiment is to
evaluate the DNN-based receiver in the OFDMA system.
The receiver is trained for the single-user system, and
then straightforwardly applied into the OFDMA system
(L = 4), where users have different random CFOs
with the uniform distribution within the same CFO sub-
range. The BER performance for 16QAM-OFDMA over
mobile fading channel is depicted in Fig. 7. It is observed
that all users have identical BER performance through-
out the whole SNR range. Moreover, the performance
for OFDMA is almost the same as that for the single-



user OFDM system; and there is only a very minor
performance difference at high SNRs (around 0.01 dB
or less at Eb/No= 25 dB). This confirms our discussion
in Section III-D.

V. CONCLUSION

This paper has presented a novel DNN-based CP-
OFDM receiver to handle the multi-frequency synchro-
nization problem inherent in OFDMA uplink communi-
cations. The proposed receiver was well optimized for
both single-user and multiuser OFDM systems through
the machine deep learning. Our computer simulations
showed that the proposed receiver is able to offer almost
CFO-free performance for both single-user OFDM and
OFDMA systems operating at a wide range of SNRs
without the need for accurate CFO estimation.
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