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Abstract—We investigate Gaussian widely linear precod-
ing known as improper Gaussian signaling for the cellular
uplink with inter-cell interference, known as interference
multiple access channel (IMAC). This transmission scheme
provides extra degrees of freedom by treating the real
and imaginary components of the complex Gaussian signal
differently. Since current standards mainly utilize linear
beamforming for waveform generation, we highlight the
benefits of widely linear beamforming over multiple tem-
poral dimensions (symbol extension in time) in the IMAC.
This scheme achieves significantly higher information rates
compared to conventional proper Gaussian signaling at the
expense of extra complexity at the transmission phase.
We study the sum-power minimization problem under
rate constraints. This problem is a difference of concave
functions (DC) program, hence, a non-convex problem. By
numerical simulations, we observe the benefits of improper
Gaussian signaling alongside symbol extension in power
consumption for both single-antenna and multi-antenna
base stations. Interestingly, we observe that at strong
interference scenarios, the efficiency of improper Gaussian
signaling outperforms conventional proper Gaussian signal-
ing at low rate demands. Moreover, in such scenarios the
sum-power required for achieving particular rate demands
is significantly reduced.

Index Terms—Improper Gaussian signaling; symbol ex-
tensions; time-invariant channels; non-convex problem; DC
program; convex conjugate function

I. INTRODUCTION

An increase in the number of users in future communi-

cation systems is inevitable [1]. In the context of cellular

communication, a plethora of greedy users will coexist

in multiple cells, all of which are demanding reliable

communication with high data rates. As the number of

users increases, the probability of simultaneous transmis-

sion requests increases. Dividing the resources (time and

bandwidth) among users for interference-free access can

not sustain this load, since each user will only get a small

portion of the overall network resources, not enough to

achieve the desired performance. At this point, resource-

sharing becomes necessary.

Resource-sharing in time and frequency increases

interference. This requires smart interference manage-

ment strategies at the cost of transceiver complexity.

Generally, higher degrees of freedom in designing the

Fig. 1. Interference multiple access channel (IMAC). Multiple
users are accessing the base stations exploited in multiple cells,
while causing inter-cell interference. Serving base stations are
distinguished by different colors.

transmit signal allow for better interference manage-

ment capabilities. Here, we define degrees of freedom

(DoF) as the number of independent interference-free

streams, that are decoded with arbitrarily small error

rate. DoF approximates the channel capacity at very

high signal-to-noise ratio (SNR). In a time-variant K-

user interference channel, 1
2 (DoF) per-user is achievable

using an interference management scheme known as

interference alignment (IA) [2]. This is significantly

better than orthogonal resource allocation, e.g., TDMA,

FDMA, where only 1
K

DoF per-user can be obtained.

This strong result inspired the authors of [3] to study the

DoF of the partial interference multiple access channel

(PIMAC). The authors in [4] investigated the DoF of

the 3-user time-invariant interference channel (IC). They

showed that by improper Gaussian signaling (IGS) over

multiple temporal dimensions (an extended symbol in

time) and interference alignment (IA) a sum-degrees of

freedom (sum-DoF) of 6
5 is achievable, which is again

higher than sum-DoF achievable of 1 by orthogonal

resource allocation procedures. Recall that these results

describe the performance of the transmission schemes at

very high SNR. Hence, it is of interest to investigate the

performance of these schemes at low/moderate SNR.

In the low/moderate SNR regime, sacrificing signal di-

mensions for aligning the interference is not necessarily

the optimal strategy. Hence, depending on the SINR, the

http://arxiv.org/abs/1804.04580v2


signal space can be exploited more efficiently in order

to optimize utility. Additionally, transmission power is

an essential performance criterion in this regime, not

only transmission rate. Due to the fact that IGS includes

PGS as a special case (uncorrelated real and imaginary

components with equal power), IGS always performs

always better or at least as good as PGS at SINR from

both rate and power perspectives. The authors of [5]

show the benefits of IGS in 2-user IC in terms of

achievable rates and the authors of [6] investigate the

achievable rate region of IGS in a K-user IC. The

authors of [7] highlight the power efficiency of IGS

in MIMO full-duplex relaying for K-user interference

networks. The rate-energy region of a two-tier network

is investigated in [8]. Moreover, the efficiency of IGS

alongside symbol extension is studied from the energy

efficiency perspective in [9]. The authors of [10], [11]

study the generalized degrees of freedom (GDoF) of

deterministic and Gaussian IMAC. Moreover, the GDoF

region of the partial IMAC is investigated in [12] and

the achievable rate region of the partial IMAC is studied

in [13].

In this paper, we investigate an uplink channel in

multiple adjacent cells sharing the same resources. In

such a channel, the desired signals within a cell suffer

from the inter-cell interference from the neighboring

cells. This channel is called an interference multiple-

access channel (IMAC) throughout the paper, Fig. 1.

Exploiting IGS over an extended symbol, we in-

vestigate the power consumption of the IMAC. We

formulate a power minimization problem under rate

constraints. The obtained optimization problem turns

out to be a difference of convex (DC) program. We

design an algorithm which is based on successive convex

approximation of the non-convex constraint set, where

the approximation gap is reduced iteratively. We evaluate

the solution numerically, and interestingly, we observe

that by IGS and symbol extension, the required power

for achieving target rates is significantly reduced. For

instance, in strong interference scenarios, almost quarter

the sum-power of PGS is required by IGS to achieve 0.6

bit per channel use (bit/cu) over an extended symbol of

length 2.

A. Notation

Throughout the paper, we represent vectors using

boldface lower-case letters and matrices using boldface

upper-case letters. Tr(A), |A|, AH , AT , A−1 represent

the trace, determinant, hermitian, transpose and inverse

of matrix A, respectively. IN denotes the identity matrix

of size N . The notation ⊗ represents Kronecker product

of two matrices. The cardinality of set A is represented

by |A|. Real and imaginary components of x are denoted

by ℜ(x) and ℑ(x), respectively.

Cell 1

Cell K

Fig. 2. Interference multiple access channel (IMAC).

II. SYSTEM MODEL

We consider a cellular network, where multiple single-

antenna mobile stations (MS) are located in K cells.

Each cell is equipped with an access-point with M

antennas, as shown in Fig. 2. We denote the complex-

valued transmit signal from the jth user in the kth cell

by xjk . Then, the received signal at the kth access-point

is given by

yk =

|Ik|
∑

j=1

hkjkxjk +

K
∑

l=1
l 6=k

|Il|
∑

j=1

hkjlxjl +wk, (1)

where the set of MSs at the kth cell is represented

by Ik , so that the cardinality of this set represents the

number of users in that cell. The channel from the jth

MS located in the lth cell to the BS in the kth cell is

depicted by hkjl ∈ CM , which is globally known and

is assumed to have sufficiently large coherence time.

The receiver additive noise at the kth BS is represented

by wk ∈ CM , which is assumed to follow proper

Gaussian distribution with mean zero and covariance

σ2
kIM , i.e., wk ∼ CN (0, σ2

kIM ). The transmit xjk is

from a Gaussian codebook with power pjk . We denote

the ith component of a vector x by x(i).

Now, we represent the complex-valued equivalent

SISO channel, by its real-valued model. This can be

done by stacking the real and imaginary components of

the transmit and received signal into vectors. Hence, we

define

ŷk =[ℜ
(

y
(1)
k

)

ℑ
(

y
(1)
k

)

, · · ·

ℜ
(

y
(M)
k

)

ℑ
(

y
(M)
k

)

]T , (2)

x̂ik =[ℜ (xik ) ℑ (xik)]
T , (3)

ŵk =[ℜ
(

w
(1)
k

)

ℑ
(

w
(1)
k

)

, · · ·

ℜ
(

w
(M)
k

)

ℑ
(

w
(M)
k

)

]T , (4)



Then, the real-valued equivalent channel input-output

relationship is formulated as

ŷk =

|Ik|
∑

j=1

Gkjk x̂jk +

K
∑

l=1
l 6=k

|Il|
∑

j=1

Gkjl x̂jl + ŵk, (5)

where the real-valued equivalent channel matrix is given

by

Gkjl =



















ℜ(h
(1)
kjl

) −ℑ(h
(1)
kjl

)

ℑ(h
(1)
kjl

) ℜ(h
(1)
kjl

)
...

...

ℜ(h
(M)
kjl

) −ℑ(h
(M)
kjl

)

ℑ(h
(M)
kjl

) ℜ(h
(M)
kjl

)



















. (6)

Suppose that, the channel is time-invariant over N time

instants. Then, the received signal vector over these N

time instants is given by

ȳk =

|Ik|
∑

j=1

Ḡkjk x̄ik +

K
∑

l=1
l 6=k

|Il|
∑

j=1

Ḡkjl x̄jl + w̄k, (7)

where Ḡkjl = IN ⊗Gkjl . Notice that, ȳk and w̄k stacks

N time samples of the received signal and receiver noise

vectors into single vectors, respectively. Moreover, x̄ik

precodes the real-valued transmit signal vector over N

channel uses, i.e., symbol extension of length N . In the

real-valued equivalent MIMO channel represented in (7),

the achievable rate for the message of the ith user in the

kth cell, denoted by Rik , is bounded as shown in (8)

at the top of the next page [14]. In (8), the transmit

covariance matrix of the ith MS in the kth cell is denoted

by Qik , i.e., Qik = E{x̄ik x̄
H
ik
} . This covariance matrix

captures the joint design is signal-space and time. As can

be noticed in (8), the base stations perform successive

decoding (SD), while decoding the signals of the users.

Our goal is to minimize the transmit power subject to

target rates for the users. In the next section we formulate

the sum-power minimization problem.

III. POWER MINIMIZATION PROBLEM

Consider that, the users in all cells have particular

quality of service (QoS) demands. Then, it is of cru-

cial importance to fulfill these demands by efficient

transceiver design. In this paper, the QoS demands are

reflected by information rates. Hence, the sum-power

minimization under rate demands is cast as

min
Qi

k
,∀i∈Ik,k∈K

K
∑

k=1

|Ik|
∑

i=1

Tr (Qik) (9)

subject to R̄ik ≥ ψik , ∀i, k (9a)

Tr (Qik) ≤ Pik , ∀i, k (9b)

Qik � 0, ∀i, k (9c)

Qik ∈ S
2N×2N , ∀i, k, (9d)

where the power budget at the ith MS in the kth cell is

represented by Pik . Notice that the achievable rate bound

in (8) is denoted by R̄ik . Moreover, the set of 2N ×
2N symmetric matrices is depicted by S

2N×2N . Notice

that, Qik , ∀i, ∀k are real-valued covariance matrices,

hence, they should be symmetric positive semidefinite.

ψik represents the information rate demand of the ith MS

in the kth cell. These demands might not be satisfied by

the available resources, which renders the demands to be

infeasible.

Remark 1. The QoS demands of the users might not

be feasible by classical PGS. However, IGS over an

extended symbol makes more efficient use of the transmit

power budget which could satisfy the rate demands.

The utility function in the optimization problem (9)

is an affine function, however, it has a non-convex

constraint (9a), contrary to (9b)-(9d) which are convex.

This is due to the fact that, R̄ik , ∀i, k, are the differ-

ence between concave functions as in (8). This makes

the sum-power minimization problem a difference of

concave functions (DC) program. Obtaining a good sub-

optimal solution of a DC program in a polynomial time

is a difficult task, in general. In this paper, we exploit

an iterative algorithm to obtain an efficient sub-optimal

solution. Recall that, the two log-determinant functions

in (8) are concave in Qik . By linearizing the second

term the whole expression becomes a concave function

in Qik . Defining the received signal and the interference-

plus-noise covariance matrices as

Aik =
σ2
k

2
I2MN +

|Ik|
∑

j=i

ḠkjkQjkḠ
H
kjk

+
K
∑

l=1
l 6=k

|Il|
∑

j=1

ḠkjlQjlḠ
H
kjl
, (10)

Bik =Aik − ḠkikQikḠ
H
kik

(11)

respectively, and exploiting Fenchel’s inequality and

the concept of the conjugate function, we obtain the

following upper-bound [15]

log2 |Bik | ≤ log2 |Γik |+Tr(Γ−1
ik

Bik)−MN, (12)

where the auxiliary matrix variables Γik , ∀i, k. The

upper-bound gap in (12) closes at optimal Γik , ∀i, k,

which is Γ⋆
ik

= Bik . Exploiting this upper-bound, the

achievable rates bound i.e., R̄ik , is lower-bounded by

R̄ik = log2 |Aik | − log2 |Bik |

≥ log2 |Aik | − log2 |Γik | − Tr(Γ−1
ik

Bik) +MN

:= R̃ik , (13)



Rik ≤ log2

∣

∣

∣

σ
2
k

2
I2MN +

|Ik|
∑

j=i

ḠkjkQjkḠ
H
kjk

+

K
∑

l=1
l 6=k

|Il|
∑

j=1

ḠkjlQjlḠ
H
kjl

∣

∣

∣

− log2

∣

∣

∣

σ
2
k

2
I2MN +

|Ik|
∑

j=i+1

ḠkjkQjkḠ
H
kjk

+
K
∑

l=1
l 6=k

|Il|
∑

j=1

ḠkjlQjlḠ
H
kjl

∣

∣

∣
(8)
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Fig. 3. Two cells, two users per cell, one antennas at the base station. Minimum power required to fulfill certain rate demands
which is assumed to be equal for all users. Rate demands for all users are assumed to be equal. We assume that the channels
remain constant over two symbols. The symbol extension length is represented by N .

where given any Γik , the rates upper-bound R̄ik is lower-

bounded by a concave expression in Qik . Now, the

optimization problem (9) is reformulated as

min
Γi

k
,Qi

k
,∀i∈Ik,k∈K

K
∑

k=1

|Ik|
∑

i=1

Tr (Qik) (14)

subject to R̃ik ≥ ψik , ∀i, k (14a)

Γik � 0, ∀i, k (14b)

Γik ∈ S
2MN×2MN , ∀i, k (14c)

(9b) − (9d). (14d)

Remark 2. The two problems (9) and (14) are equiv-

alent and both non-convex. However, the constraint set

of the optimization problem (14) is a convex set for any

given Γik , ∀i, k.

The following lemma states a desired result which

simplifies the solution of (9).

Lemma 1. If the optimization problem (14) is feasible

for some Γik , ∀i, k, the solution of (14) is also achiev-

able in the original problem (9).

Proof. By exploiting the lower-bound in (13) for the

achievable rates, the non-convex S formed by the con-

straints of (9) is converted to a convex subset S
′

de-

scribed by the constraints of (14) which is inscribed

within S. In other words,

S
′

⊂ S. (15)

Hence any solution that is feasible in problem (14), is

feasible in (9).

Notice that, multiple candidates exist for the set S
′

,

due to the flexibility in choosing Γik , ∀i, k. Hence, a

smart choice for Γik , ∀i, k is necessary for the feasibility

of the problem and its fast convergence. Recall that, the

upper-bound gap in (12) closes at a particular Γik , ∀i, k,

which is hermitian positive semi-definite, i.e., Γ⋆
ik

=
Bik . Hence, a realization from the positive semidefinite

cone increases the possibility of non-empty feasible set.

The optimization procedure is elaborated in Algorithm

1.

Remark 3. The rank of the sub-optimal solution cap-

tures the trade-off between multiplexing and diversity

gains in the real-valued equivalent MIMO channel. For

instance, a full-rank solution utilizes all real-valued

equivalent MIMO degrees of freedom (DoF).

In what follows, we present the numerical results and

discuss the observations and insights.
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Fig. 4. Two cells, two users per cell, two antennas at the base station. Minimum power required to fulfill certain rate demands
which is assumed to be equal for all users. Rate demands for all users are assumed to be equal. We assume that the channels
remain constant over two symbols. The symbol extension length is represented by N .

Algorithm 1 Sum Power Minimization

1: Lower-bound the second concave term in R̄ik , ∀i, k
as in (12).

2: Determine t = 1 (iteration index)

3: Set ǫ arbitrarily low.

4: Choose symmetric positive semidefinite matrices

Γ
(t)
ik
, ∀i, k, which make the problem (14) feasible

5: Define PΣ =
∑K

k=1

∑|Ik|
i=1 Tr (Qik)

6: while P
(t)
Σ − P

(t−1)
Σ ≥ ǫ do

7: Solve problem (14) for the given Γ
(t)
ik
, ∀i, k

8: Obtain the solutions Q
(t)
ik
, ∀i, k

9: Calculate P
(t)
Σ

10: Obtain B
(t)
ik

as in (11)

11: Set t = t+ 1
12: Set Γ

(t)
ik

= B
(t)
ik
, ∀i, k

13: end while

14: Obtain P ⋆
Σ = P

(t)
Σ

IV. NUMERICAL RESULTS

We consider two channel realizations, which are repre-

sentatives for moderate and strong interference regimes.

By strong interference regime, we mean that the inter-

fering channel strength is almost at the same order of the

desired channels. In contrast, by moderate interference

we mean that the interference channel is almost half

the strength of the desired channels. For reproducibility

of the results, we provide these channels in Table I

for moderate and strong interference regimes when the

number of antennas at the base stations is M = 2.

The first elements in the given vectors are the channel

realizations for M = 1. Recall that hkjl represents the

channel from the jth user in the lth cell to the kth base

station.

The variance of the complex-valued noise at the receiver

is assumed to be unity. For simulation purposes, we con-

sider two active users in two adjacent cells. Furthermore,

we consider the following cases,

I) only one antenna at the base station,

II) two antennas at the base station.

The minimum sum-power consumption for achieving

certain rate demands for the users is depicted in Fig. 3

and Fig. 4 for single-antenna and two antennas base

stations, respectively. One common and important ob-

servation is that, the performance of IGS outperforms

PGS at low rate demands, when the interference becomes

stronger. Similar observation can be made for the per-

formance of IGS alongside symbol extensions. It is also

important to notice that, by PGS higher rate demands can

not be fulfilled even with very high power, however by

IGS and symbol extensions high rate demands are also

achievable. In the case of single-antenna base stations,

having moderate interference regime, IGS improves the

power efficiency of the channel, however symbol exten-

sion over two time slots is not helpful in power reduction.

This can be observed in Fig. 3(a). In strong interference

regime, the efficiency of IGS is outstanding, moreover,

by joint precoding in two time slots, the power efficiency

can be even further improved.

V. CONCLUSION

In this paper, we investigated the power efficiency of

IGS over an extended symbol in cellular uplink channels

with inter-cell interference. The non-convex power min-

imization problem under rate demands turns out to be a

non-convex problem (a DC program), which is efficiently

solved in polynomial time. Due to the interference from



IR h111 h121 h212 h222 h112 h122 h211 h221

MI

[

3.2e−0.72i

2.9e0.12i

] [

2.3e2.52i

3.0e−1.32i

] [

3.4e2.23i

3.1e0.32i

] [

3e−1.13i

2.9e0.45i

] [

1.6e1.35i

1.45e1.23i

] [

1.15e0.37i

1.5e2.11i

] [

1.7e1.68i

1.55e0.91i

] [

1.5e−0.76i

1.45e−2.13i

]

SI − − − −

[

2.9e1.35i

2.7e1.23i

] [

2.5e0.37i

3.1e2.11i

] [

3.2e1.68i

2.7e0.91i

] [

3.1e−0.76i

2.4e−2.13i

]

TABLE I
IR: INTERFERENCE REGIME, MI: MODERATE INTERFERENCE, SI: STRONG INTERFERENCE

the neighboring cells, the system falls into a interference-

limited regime. In this case, rather than noise, the

interference is the main barrier against achieving high

rates. Depending on the interference regime (moderate

or high interference regimes), we observed that higher

rate demands are not achievable using PGS even if the

mobile stations have a very high power budget. However,

these rates are achievable if they utilize IGS alongside an

extended symbol. Moreover, we observed that, IGS and

symbol extensions are beneficial both in single antenna

and multi-antenna base stations in MAC with inter-cell

interference. The performance of IGS follows PGS up

to particular rate demands. Hence, as future perspectives,

we will analytically investigate the optimality conditions

of PGS in IMAC.
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