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Robust Detection with Low-Complexity SDRs:
A Pragmatic Approach

Andrea Mariani, Andrea Giorgetti, and Marco Chiani

Abstract—The increasing availability of inexpensive soft-
ware defined radios (SDRs) allows nowadays to implement
cognitive radio (CR) functionalities in large scale networks
such as the Internet-of-Things and future 5G systems. In
this work, we focus on the spectrum sensing functionality
that must take into account the front-end impairments
of low-cost devices. Based on the noise model of a real
SDR dongle, we address the problem of robust signal
detection in the presence of noise power uncertainty and
non-flat noise power spectral density (PSD). In particular,
we analyze the receiver operating characteristic (ROC) of
different known detectors in the presence of such front-end
impairments, to understand the performance attainable in
a real-world scenario. Based on the analysis, we propose
two frequency-domain detectors that are proven to out-
perform previously proposed spectrum sensing techniques
such as, e.g., eigenvalues-based tests.

I. INTRODUCTION

The increasing demand for a limited resource such
as the radio-frequency (RF) spectrum is the propelling
force toward new ways different radio ecosystems can
coexist. In this context, we are witnessing a prime
example of the need for coexistence between radar
and wireless communications, a topic which received
increasing attention by the DARPA and the US National
Spectrum Consortium [1].

Software defined radio (SDR) was conceived with
the aim of building flexible front-ends for transceivers
in which radio functionalities are controlled and pro-
grammable by software [2]. Even if the concept of SDR
is known from the 80s, its actual diffusion started in
the second half of the 90s with first application in the
military context and more recently for implementing
multi-band multi-standard platforms, in particular, in
the context of cognitive radio (CR) [3]–[5]. In the last
few years we have seen the development and diffusion
of several high-performance SDRs such as universal
software radio platforms (USRPs) [6]. These equip-
ments can be used for implementing a wide range of
applications, but their cost, ranging from hundreds to
thousands of dollars, makes them prohibitively expen-
sive for simple devices and large-scale networks. This
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aspect is further exacerbated by the emerging idea of a
globally interconnected continuum of low-cost devices
and things, namely the Internet-of-Things (IoT). An
example of cheap devices which appear more suitable
for these contexts are low-cost low-complexity SDRs,
such as digital video broadcasting – terrestrial (DVB-T)
dongles, based on the Realtek RTL2832U chipset.1 Such
devices, referred as RTL-SDR dongles, cost just few
dollars and are already used to implement low-cost
receivers [7].

The adoption of low-cost devices is, on the other hand,
critical for spectrum sensing (SS) due to the presence of
receiver nonidealities which have a strong impact on the
detection performance, especially at very low signal-to-
noise ratios (SNRs) [8], [9]. It is therefore fundamental
to adopt a proper receiver characterization of the SDR
front-end and to design robust detection strategies. In
particular, RTL-SDR devices are characterized by a non-
white noise power spectral density (PSD), which is
mainly caused by filtering in the receiver chain [10]–
[12]. Another practical impairment in all receivers is
the presence of noise power fluctuations (caused e.g., by
receiver temperature variations) often referred as noise
uncertainty [13]–[15].

The noise uncertainty problem can be counteracted
adopting noise power estimation strategies [13], [16],
[17]. An alternative approach adopts detection metrics
which are independent on the noise power level, and
in single antenna receivers oversampling is the key
element. In fact, when a signal is present in the ob-
served frequency band, oversampling implies that the
received samples are not independent. Time-domain
tests that detect the presence of correlation among the
received samples have been proposed in particular in
the context of eigenvalue-based detection [11], [12],
[18]–[20]. Other impairments, such as in-phase and
quadrature-phase imbalance, low-noise amplifier nonlin-
earities, phase noise, and aliasing may cause detrimental
effects if not properly accounted and counteracted [21]–
[23].

In this paper, we discuss the adoption of RTL-SDR
receivers as a platform to implement spectrum sensing

1The RTL2832U chipset is a high-performance DVB-T receiver
that implements a COFDM demodulator and supports a USB 2.0
interface.



TABLE I
OCCURRENCE RATE OF GAUSSIANITY TESTS FOR I-Q SAMPLES

CAPTURED WITH A RTL-SDR RECEIVER. TESTS ARE BASED ON

THE OBSERVATION OF 1000 SAMPLES, EACH TEST IS PERFORMED

50000 TIMES WITH A SIGNIFICANCE LEVEL OF 0.05.

test real part imaginary part
Anderson-Darling (Gaussianity) 0.965 0.966
Andersson-Perlman (Circularity) 0.999

functionalities for signal detection and thereby seek-
ing spectrum holes. More precisely, we propose two
frequency-domain detectors and show that they out-
perform commonly adopted eigenvalue-based strategies
which are deemed the most effective. We study, in
particular, a frequency-domain version of the energy
detector (ED) with estimated noise power (ENP) [13].
We also propose a detector which metric is the cor-
relation coefficient between the estimated PSD of the
received signal and a reference noise PSD obtained by
an off-line calibration phase. Our pragmatic approach,
driven by real waveforms, revealed the most dominant
impairments in low-cost devices and proposed robust
detectors with good performance.

Throughout the paper, boldface letters denote matrices
and vectors; Im represents the identity matrix; (·)T

and

(·)H
stand for transposition and hermitian transposition,

respectively; the p-norm of the vector v is ||v||p !
(
∑

i |vi|
p)1/p, where vi is the ith element of v; E {·}

denotes the expectation operator; ⌊x⌋ denotes largest
integer less than or equal to x.

II. SYSTEM MODEL AND NOISE ANALYSIS

The detection task is to distinguish the presence
or absence of any signal in the observed band. The
two hypotheses are denoted, respectively, by H1 and
H0. After downconversion and sampling, the N -length
vector of received samples is given by2

y =

{
s + n, H1

n, H0

(1)

where n denotes noise and s contains the transmitted
signal samples including channel effects. Oversampling
is implemented using a sampling rate fs = OSF ·B,
where B is the bandwidth of the signal to be detected
and OSF is the integer oversampling factor (OSF) [11],
[24]. Without loss of generality we assume that both
s and n are modeled as vectors of zero mean random
variables (r.v.s).

The most common assumption in communication
literature is to model noise as a white Gaussian process.
When dealing with a real system, especially a low-
cost device, it is important to characterize noise and
identify a suitable model. Concerning the Gaussianity of

2In the paper we always consider column vectors.
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Fig. 1. Example of a spurious-free noise PSD shape measured in
a RTL-SDR dongle. This normalized PSD has been estimated from
samples, under H0 hypothesis, using Bartlett’s periodogram with
Nfft = 128 and Navg = 1000.

noise, we tested noise-only samples captured using RTL-
SDR dongles using the Anderson-Darling test, which
can be adopted when the mean value and the variance are
not known [25]–[27]. The tests show that the captured
samples well fit a Gaussian distribution, with about
0.95 probability. Beyond normality we also tested the
circularity property of the samples using the Andersson-
Perlman test [28], [29], obtaining a probability close to
1. Results of both Gaussianity and circularity tests are
reported in Table I.

Regarding the whiteness assumption, we estimated
the PSD in the absence of an input signal. Except
for a multiplying constant (i.e., a vertical shift in dB
scale), the characteristic shape of the noise PSD is
shown in Fig. 1. This shape can be ascribed to the
digital filter in the decimation stage of the RTL-SDR
receiver chain [10]–[12]. Based on this analysis we
model noise as a Gaussian process with correlated
samples. More precisely, we express the noise sample
vector as n = σ ñ, where ñ is composed by zero
mean Gaussian samples with unity variance. The noise
power σ2 = E

{
nHn

}
is an unknown time-varying

parameter which accounts for power fluctuations, also
known as noise power uncertainty [13]–[15]. However,
its variations are generally slow, and thus σ can be
considered constant for the N collected samples [14].

We would like to remark that the focus of the paper
is signal detection in presence of non-flat noise spec-
tral density and noise power uncertainty. Although of
interest, we do not consider the problem of detection
in presence of spurs, caused by harmonics from mixer,
local oscillator leakage, DC offset, etc. [30], [31], which
will be object of further investigations. Therefore, in
this work we analyze samples captured in bands in
which no spurs have been observed. This assumption
is sometimes verified in practice also when spectrum
sensing is preceded by spurious removal like, e.g., an
upstream spur detection and spur exclusion stage [30].



A. Calibration

The detection tests proposed in the next sections
exploit the knowledge of the second-order statistical
properties of receiver noise, although noise power re-
mains unknown. We consider, therefore, that detection
is preceded by a off-line calibration stage (under hypoth-
esis H0), in which the system estimates either the noise
PSD, W(f), for frequency-domain detectors, or the
noise covariance matrix, Σ0, for time-domain detectors.
This can be done, e.g., replacing the antenna with a 50Ω
load, and estimating the PSD or the covariance matrix
from the collected samples.

In both cases, due to noise uncertainty, the noise
PSD and the covariance matrix are known except for
a multiplicative factor related to the time-varying noise
power.

III. FREQUENCY-DOMAIN DETECTORS

Frequency-domain spectrum sensing is based on the
estimation of a frequency representation of received
samples and adoption of a test to infer the presence
or absence of a signal. For simplicity, the frequency-
domain representation is based on the PSD estima-
tion through the averaged periodogram (also known as
Bartlett’s periodogram), which is based on a Nfft-points
discrete Fourier transform (DFT) [32, Section 12.2.1].
In particular, assuming that the total number of samples
is N = Nfft · Navg, the ith element of the averaged
periodogram P is computed as [32]

Pi =
1

Nfft Navg

Navg∑

k=1

∣∣∣∣∣

Nfft∑

m=1

ym+(k−1)Nfft
e−j2π im

Nfft

∣∣∣∣∣

2

(2)

where yn is the nth element of the received vector y.
The Bartlett’s periodogram can be used also to es-

timate the noise PSD during the calibration phase. In
the following, we denote with W the vector of length
Nfft containing the estimate of the noise PSD, W(f),
obtained by means of (2), i.e.,

Wi =
1

Nfft Navg

Navg∑

k=1

∣∣∣∣∣

Nfft∑

m=1

nm+(k−1)Nfft
e−j2π im

Nfft

∣∣∣∣∣

2

.

(3)

The original implementation of the ED considers
the received signal power as a test statistic. Thus, the
frequency domain version of the ED is given by3,4

Ted-all = ||P ||1
H1
≷
H0

ξ. (4)

Considering oversampling, the signal band B = [fL, fH]
is smaller than the observed frequency band, i.e., denot-
ing with fL and fH the lower and higher baseband signal

3Note that by Parseval’s theorem Ted-all =
1

Navg

∑
i
yi

Hyi, which

is proportional to the usual ED metric [13].
4In the paper ξ denotes any detection threshold.

frequencies, respectively, then −fs/2 ≤ fL < fH ≤
fs/2. Thus, implementing the ED as in (4), we include
in the decision metric the noise-only contributions out
of the signal band. It is therefore reasonable to modify
the ED metric including only the frequency components
that may contain the signal. Denoting as P[B] the vector
that contains the periodogram bins for fL ≤ f ≤ fH, we
derive the test

Ted = ||P[B]||1
H1
≷
H0

ξ. (5)

Note that (4) and (5) depend on the noise power and
thus may suffer noise power uncertainty. In order to
counteract this problem, schemes that compute the ENP
can be adopted [13]. In the oversampling scenario the
noise power can be estimated from the noise-only bands.
Thus, the frequency-domain version of the ENP-ED test
is given by

Tenp-ed =
||P[B]||1
||P[B]||1

H1
≷
H0

ξ (6)

where P[B] is the vector containing the periodogram bins
that are out of the signal band. Note that the energy-
based detectors (4)-(6) can be used to infer the presence
of a signal in the observed band also with non-flat noise
PSD. In this case the tests depend on the noise PSD
shape. Considering (6), note that both the numerator and
the denominator are proportional to σ2, and thus Tenp-ed

does not suffer noise uncertainty.

In presence of colored noise, flatness-based detectors
can be adopted after a frequency-domain whitening,
consisting of defining a vector Q whose elements are
obtained as

Qi =
Pi

Wi
(7)

where Wi are the elements of W according to (3). In
this case, the test (6) becomes

Tw-enp-ed =
||Q[B]||1
||Q[B]||1

H1
≷
H0

ξ. (8)

Considering the white noise case, some simple
frequency-domain tests proposed measure the “flatness”
of the received signal. A flat spectrum is expected,
indeed, under H0; otherwise H1 occurs. In presence of
colored noise, flatness-based detectors can be adopted
after the frequency-domain whitening. For example,
the arithmetic-geometric mean ratio test (AGM) [30]
becomes

Twf-agm =
1

Nfft

∑Nfft

i=1 Qi
∏Nfft

i=1 Q
1/Nfft

i

H1
≷
H0

ξ. (9)

An alternative test that can be adopted in presence
of non-flat noise PSD is the following. Under H0 it is



expected that P exhibits a high degree of similarity with
W , while they should differ under H1. Therefore, in
order to measure the degree of similarity between P

and W , we propose the test

Tfc =
P TW

||P ||2 ||W ||2

H0
≷
H1

ξ (10)

in which the decision metric is the correlation coef-
ficient between P and W . This test resembles the
estimator-correlator detector proposed in [33, Section
III-B], where the estimated PSD of the received signal
is correlated with the known PSD of the signal to be
detected. However, note that Tfc is different, as it infers
the presence of any signal present in the observed band
without any assumption on the signal to be detected.

IV. TIME-DOMAIN DETECTORS

Using oversampling, time domain tests generally ex-
ploit the correlation properties of y to distinguish the
signal to be detected from white Gaussian noise (WGN).
In fact, under H0 the covariance matrix of white noise
is Σ0 = E

{
nnH

}
= σ2Ip and thus its eigenvalues are

all equal to σ2. Conversely, under H1, the eigenvalues
are not all equal. Based on this, eigenvalue-based tests
exploit the eigenvalue spread to discriminate between
H0 and H1.

When the covariance matrix of the signal, Σ =
E
{
yyH

}
, is unknown, the most popular detection

schemes use the eigenvalues of the sample covariance
matrix (SCM) of y [11], [12], [18], [19]. In this case,
the detector collects N snapshots of y organized in a
p× n matrix (n and p are such that N = np)

Y =

⎡

⎢⎢⎣

y1 yp+1 . . . y(n−1)p+1

y2 yp+2 . . . y(n−1)p+2

. . . . . . . . . . . .
yp y2p . . . ynp

⎤

⎥⎥⎦ . (11)

Then, the eigenvalues of the SCM S = YYH/n,
denoted as λ1 ≥ λ2 ≥ · · · ≥ λp, are used as estimate of
the eigenvalues of Σ. Previous works adopt p = OSF

and n = ⌊N/p⌋ [12], [34]. In this case, the rows
of Y are sequences obtained using a sampling period
equal to the symbol time. Assuming that the signal to
be detected is composed by independent symbols, if
p = OSF the rows of Y are independent, while columns
are correlated.5

Two popular eigenvalue-based tests are the spheric-
ity test (also called AGM), which is the generalized
likelihood ratio test (GLRT) in additive white Gaussian
noise (AWGN) [18], [35], and the locally best invariant
(LBI) test [36], which has been shown to outperform

5In this case the oversampling-based detection problem is equiva-
lent to a multiple antennas or a cooperative spectrum sensing problem.

other eigenvalue-based test with colored noise [19]. The
corresponding decision metrics are given by

Tsph =
(
∏p

i=1 λi)
1/p

(
∑p

i=1 λi)/p

H0
≷
H1

ξ (12)

Tlbi =

∑p
i=1 λ

2
i

(
∑p

i=1 λi)
2

H1
≷
H0

ξ. (13)

In the considered setting, where noise is colored,
eigenvalue-based algorithms can be adopted if time-

domain whitening is applied to the received samples be-
fore detection [11].6 Similarly to the frequency-domain
approach, whitening is based on the calibration phase
described in Section II, from which the SCM of noise
under H0, S0 = YYH/n, is obtained. Eigenvalue tests
can then be applied considering now the eigenvalues
λB
1 ≥ λB

2 ≥ · · · ≥ λB
p of BSBH, where B is the

whitening matrix, i.e., a matrix such that BS0 B
H = Ip.

Therefore, the sphericity test in the presence of colored
noise becomes

Tw-sph =

(∏p
i=1 λ

B
i

)1/p
(∑p

i=1 λ
B
i

)
/p

H0
≷
H1

ξ (14)

and the LBI test results into

Tw-lbi =

∑p
i=1(λ

B
i )

2

(∑p
i=1 λ

B
i

)2
H1
≷
H0

ξ. (15)

V. NUMERICAL RESULTS AND DISCUSSION

This section presents the receiver operating char-
acteristic (ROC) curves of the detectors described in
Sections III and IV, using samples captured from an
RTL-SDR dongle. The RTL-SDR receiver is tuned at
430MHz with sampling frequency fs = 1MHz. This
frequency band has been chosen for being a signal-
free band in our laboratory at the Cesena campus of
the University of Bologna. The signal to be detected is
an orthogonal frequency-division multiplexing (OFDM)
waveform transmitting independent symbols and having
a 250 kHz bandwidth, generated using a USRP platform.
The transmitter has been located in a non-line-of-sight
position and its transmit power has been tuned to have
a SNR at the receiver equal to −10 dB.

6Some papers, such as [12], propose to use eigenvalue-based tests
also in presence of colored noise, i.e. when the covariance matrix
eigenvalues under H0 are not all equal. This is not a good practice
in general. Moreover, the decision regions of the detector can, indeed,
depend on the SNR, on the degree of correlation between noise
samples, or on other parameters, giving a non-unique criterion for
making the decision.
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Fig. 2. ROCs for Tenp-ed (continuous lines) and Tw-enp-ed (dashed
lines), varying Nfft and Navg with N = 1600. Test on real samples
captured with RTL-SDR.

A. Parameters setting

The performance of frequency-domain detectors in-
troduced in Section III depends on the total number
of samples collected N . Setting N , it is possible to
trade-off between Nfft and Navg for the estimation of
the PSD in (2). In particular, in the following we set
N = 1600 and we vary Nfft and Navg pairs such that
Navg = ⌊N/Nfft⌋.

Fig. 2 shows the ROCs for Tenp-ed (continuous lines)
and Tw-enp-ed (dotted lines), for different Nfft, Navg pairs.
The parameter Nfft impacts the frequency resolution
of the PSD estimate. A small Nfft implies, indeed, to
have just few DFT elements each of which collects a
large contribution from sidelobes. Therefore, increasing
Nfft provides a better estimate of the in-band signal
energy. Considering Navg, note that it corresponds to
the number periodograms averaged in (2) and thus it
impacts the accuracy of the PSD estimate. Therefore,
there is a trade-off between these two parameters that
provide the best performance. From Fig. 2 we can see
that the best choice is Nfft = 128 and Navg = 12.
Note that increasing Nfft above this level, the detector
performance decreases due to the small number of
averages Navg. Regarding the comparison between the
whitened and non-whitened ED, the plots confirm the
advantage introduced by frequency-domain whitening,
except for the cases where near-optimal values of Nfft

and Navg are chosen. In these cases whitening does not
provide appreciable improvements.

In Fig. 3 the ROCs for Tfc (continuous line) and
Twf-agm (dashed lines) are reported for different combi-
nations of Nfft and Navg, respectively. From the compar-
ison, we can see that decreasing Nfft provides a higher
probability of detection.

0 0.1 0.2 0.3 0.4
0.6

0.7

0.8

0.9

1

P
D

PFA

Nfft = 16, Navg = 100
Nfft = 32, Navg = 50
Nfft = 64, Navg = 25
Nfft = 128, Navg = 12

Fig. 3. ROCs for the frequency-based detectors Tfc (continuous) and
Twf-agm (dashed), with N = 1600. Test on real samples captured with
RTL-SDR.

B. Detection performance comparison

Fig. 4 shows the comparison between the ROCs of
the frequency-based detectors introduced in Section III
and the time-domain tests described in Section IV. We
adopt in this case the parameters Nfft and Navg that max-
imize the detection performance for each test. From the
comparison, we can clearly see that frequency-domain
detectors outperform eigenvalue-based tests. Note, in
particular, that Tenp-ed provides the best performance
with much higher detection probability with respect
to other detectors. For example, when PFA = 0.01
the probability of detection of Tenp-ed is approximately
PD = 0.98, while for Tfc is below PD = 0.8 and for
Tw-sph is below PD = 0.7.

The large detection performance gain of the ENP-ED
can be explained considering the fact that Tenp-ed exploits
an additional information with respect to other detectors.
Note, indeed, that Tenp-ed requires the knowledge of the
signal band, B. This is a valid assumption for example
when the signal to be detected is a primary user (PU),
whose channelization is generally known from standards
and regulations.

In different CR scenarios, however, B is unknown, and
the best choice is to adopt Tfc, which does not require
any knowledge of the signal to be detected (including
its operating band) and that provides better detection
performance than Twf-agm and eigenvalues-based tests.

VI. CONCLUSION

In this paper we discussed the problem of SS in
the presence of front-end impairments, typical of inex-
pensive devices. We verified that the receiver noise is
well described by a non-white Gaussian process with
time-varying power. Based on this model we proposed
two frequency-domain detectors, and showed that they
outperform commonly adopted time-domain eigenvalue-
based tests.
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