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Abstract— Understanding of mobile internet traffic 

patterns and capacity to estimate future traffic, 

particularly at high spatiotemporal granularity, is 

crucial for proactive decision making in emerging and 

future cognizant cellular networks enabled with self-

organizing features. It becomes even more important in 

the world of ‘Internet of Things’ with machines 

communicating locally. In this paper, internet activity 

data from a mobile network operator Call Detail Records 

(CDRs) is analysed at high granularity to study the 

spatiotemporal variance and traffic patterns. To 

estimate future traffic at high granularity, a Support 

Vector Regression (SVR) based traffic model is trained 

and evaluated for the prediction of maximum, minimum 

and average internet traffic in the next hour based on the 

actual traffic in the last hour. Performance of the model 

is compared with that of the State-of-the-Art (SOTA) 

deep learning models recently proposed in the literature 

for the same data, same granularity, and same 

predicates. It is concluded that this SVR model 

outperforms the SOTA deep and non-deep learning 

methods used in the literature.   

Keywords— Big Data Analytics, Mobile Internet 

Traffic Estimation, High Granularity Spatiotemporal 

Analysis, SVR 

I.  INTRODUCTION   

During the last decade, mobile services have 

sharply evolved from only cellular network-based ser-

vices like messages and calls to internet-based services 

like mobile apps and web surfing on mobiles. On one 

end such services demand a different set of bandwidths, 

network protocols and resources for the transmission of 

diversified data types, there on the other end, they have 

also raised user-network interaction to the highest level 

ever and this trend is increasing [1]. Data consumption, 

user interaction with the network and the time spent by 

users on the cellular network to access Internet-based 

services, has surpassed the conventional cellular 

services such as call and Short Messaging Service 

(SMS). StatCounter, a research company that tracks 

internet activity globally, concluded that the number of 

web pages accessed using mobile devices already 

exceeds the number of web pages accessed from 

Personal Computers (PC) and laptops in October 2016, 

and this trend is also increasing [2]. For instance, sub-

scribers from the USA spent almost 90% of their 

mobile phone time on the mobile internet in 2015.  

These statistics clearly show an increasing demand 

of a huge range of Internet-based services on the cellu-

lar network and require the network to be capable to 

cater a variety of data types with efficiency and better 

latency [3]. So, it becomes crucial for the network to 

learn user’s internet usage behavior and preferences in 

terms of contents, timings, and vicinity for the provi-

sion of user-specific seamless services. Further to it, the 

future network must be able to predict demand for 

internet services at different spatiotemporal granularity 

for better Radio Resources Management (RRM) and 

pre-emptive measures against key challenges like 

admission control, traffic congestion etc. To meet that 

objective, there exists a need to design most efficient 

and optimal RRM algorithms. The analysis of spatio-

temporal patterns of internet consumption at higher 

granularity is also important for the understanding and 

information management of varying communication 

level expected among numerous devices locally in 

future networks [4]. 

The increased frequency of user network interac-

tion has also led to an activity level of very high 

granularity over the network with fine footprints of 

respective activity records, e.g CDRs. Such CDRs, also 

provide an opportunity to gather intelligence about 

users’ behaviors and preferences towards different on 

and off network services. This intelligence can be 

accumulated by the identification of patterns and 

correlations in the existing data with the application of 

data analytics. Such data analytics based cognizance 

can help to improve overall network performance via 

RRM strategies at shorter intervals by making timely 

autonomous decisions [5]. This kind of network 

intelligence is a driving factor to make future networks 



more pre-emptive, autonomous and self-organizing, 

some of the key features expected in the future cellular 

(i.e. 5G and beyond) and IoT based networks [6].  

Spatiotemporal understanding and prediction of 

traffic can help optimize resources like switching off 

certain eNodeB for possible energy conservation. 

Similarly, timely and accurate traffic prediction can 

also play an important role in managing operational and 

quality of services related problems e.g. congestion 

control, admission control, network bandwidth alloca-

tions etc. [7]. Previously we proposed a small cell sleep 

cycles centered approach [8] that leverages from spati-

otemporal prediction based on same CDR to pro-

actively schedule radio resources. Results for this 

approach show substantial energy savings and reduced 

inter-cell interference (ICI), without compromising the 

users Quality of Service (QoS). Besides future traffic 

prediction, understanding of high granularity 

spatiotemporal traffic patterns and the distributions are 

also important for network planning and configuration 

for future networks where network densification is seen 

as a mean to meet the diversified high data demands. 

In this paper, the mobile users’ internet usage 

behavior with respect to time and location is studied 

with the help of real network data. For the purpose of 

analysis, actual two months cellular internet activity 

data for Milan city, released by Telecom Italia, is used. 

This paper explores the real internet traffic variance 

over a network in the spatiotemporal domain at a high 

granularity level particularly in term of time where the 

the variance of traffic even within an hour is studied. 

The detailed study of the users’ preferences in terms of 

the data contents is out of the scope of this paper.  

Cellular data is a rich source of information for 

multidisciplinary research and multifaceted decision-

Fig 2: Heat map of maximum hourly internet activity in 225 
cells over a week 

 

Fig 1: Cells distribution with respect to maximum traffic 

generated on hourly basis in a week 



making processes. There exists enormous research on 

cellular network architecture, functionalities, and 

services. Now plenty of work also exists on the 

utilization of data analytics for network improvement 

as it can be seen from [8], [9] and [10], where [10] 

specifically discuss predictability in networks. Signifi-

cance of the use of real mobile data in analytics is very 

high as it captures and exhibits the true feel of actual 

network behavior. But research on spatiotemporal 

analysis and predictability of cellular network traffic 

based on real network data is very limited and research 

on spatiotemporal analysis and predictability at high 

granularity is even rare especially for the internet 

traffic. Authors in [1] emphasize the need of models to 

predict traffic demand on short (e.g., minute to hours) 

and medium intervals of time (e.g., days to weeks) after 

presenting a detailed review of the literature published 

in the last decade on the topic.  

Another drawback of the existing research is that 

aggregated hourly activity level is taken into account 

whereas maximum traffic is more significant for 

estimation of demand and resource allocation [11]-

[13]. The aggregated or mean traffic is more stable as 

compared to maximum traffic which has high spatio-

temporal variance as it can be seen from Fig.1 and 

Fig.2. Further, most of the traffic prediction models 

proposed in the literature are for call and SMS data only 

and were separately trained and tested at different 

locations [11]-[13].  In this research, our proposed 

model is platform and location independent. The model 

is trained simply by providing six data points of 

aggregated activity level, each for ten minutes in an 

hour, for all cells.   

In the literature, Artificial Neural Networks (ANN) 

is one of the most popular non-linear models to forecast 

complex network traffic and outperform traditional 

time-series models like ARMA and FARIMA [14]. 

Studies focusing internet traffic on the cellular network 

for spatiotemporal analysis and short-term 

predictability are very rare. In [15], authors have 

applied deep learning methods for the prediction of 

internet traffic and results are used as a benchmark in 

this paper. 

In this paper, a Support Vector Regression model is 

used for the prediction of future internet activity for 

three different levels, minimum, maximum and mean 

at high granularity. These levels help to have a basic 

idea about the activity level in the different cells for a 

shorter period of time. The performance of the 

proposed method is compared with the SOTA deep 

learning methods available in the literature. We aim to 

prove that a classical, comparatively simple, SVR 

model can perform much better than the complex deep 

learning models for cellular network problems like the 

one under study here, internet activity estimation at 

high granularity.   

Deep learning models are not the optimal solution in 

all cases, therefore we focus on these three predicate 

tasks (activity levels) used by authors in [15] for their 

deep learning models and compare the performance of 

SVR with that of the deep learning models for the 

same data, granularity, predicates and evaluation 

metrics.  This is a timely research as future internet 

activity estimation using data mining and machine 

learning over a cellular network at high granularity is 

one of the most important problems for the research 

community in order to design efficient and intelligent 

5G and beyond 5G cellular networks [16]. In this 

paper, it is concluded that the proposed SVR based 

method outperforms SOTA approaches used in the 

recent literature.  
The remainder of this paper is organized as follows: 

Section II describes the dataset used in our analysis. 
Section III explains the methodology used for data 
analytics and model training, testing and performance 
evaluation. Section IV introduced the proposed SVR 
model and the performance metrics used in this paper 
and describes how the model is implemented. Section 
V presents the analysis and results of our proposed 
model. Finally, section VI concludes this paper. 

II. DATA SET DESCRIPTION 

To study the internet activity dynamics on a cellular 

network it is of paramount importance to use actual 

data from a cellular network operator. The internet 

activity data used in this paper is obtained from a 

comprehensive big dataset released by Telecom Italia 

as part of Big Data Challenge 2013 [17]. The dataset 

includes CDRs (i.e. SMS, call, and internet activity), 

precipitation data, electricity consumption data, 

weather station data and website data for the city of 

Milan, Italy for November and December 2013. In this 

Fig 3: Grid over Milan and area under observation 



paper, internet activity data from CDRs is used for the 

spatiotemporal analysis of the behavior of users using 

smartphones.  

For the data collection and aggregation, the city of 

Milan is geographically mapped as a 100 by 100 grid 

of 10,000 rectangular cells as shown in Fig.3. Internet 

activity level is represented by an imitated rational 

number for confidentiality. Each number refers to an 

activity level aggregated for each cell separately for a 

time interval of 10 minutes. These numbers do not 

represent actual internet data consumption but refer to 

activity level in a cell. So they can help for the 

comparative study of internet activity in various cells 

at different time slots. They can give an idea which 

cells or time slot have more or less activity as compared 

to other cells or time slots and how much the difference 

is. In our experiment, we have used data of nine weeks, 

for the months of November and December 2013, and 

225 cells covering the left bottom corner of the city as 

highlighted in Fig.3, a grid of 15 by 15 cells. First three 

weeks data is used for cross-validation and later more 

data is added for training purposes. Finally, data for the 

first eight weeks is used for the training purposes and 

the ninth week data is used for testing and performance 

evaluation. 

III. METHODOLOGY 

First, we calculated three basic levels of internet 

activity for each hour of the day for all 225 cells i.e. 

Minimum, Average and Maximum level of activity. 

This was followed by the study of the spatiotemporal 

changes in maximum internet activity level. A density 

candle plot (Fig. 1) and a heat map (Fig.2) are plotted 

for the maximum internet activity level which helps to 

understand maximum internet activity distribution and 

variance over each day of a week for 225 cells and over 

a day across the 225 cells respectively. For 

visualization purposes here focus has been on 

maximum internet activity as it is commonly the most 

sought-after feature for network resources planning 

and allocation.  

Three SVR models, independent from each other, 

are trained and tested for three activities level 

Maximum, Mean, and Minimum. Initially, SVR 

models are separately trained using two weeks data and 

trained models are validated using the data of the third 

week which was kept separate. In the validation step, 

SVR exhibited an accuracy of 85%, 87% and 83% for 

Minimum, Mean and Maximum tasks respectively.  

In the end, the model was trained on eight weeks data 

and tested against unseen data of week nine which was 

kept separate at the very start of the experiment. The 

performance of the models was evaluated using the 

performance metrics defined in section IV.B. The 

internet activity over an hour, aggregated in six slots of 

ten minutes each, works as an input to the SVR model 

for the prediction of each internet activity level for the 

next hour as shown in Fig. 4.  

IV. PROPOSED MODEL AND PERFORMANCE 

METRICS 

A. Support Vector Regression (SVR)  

We have implemented Statistical Learning Theory 

based epsilon-insensitive nonlinear SVM regression 

here. The basic goal of SVR is Structural Risk 

Minimization (SRM). In practice, the time series of 

base stations’ traffic show non-linear behavior. Hence, 

non-linear SVR is used here, in the internet activity 

forecasting scheme. 

To formulate the problem, let’s define training data 

as {𝑥𝑖 , 𝑦𝑖}, 𝑖 = 1,2,3, … , 𝑛 = 24 where 𝑥𝑖  is the input 

vector representing an hour of the day (e.g. X1  

represents the first hour in the morning 00:00 to 1:00 

am) comprising six scalar values u each representing 

internet activity for a ten-minute time slot as shown in 

Fig 4. Similarly, 𝑦𝑖  represents the maximum, minimum 

or mean value of the corresponding hour, depending on 

task the model is trained for. First, the input is mapped 

on a multidimensional nonlinear feature space using a 

non-linear transformation function [18] represented 

as 𝜑 (. ). In such case where we have high dimensional 

data, regression function can be expressed as follows: 

         𝑓(𝑥) =  𝜔 . 𝜑(𝑥) + 𝑏                              (1) 
Such that 𝜔 ∈ 𝑅𝑑 and 𝑏 ∈ 𝑅  where 𝑑 represents the 

dimensions or number of columns in data as it is 6 in 

our case and 𝑏 represents the bias. And outcome of 

𝜑 (𝑥) represents the input features space. 

The quality of estimation is measured by the loss 

function. In this paper, the epsilon insensitive loss 

Fig 4: Layout of SVR model implementation 

 



function is used, which ignores errors that are 

within epsilon (Ɛ) distance of the observed values. For  

training samples outside epsilon insensitive zone, the 

slack variable ƹ𝑖 , ƹ𝑖
∗ is introduced that allows the errors 

to exist up to ƹ𝑖 , ƹ𝑖
∗ beyond epsilon insensitive zone. So 

SVR model is trained by solving the minimisation 

problem defined as (2):  

min
1

2
 ǀǀ𝜔ǀǀ2 + 𝐶 ∑ (ƹ𝑖 + ƹ𝑖

∗)
𝑛

𝑖=1
 

(2) 

s. t {

𝑦𝑖 − (𝜔 . 𝜑(𝑥𝑖) + 𝑏) ≤ Ɛ + ƹ𝑖  

−𝑦𝑖 + 𝜔 . 𝜑(𝑥𝑖) + 𝑏 ≤ Ɛ + ƹ𝑖
∗

ƹ𝑖 , ƹ𝑖
∗ ≥ 0 

𝑖 = 1,2,3, … , 𝑛

 

The constant 𝐶 is a positive numeric value that 

regularise the function for flatness and over fitting. It 

imposes a penalty on the values beyond Ɛ-insensitive 

zone and determine the level of tolerance for deviation 

of values beyond Ɛ-insensitive zone. We have used the 

heuristic method in this paper for the selection of C 

and Ɛ. By extensive iterations, using the values of 𝐶 = 

1 and  Ɛ = .02, the loss function is minimum.  

B. Performance Metrics 

In order to evaluate the performance of our 

proposed SVR model, the following performance 

metrics were used: Mean Absolute Error (MAE), the 

Root Mean Square Error (RMSE) and Mean Accuracy 

(MA) [15]. The MAE, RMSE, and MA were calculated 

for each task, Minimum, Mean and Maximum 

separately. Let 𝑦𝑖  represents the actual hourly 

minimum, mean and maximum internet activity in test 

data and  ŷ𝑖 represents corresponding minimum, mean 

or maximum hourly internet activity predicted by the 

relevant model. Hence, performance metrics can be 

written as (3)-(6): 

       𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − ŷ𝑖|   

𝑛

𝑖=1

 (3) 

              𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(|𝑦𝑖 − ŷ𝑖|)

2 

𝑛

𝑖=1

 (4) 

             𝑀𝐴𝑃𝐸 =
1

𝑛
∑|𝑦𝑖 − ŷ𝑖|/𝑦𝑖

𝑛

𝑖=1

 (5) 

where 𝑛 represents the number of instances in the test 

data. Mean accuracy (MA) is measured using MAPE 

metric as follow: 

              𝑀𝐴 = (1 − 𝑀𝐴𝑃𝐸)  ×  100% (6) 

where  𝑦𝑖   and ŷ𝑖  respectively represent actual and 

estimated values of minimum, mean and maximum 

hourly internet activity.  

V. ANALYSIS AND RESULTS 

As commonly maximum activity level is 

considered for resources planning and allocation for the 

networks, therefore for visualization we have displayed 

plots of maximum internet activity. But we have 

trained, tested and compared the performance of 

models for three activity levels.  

From cumulative frequency distribution of 

minimum, average and maximum activity as shown in 

Fig. 5 it can be seen that it follows power law i.e. most 

of the cells generate low level activity only a few cells 

generate high activity, even in CDF for maximum 

activity level more than 80 percent of the cells have 

maximum internet activity level less than 10 Same can 

be inferred from Fig.1 density candles of cells 

distribution according to maximum activity level over 

the day for the whole week. It can be observed that for 

the whole week as a common factor most of the cells 

have maximum internet activity level around 5.  

Careful observation of Heatmap in Fig.2 also validates 

this concept.  

Variance in hourly maximum internet activity over 

the time scale for one week can be observed from Fig.1 

where maximum internet activity, on y-axis, is plotted 

against the hours of the day on x-axis for a week width 

of the density candles show that at overall in the whole 

week maximum activity get slower (i.e. less number of 

cells with much activity) after 11 pm and it remains low 

till 6 am comparatively. The width of the candles 

represents the density of no. of cells with maximum 

activity in that area of the candle with a maximum 

activity shown on the y-axis for cells in the 

corresponding area of the candle.  

The significant rise can be seen from 7 am, and 

many of the cells have higher maximum activity level 

between 8 am and 9 pm as compared to the rest of the 

day. It can also be seen that there exists a significant 

second candle on top of the underneath candles for 

weekdays that reflects some cells have even higher 

maximum activity on working days as compared to 

weekends. First candles reflect that most of the cells 

have maximum activity level value around 5 and some 

cells have activity level value near 10 on weekdays. On 

Sunday most of the active cells have internet activity 

TABLE I  RESULTS: PERFORMANCE OF MODELS AGAINST METRICS 

Task Metric SVR ARIMA 

[15] 

LM 

[15] 

CNN-

RNN[15] 

Min. MA 90.25% 67% 61% 69% 

MAE 0.42 22.85 32.86 21.35 

RMSE 0.61 58.18 90.96 50.4 

Mean MA 91% 75% 68% 72% 

MAE 0.45 24.34 33.08 26.85 

RMSE 0.65 52.25 81.46 58.36 

Max. MA 89.72% 63% 63% 67% 

MAE    0.60 49.78 56.01 44.74 

RMSE 0.88 100.85 126.36 92.32 
 



level near 5 and width of candles show there are more 

cells with that much activity compared to other days 

but second top candles representing cells with even 

higher activity is not prominent.  

Heat map of the whole week in Fig 2. shows a 

variance of maximum internet activity within the cells 

represented on the x-axis against each day of the whole 

week on the y-axis. Poorly active cells are blue with 

maximum internet activity level between 0 and 6. Cells 

with maximum internet activity in the range of 6 and 

12 falls in blueish-green shade. Substantially active 

cells with maximum internet activity in the range of 12 

and 18 are coloured green. Highly active cells are 

coloured yellowish having maximum internet activity 

around 24. Extremely active cells with maximum 

internet activity level 30 or above represented with red 

colour. Here again it can be seen that there are few cells 

which are extremely active in particular time slots, 

most of the cells do not generate much traffic even at 

their peak level. Bottom left corner of the selected area 

generates the highest internet activity. Cells in the 

range of 1 to 11 and overlying cells 101-111, similarly 

201-211, 301-311 and 401-411 which are also 

consecutive cells generate the highest activity. As we 

move away from this area internet activity fades out. 

Beside that heat map also show that most of the cells 

have higher activity level between 8 am and 9 pm. 

While discussing the results of our model SVR, its 

performance is compared with the performance of 

deep learning models applied to the same data at 

similar granularity for similar predicates as in [15]. 

Authors in [15] also compared the performance of the 

deep learning models like recurrent neural network 

(RNN), three-dimensional convolutional neural 

network (3D CNN) and the combination of CNN and 

RNN (CNN-RNN) with non-deep learning methods of 

ARIMA and Levenberg-Marquardt (LM) algorithm 

based neural networks (NN). In [15] authors 

recommend Multitask learning CNN-RNN (i.e 

training and predicting for minimum, mean, and 

maximum levels in single model) one as a most 

reliable model that outperforms other deep learning 

models with the predictability of all levels of internet 

activity with 70% to 80%  accuracy  7% more than that 

they achieved for single task learning with deep 

learning methods. 

 From the comparison of the performance against 

metrics mentioned above as shown in table 1 it is 

found that SVR trained an tested separately for all 

three tasks performs better than all the models 

proposed by the authors in [15] against all metrics. 

SVR has an accuracy of 90.25%, 91% and 89.72% for 

the prediction of minimum, mean, and maximum 

internet activity respectively which is higher than that 

of deep learning methods and subsequently from 

another classical time series model like ARIMA. Root 

mean square error and mean absolute error are also 

less compared to deep learning methods for all activity 

levels. CDF plots in Fig.5 show that estimated and 

actual minimum, mean and maximum activity have 

very similar cumulative distribution frequency. That 

means the same percentage of cells generating similar 

activity levels. It also can be seen that for minimum 

hourly internet activity level 60% of the time activity 

level is less than 5 and in less than 10% instances it is 

above 10 with an upper bound of approximately 17. 

For maximum activity tracing 40% of the time activity 

level is less than 5 and almost 20% of the time it is 

above 10, it approaches 25 at highest. For mean 

activity approximately 50% of the times it is less than 

5 and approximately 10% of the times it is above 10.  

Fig 5: CDF of Mean, Minimum and Maximum Hourly Internet 
Activity: Actual VS Predicted 



VI. CONCLUSION AND FUTURE WORKS 

The capability of understanding and predicting 
high variance mobile internet activity at a high 
granularity level is a requirement for autonomous 
cognizant future cellular networks enabled with self-
organizing features. Efficient algorithms are desired to 
make future cellular networks equipped with this 
capacity. In our research, we have found that for 
internet activity over cellular network significant 
variance is seen in maximum activity over the 
temporal as well as spatial scale compared to mean or 
aggregate activity. We implemented statistical 
learning theory based nonlinear support vector 
regression model on real network internet activity data 
at high granularity to predict the maximum, minimum 
and mean internet activity for the next hour on the 
basis of internet activity in last hour. We compared the 
performance of our model with that of the state of the 
art deep learning and classical models and proved that 
SVR outperforms the other models.  

The results show that SVR algorithm predictions 
can be used in further research to pre-emptively 
address practical network problems like traffic 
congestion. The analysis results here also provide 
grounds for further research for grouping of cells with 
similar activity patterns at different granularity and 
allocation of resources accordingly. 
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