
Task Oriented Channel State Information
Quantization

Hang Zou˚, Chao Zhang˚, and Samson Lasaulce˚

˚LSS, CNRS-CentraleSupelec-Univ. Paris Sud, Gif-sur-Yvette, France

Abstract—In this paper, we propose a new perspective
for quantizing a signal and more specifically the channel
state information (CSI). The proposed point of view is
fully relevant for a receiver which has to send a quantized
version of the channel state to the transmitter. Roughly,
the key idea is that the receiver sends the right amount of
information to the transmitter so that the latter be able to
take its (resource allocation) decision. More formally, the
decision task of the transmitter is to maximize a utility
function fpx; gq with respect to x (e.g., a power allocation
vector) given the knowledge of a quantized version of the
function parameters g. We exhibit a special case of an
energy-efficient power control (PC) problem for which the
optimal task oriented CSI quantizer (TOCQ) can be found
analytically. For more general utility functions, we propose
to use neural networks (NN) based learning. Simulations
show that the compression rate obtained by adapting the
feedback information rate to the function to be optimized
may be significantly increased.

I. INTRODUCTION

When a transmitter has to make a choice e.g., choosing
a modulation coding scheme (MCS), quite often, it does
not have the full knowledge of the state of the channel.
A common scenario is that the receiver sends, through
a feedback channel, a quantized version of the channel,
hence the term ”quantized CSI”. Using quantized CSI
has the advantage to limit the amount of signalling
or overhead. When inspecting the literature or even
standardization reports, general proposed quantization
mechanisms are designed quite empirically. In this paper,
our goal is to design a quantizer more formally. More
specifically, we assume that the transmitter has a given
radio resource allocation or control task to be performed.
This task is translated as a function to be maximized. To
perform this task, we want to know how the quantizer
at the receiver should be designed, the motivation being
that the nature of the resource allocation task should
dictate the number of feedback resources to be used.
To be more formal, if one assumes that the transmitter
has to maximize a function under the form upx; gq, x
being the (resource allocation) decision variable and g
the unknown parameters (namely, the channel state), one
easily infer that using a quantized version of g instead of
g will induce a loss of optimality. One important practical

issue is to know more the relation between this loss and
the number of resources dedicated to quantization.

To show the relevance of our approach, we exhibit
a case where the task oriented CSI quantizer (TOCQ)
can be determined analytically. The case under consider-
ation corresponds to a useful metric to measure energy-
efficiency (EE) [1]. The case study corresponds to a PC
problem in which the transmitter has to choose a given
discrete power level having a given feedback from the
receiver(s). For the single-channel case (e.g., for one
receiver or one band), the quantizer can be determined
analytically. For the general case, we propose to use a NN
approach to compute the quantizer. We provide numerical
results which correspond to very recent results. These
results are promising and should be developed further.

II. PROBLEM FORMULATION

Assume the decision entity (a transmitter a priori)
has to maximize a utility function u : X ˆ G Ñ R,
X being the decision space and G the parameter space.
We assume that the effective decision space is discrete:
D “ td1, . . . ,dMu Ď X, M ă 8. This occurs for
instance when the number of transmit power is discrete
(consider e.g., some cellular communication standards or
works such as [2] in which optimality is obtained with a
finite number of decisions), the number of possible MCS
is finite, or when selecting a band among a finite set
(as in Wifi systems). A TOCQ Q is defined by its cells
used to partition the parameter space Π “ pC1, . . . ,CM q
and the mapping used to map each cell to a decision
Φ : tC1, . . . ,CMu Ñ D. More precisely we want to
obtain Q‹ “ pΠ‹,Φ‹q s.t. Q‹ : x pgq “ di, if g P Ci,
with Q‹ P arg maxQ Eg ru px; gq | Q,x P Ds, which
also writes as x˚ pgq “ dk, if @` ‰ k, u pdk; gq ě
u pd`; gq.

III. APPLICATION OF TOCQ TO POWER CONTROL

A. Analytical solution for a particular scenario of PC

We assume that the utility function to be maximized at
the transmitter is the following EE function (see e.g., [1]
[3]): uEE pp; gq “

řN
i“1 fpSNRiq
řN

i“1 pi
, where: i P t1, 2, ..., Nu

is an index which might represents the band, chan-
nel, or user index; gi ą 0 is the gain of channel i;
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p “ pp1, ..., pN q is the power allocation of vector; g “
pg1, ..., gN q is the vector channels used by transmitter i;
SNRi is the signal-to-noise ratio associated with channel
i chosen as SNRi “

pigi
σ2 , where σ2 is the received

noise variance. Also, to obtain explicit quantities, we
assume the efficiency function (which represents the
packet success rate) to be fpsq “ exp

`

´ c
s

˘

where c ě 0
is a parameter related to spectral efficiency (see [3]).

Now, let us specialize to the single-channel case N “

1 and denote by P “ tP1, . . . , PMu the set of possible
transmit power levels. Then it can be proved that the
optimal transition levels that define the intervals which
partition the parameter space G “ p0,8q are given by:

g˚0 pPi, Pjq “
cσ2

”

1
Pi
´ 1

Pj

ı

lnPj´lnPi
ą 0, where Pi ă Pj are two

consecutive power levels of P. Therefore, if the channel
gain measured at the receiver g belongs to the interval
rg˚0 pPi´1, Piq , g

˚
0 pPi, Pi`1qs then the receiver reports

the label i to the transmitter (which means that power
level Pi should be used).

B. A NN solution for general PC scenarios

For N ą 1, providing a systematic analytical proce-
dure to partition the parameter space for the EE power
control problem constitutes a significant extension of this
paper. In this paper, we propose to solve this problem by
using a NN based learning procedure. This procedure
can, in fact, be used for any utility function of the form
upp; gq. In the simulations, we have considered the above
EE function and also the famous log-sum utility function:
uSRpp; gq “

řN
i“1 logp1` SNRiq.

A 3-layer feed-forward NN, i.e., with only a hidden
layer is chosen as our training model. The number of
nodes for the input layer, the hidden layer and the
output layer is 2, 20 and 1, respectively. The activation
function for hidden layer is the sigmoid function and
linear function for output layer. The structure of NN is
illustrated in Fig. 1. We can define our training set as
Tn :“ tgi, θiu

n
i“1, where θi is the optimal decision label

corresponding to gi.

Fig. 1. Feed-forward NN model for single-user 2´band energy
efficiency problem

C. Numerical results
In this section, simulation results of a single

user two bands scenario will be presented. De-
fine the optimality loss induced by quantization as
∆up%q “ Eg

”
ˇ

ˇ

ˇ

u‹
pgq´uNN

pgq
u‹pgq

ˇ

ˇ

ˇ

ı

ˆ 100, where u‹ pgq “
arg max

p
upp; gq and uNN pgq is the performance derived

by our learning approach. Typical model parameters are
selected: Pmax “ 5 mW, σ2 “ 1mW and c “ 1. For all
i P t1, 2u, the channel gain gi in band i is assumed
to be exponentially distributed, namely, its p.d.f. can
be written as φpgiq “ expp´giq. In the NN model,
10000 samples are divided into two parts: 9000 training
data and 1000 test data. The decision pair for EE is
chosen as following form

`

0, Pmax
2i
M

˘

or
`

Pmax
2i
M , 0

˘

for @i ď M
2 . As for sum-rate case, the decision pair is

uniformly chosen such that P1 ` P2 “ Pmax. Define
the compression rate γ pσq of a given relative optimality
loss σ as γ pσq “ log2pMp1%qq

log2pMpσqq
where M pσq is the

required number of decisions such that the loss σ is
met. Fig. 2 represents the compression rate γ in function
of optimality loss for two bands in two cases. In both
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Fig. 2. The compression rate in function of the optimality loss for
single user 2-band scenario for EE and sum-rate capacity. Compressing
the channel gain for sum-rate function is easier than compressing the
channel gain for EE function.

cases, the compression rate increases as the optimality
loss grows. For the EE maximization problem, the com-
pression rate decreases slowly while the optimality loss
decreases and the loss is always greater than 1%. As
for the sum-rate maximization problem, the compression
rate declines rapidly while the optimality loss reduces
and the optimality loss is always less than 1%. In other
words, in small optimality loss regime, it is easier to
compress the g for the sum-rate problem than EE in two-
band scenario. This can be explained by the fact that the
explicit optimal decision function of sum-rate , which is
well known as the water-filling solution, is more concise
than the solution of EE.
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