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Abstract—In this paper, channel estimation for millimeter
wave (mmWave) massive multiple-input multiple-output (MIMO)
systems with one-bit analog-to-digital converters (ADCs) is con-
sidered. In the mmWave band, the number of propagation paths
is small, which results in sparse virtual channels. To estimate
sparse virtual channels based on the maximum a posteriori
(MAP) criterion, sparsity-constrained optimization comes into
play. In general, optimizing objective functions with sparsity
constraints is NP-hard because of their combinatorial complexity.
Furthermore, the coarse quantization of one-bit ADCs makes
channel estimation a challenging task. In the field of compressed
sensing (CS), the gradient support pursuit (GraSP) and gradient
hard thresholding pursuit (GraHTP) algorithms were proposed to
approximately solve sparsity-constrained optimization problems
iteratively by pursuing the gradient of the objective function
via hard thresholding. The accuracy guarantee of these algo-
rithms, however, breaks down when the objective function is
ill-conditioned, which frequently occurs in the mmWave band.
To prevent the breakdown of gradient pursuit-based algorithms,
the band maximum selecting (BMS) technique, which is a hard
thresholder selecting only the “band maxima,” is applied to GraSP
and GraHTP to propose the BMSGraSP and BMSGraHTP
algorithms in this paper.

I. INTRODUCTION

The wide bandwidth of the millimeter wave (mmWave) band

provides high data rates, resulting in a significant performance

gain [1]–[4]. Also, the small wavelength enables the use of

large arrays at the transmitter and receiver, which is widely

known as massive multiple-input multiple-output (MIMO) sys-

tems. The power consumption of an analog-to-digital converter

(ADC), however, increases linearly with the sampling rate and

exponentially with the ADC resolution, which makes high-

resolution ADCs impractical for mmWave massive MIMO sys-

tems [5]. To reduce the impractically high power consumption,

one possible solution is to use low-resolution ADCs, which

recently gained popularity [6]–[9]. In this paper, we consider

the extreme scenario of mmWave massive MIMO systems with

one-bit ADCs.

The number of propagation paths in the mmWave band

is small, which naturally leads to sparse virtual channels.

Therefore, channel estimation for mmWave massive MIMO

systems with one-bit ADCs can be formulated as sparse signal

recovery with quantized measurements. In [10]–[12], com-

pressed sensing-based (CS-based) signal recovery techniques

for mmWave massive MIMO systems with low-resolution

ADCs were proposed. In [10], a sparse Bayesian learning-

based (SBL-based) approximate maximum a posteriori (MAP)

channel estimator was proposed, which sought the channel

estimate using the variational Bayesian (VB) method. The

generalized expectation consistent signal recovery (GEC-SR)

[11] and generalized approximate message passing (GAMP)

[12] algorithms are iterative approximate minimum mean

squared error (MMSE) estimators, which are based on the

turbo principle and loopy belief propagation (BP). However,

the accuracy guarantee of these algorithms breaks down when

the sensing matrix is ill-conditioned, which occurs when the

angular domain grid resolution of the virtual channel represen-

tation is too high.

In this paper, we propose gradient pursuit-based iterative

approximate MAP channel estimators for mmWave massive

MIMO systems with one-bit ADCs. In the mmWave band,

the MAP channel estimation framework can be cast into a

sparsity-constrained optimization problem. To approximately

solve such problem iteratively, we adopt the gradient support

pursuit (GraSP) [13] and gradient hard thresholding pursuit

(GraHTP) [14] algorithms, which are gradient pursuit-based

CS techniques. Similar to the aforementioned CS-based algo-

rithms, however, these algorithms break down when the grid

resolution is too high because the resulting objective function

is ill-conditioned. To prevent such breakdown, we propose

the band maximum selecting (BMS) technique, which is a

hard thresholder selecting only the “band maxima.” The BMS

technique is then applied to GraSP and GraHTP, which results

in the proposed BMSGraSP and BMSGraHTP algorithms. Ac-

cording to the simulation results, BMSGraSP and BMSGraHTP

outperform other channel estimators including GAMP, which

shows the superiority of our proposed techniques.

Notation: a, a, and A denote a scalar, vector, and matrix.

The transpose, conjugate transpose, and conjugate of A are

denoted as AT, AH, and A. The Kronecker product of A and

B is denoted as A⊗B. The support of a is denoted as supp(a),
which is formed by collecting all of the indices of the nonzero

elements of a. The best s-term approximation of a is denoted

as a|s, which is obtained by leaving only the s largest elements

of a and hard thresholding other elements to 0. For a set A,

the vector obtained by leaving only the elements of a indexed

by A and hard thresholding the remaining elements to 0 is
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denoted as a|A. The absolute value of a scalar a and cardinality

of a set A are denoted as |a| and |A|. The standard normal

PDF and CDF are denoted as φ(x) = 1√
2π

e−
x2

2 and Φ(x) =
∫ x

−∞
1√
2π

e−
y2

2 dy. The inverse Mills ratio function is defined

as λ(x) = φ(x)
Φ(x) . The element-wise matrix multiplication and

division are denoted as ⊙ and ⊘. The element-wise standard

normal PDF, CDF, and inverse Mills ratio function are φ(x),
Φ(x), and λ(x) = φ(x) ⊘ Φ(x).

II. SYSTEM MODEL

Consider a mmWave massive MIMO system with one-bit

ADCs, whose N -antenna transmitter and M -antenna receiver

are equipped with uniform linear arrays (ULAs). In the channel

estimation phase, a training sequence of length T is transmitted

to the receiver. By collecting the signals over the T time slots,

the received signal Y ∈ CM×T is

Y =
√
ρHS+N (1)

where H ∈ C
M×N is the channel, S ∈ C

N×T is the training

sequence, whose columns obey the 2-norm constraint of
√
N ,

and N ∈ CM×T is the additive white Gaussian noise (AWGN),

which is distributed as vec(N) ∼ CN (0MT , IMT ). The signal-

to-noise ratio (SNR) is defined as ρ. In the mmWave band,

H contains a small number of paths where each path is

associated with its path gain, angle-of-arrival (AoA), and angle-

of-departure (AoD) [15]. Then, H is

H =

L
∑

ℓ=1

αℓaRX(θRX,ℓ)aTX(θTX,ℓ)
H (2)

where L is the number of paths, αℓ ∼ CN (0, 1) is the ℓ-
th path gain, and θRX,ℓ ∼ unif([−π/2, π/2]) and θTX,ℓ ∼
unif([−π/2, π/2]) are the ℓ-th AoA and AoD, which are

independent. The steering vectors aRX(θRX,ℓ) ∈ CM and

aTX(θTX,ℓ) ∈ CN are

aRX(θRX,ℓ) =
1√
M

[

1 · · · e−jπ(M−1) sin(θRX,ℓ)
]T

, (3)

aTX(θTX,ℓ) =
1√
N

[

1 · · · e−jπ(N−1) sin(θTX,ℓ)
]T

, (4)

whose inter-element spacings are half-wavelength. The one-bit

quantized received signal Ŷ ∈ CM×T is

Ŷ = Q(Y)

= Q(
√
ρHS+N) (5)

where Q(·) is the zero threshold one-bit quantization function

defined as

Q(Y) = sign(Re(Y)) + jsign(Im(Y)) (6)

with sign(·) the element-wise sign function.

The virtual channel representation [16] of H is

H = ARXX
∗AH

TX (7)

where ARX ∈ CM×BRX and ATX ∈ CN×BTX are overcom-

plete discrete Fourier transform (DFT) matrices, and X∗ ∈

C
BRX×BTX is the virtual channel with BRX ≥ M and

BTX ≥ N . For notational simplicity, we define B = BRXBTX.

To facilitate the analysis, (5) is vectorized after plugging in (7)

as

ŷ = Q(y)

= Q(
√
ρAx∗ + n) (8)

where ŷ = vec(Ŷ), y = vec(Y), A = STATX ⊗ ARX =
[

a1 · · · aB
]

, x∗ = vec(X∗) =
[

x∗
1 · · · x∗

B

]T
, and n =

vec(N).

To build the MAP channel estimation framework, we start

with formulating the likelihood function based on the real

forms of ŷ, A, and x∗, which are

ŷR =
[

Re(ŷ)T Im(ŷ)T
]T

=
[

ŷR,1 · · · ŷR,2MT

]T
, (9)

AR =

[

Re(A) −Im(A)
Im(A) Re(A)

]

=
[

aR,1 · · · aR,2MT

]T
, (10)

x∗
R =

[

Re(x∗)T Im(x∗)T
]T

(11)

where the complex forms and their real forms are used inter-

changeably in the sequel. For example, x∗ and x∗
R represent

the same entity. Then, the log-likelihood function f(x) is [17]

f(x) = log Pr
[

ŷ = Q(
√
ρAx+ n) | x

]

=

2MT
∑

i=1

log Φ(
√

2ρŷR,ia
T
R,ixR). (12)

However, x∗ is approximately sparse due to the leakage effect

[18], which complicates the channel estimation problem. To

formulate the MAP channel estimation framework, we assume

that x∗ is L-sparse with independent and identically distributed

(i.i.d.) CN (0, 1) elements, whose locations are uniformly dis-

tributed in {1, . . . , B}. The mismatch between our assumption

on x∗ and its true distribution reduces as we increase BRX

and BTX due to the reduced leakage effect. In Section IV,

it is shown that sufficiently large BRX and BTX lead to

accurate channel estimation because our assumption closely

approximates the true distribution of x∗. With such assumption

on the distribution of x∗, the MAP estimate of x∗ is

argmax
x∈CB

(f(x) + g(x)) s.t. ‖x‖0 ≤ L (13)

where g(x) = −‖xR‖2 is the logarithm of the PDF of

CN (0B, IB) without the constant factor. In the sequel, the

objective function and its gradient in (13) are denoted as

h(x) = f(x) + g(x), (14)

∇h(x) = ∇f(x) +∇g(x)

=
[

∇h(x1) · · · ∇h(xB)
]T

, (15)

whose differentiation is with respect to x.



III. PROPOSED BMSGRASP AND BMSGRAHTP

ALGORITHMS

In general, solving (13) is NP-hard due to its sparsity

constraint. To approximately optimize sparsity-constrained ob-

jective functions iteratively by pursuing the gradient of the ob-

jective function, GraSP [13] and GraHTP [14] algorithms were

proposed in the field of CS, which generalize the well-known

compressive sampling matching pursuit (CoSaMP) [19] and

hard thresholding pursuit (HTP) [20] algorithms to objective

functions with arbitrary forms.

To solve (13), GraSP and GraHTP update the L-sparse

current estimate x̂ of x∗ roughly as follows at each iteration.

The best L-term approximation of ∇h(x̂) is computed via hard

thresholding as

∇h(x̂)|L, (16)

whose support

I = supp(∇h(x̂)|L) (17)

is selected as the updated estimate of supp(x∗). This step can

be interpreted as support identification, or joint AoA and AoD

estimation. Then, the elements corresponding to the identified

support are updated by selecting the updated x̂ as

argmax
x∈CB

h(x) s.t. supp(x) ⊆ I, (18)

which can be interpreted as path gain estimation. Note that

(18) is a convex optimization problem because h(x) is concave

with its support constraint being convex. The concavity of h(x)
follows from the fact that f(x) is concave because Φ(·) is

log-concave; similarly, g(x) is concave due to the convexity

of 2-norm [21].

The accuracy guarantee of GraSP and GraHTP, however,

breaks down when h(x) does not have a stable restricted

Hessian [13] or is not strongly convex and smooth [14]. The

problem is that for large BRX and BTX, the resulting A is

ill-conditioned because its columns become highly coherent,

which leads to unfavorable h(x). Specifically, with highly

coherent A, GraSP and GraHTP are likely to fail to accurately

identify the support of x∗ from (17).

To illustrate how support identification fails from (17) when

A is highly coherent, first, consider the real form ∇h(xR) of

∇h(x) defined as

∇h(xR)

=
[

Re(∇h(x))T Im(∇h(x))T
]T

=

2MT
∑

i=1

λ(
√

2ρŷR,ia
T
R,ixR)

√

2ρŷR,iaR,i − 2xR

=AT
R(λ(

√

2ρŷR ⊙ARxR)⊙
√

2ρŷR)− 2xR, (19)

which is obtained from ∇ logΦ(aTRxR) = λ(aTRxR)aR and

∇‖xR‖2 = 2xR. Then, we establish the following observation,

which can be checked from directly computing ∇h(xi), whose

real and imaginary parts correspond to the i-th and (i+B)-th
elements of ∇h(xR).

Observation 1. ∇h(xi) = ∇h(xj) if ai = aj and xi = xj .

However, Observation 1 is trivial since ai 6= aj unless i = j.

To introduce a nontrivial observation, we adopt the notion of

coherence between ai and aj , i.e.,

µ(i, j) =
|aHi aj |

‖ai‖‖aj‖
, (20)

which measures the proximity between ai and aj [22]–[24].

Then, with the η-coherence band of i, which is defined as [22]

Bη(i) = {j | µ(i, j) ≥ η} (21)

with η ∈ (0, 1), the following conjecture is established for

sufficiently large η.

Conjecture 1. ∇h(xi) ≈ ∇h(xj) if j ∈ Bη(i) and xi = xj .

Now, based on Conjecture 1, we illustrate how GraSP and

GraHTP fail to accurately identify the support of x∗ from

(17) when A is highly coherent. To proceed, we consider the

following example where x∗ and ŷ are realized with the current

estimate x̂ so as to satisfy

1) i = argmax
k∈{1,...,B}

|∇h(x̂k)|
2) Jη(i) ∩ supp(x∗) = ∅

where

Jη(i) = {j | j ∈ Bη(i), x̂i = x̂j} \ {i} (22)

is defined as the by-product of i. In this example, Jη(i) is

called the by-product of i because for all j ∈ Jη(i),

|∇h(x̂j)|
(a)≈ |∇h(x̂i)|
(b)
= max

k∈{1,...,B}
|∇h(x̂k)| (23)

holds where (a) follows from Conjecture 1 and (b) from 1)

even if Jη(i)∩ supp(x∗) = ∅ according to 2). The implication

of this example is that most indices of Jη(i) are likely to be

selected when ∇h(x̂) is hard thresholded as in (17) due to (23),

which results in an erroneous estimate of supp(x∗) because of

2). Based on the observation established from this example,

we propose the BMS technique to remedy such problem.

The BMS technique provides a guideline of how to

hard threshold ∇h(x̂) in (17) in order to exclude the by-

product indices. The proposed BMS hard thresholding function

TBMS,L(·) is an L-term hard thresholding function developed

based on Conjecture 1. The details of the BMS technique are

presented in Algorithm 1. In Line 3, the index of the maximum

element of ∇h(x̂) is selected among the unchecked index set

as the current index. The by-product testing set of the current

index is formed in Line 4. In Line 5, the current index is

checked whether it is greater than the by-product testing set. In

this paper, we refer to Line 5 as the band maximum criterion.

If the current index is indeed the “band maximum,” which

satisfies the band maximum criterion, this index is selected

as the estimate of supp(x∗) in Line 6. Otherwise, the current

index is excluded because it is likely to be the by-product of



Algorithm 1 BMS hard thresholding technique

Input: x̂, ∇h(x̂), L
Output: TBMS,L(∇h(x̂))

1: S = ∅, I = {1, . . . , B}
2: while |S| < L do

3: i = argmax
j∈I

|∇h(x̂j)|
4: Jη(i) = {j | j ∈ Bη(i), x̂i = x̂j} \ {i}
5: if |∇h(x̂i)| > max

j∈Jη(i)
|∇h(x̂j)| then

6: S = S ∪ {i}
7: end if

8: I = I \ {i}
9: end while

10: TBMS,L(∇h(x̂)) = ∇h(x̂)|S

another index rather than the ground truth index. In Line 8, the

unchecked index set is updated.

At this point, we emphasize that Algorithm 1 is applied

to ∇h(x̂). To apply the BMS hard thresholding function to

x̂ + κ∇h(x̂) where κ is the step size, simply replace ∇h(x̂)
with x̂ + κ∇h(x̂) in the input, output, and Lines 3, 5, and

10 of Algorithm 1. This variant can be derived based on

the same logic using Conjecture 1. Now, the BMSGraSP and

BMSGraHTP algorithms are proposed to solve (13).

BMSGraSP and BMSGraHTP are the variants of GraSP and

GraHTP. The difference between our BMS-based and non-

BMS-based algorithms is that TBMS,L(·) is used as a hard

thresholder instead of the naive best L-term approximation as

in (17). The details of the proposed BMSGraSP and BMS-

GraHTP are given in Algorithms 2 and 3. Lines 3, 4, and 5 of

Algorithms 2 and 3 proceed based on the same logic. In Line

3, the gradient of the objective function is computed. Then, I
is selected from the support of the hard thresholded gradient

of the objective function in Line 4, which corresponds to joint

AoA and AoD estimation. In Line 5, the objective function

is maximized subject to the support constraint, which can be

interpreted as path gain estimation. This step can be solved

via convex optimization since the objective function is concave

with the support constraint being convex. Additionally, Line 6

of Algorithm 2 hard thresholds b since the sparsity of b is

at most 3L. A natural halting condition for Algorithms 2 and

3 is to halt when supp(x̂) does not change from iteration to

iteration [13], [14].

Remark 1: Instead of merely hard thresholding b in Line 6

of Algorithm 2, we can solve the following convex optimiza-

tion problem

x̂ = argmax
x∈CB

h(x) s.t. supp(x) ⊆ supp(b|L) (24)

to update x̂. This is called the debiasing variant of Algorithm

2, which produces a more accurate x∗ [13]. The complexity,

however, increases.

Remark 2: The convex optimization problems in BMS-

GraSP and BMSGraHTP, which consist of Line 5 of Al-

gorithms 2 and 3, can be solved with relatively low com-

Algorithm 2 BMSGraSP algorithm

Input: h(·), L
Output: x̂

1: x̂ = 0B

2: while halting condition do

3: z = ∇h(x̂)
4: I = supp(TBMS,2L(z)) ∪ supp(x̂)
5: b = argmax

x∈CB

h(x) s.t. supp(x) ⊆ I
6: x̂ = b|L
7: end while

Algorithm 3 BMSGraHTP algorithm

Input: h(·), L
Output: x̂

1: x̂ = 0B

2: while halting condition do

3: z = x̂+ κ∇h(x̂)
4: I = supp(TBMS,L(z))
5: x̂ = argmax

x∈CB

h(x) s.t. supp(x) ⊆ I
6: end while

plexity because the support of their optimization variables

are constrained to I where |I| = O(L) is typically much

smaller than B ≥ MN in mmWave massive MIMO systems;

L is small due to the small number of paths, whereas M
and N are large due to the large arrays. The same logic

holds for (24). Therefore, the complexity of Algorithms 2

and 3 is dominated by Line 3, which requires the gradient

of the objective function defined on CB . We can reduce the

complexity in Line 3 of Algorithms 2 and 3 based on the fast

Fourier transform (FFT) implementation of ∇h(x̂) when S has

an FFT-friendly structure, e.g., circularly shifted Zadoff-Chu

(ZC) sequences or partial DFT matrix. From (19), note that

the matrix-vector multiplications involving A and AH act as

computational bottlenecks. These matrix-vector multiplications

can be efficiently implemented using the FFT by noting that

unvec(Ax) = ARXXAH
TXS

= ARX(S
H(ATXX

H))H, (25)

unvec(AHc) = AH
RXCSHATX

= AH
RX(A

H
TX(SC

H))H (26)

where C = unvec(c). By performing matrix multiplications

involving ARX, ATX, and S using the FFT, the cost of

computing ∇h(x̂) can be reduced significantly.

IV. SIMULATION RESULTS

In this section, the performance of BMSGraSP and BMS-

GraHTP are evaluated in terms of the accuracy and achievable

rate. We consider a mmWave massive MIMO system with one-

bit ADCs where M = N = 64 and T = 80. The rows of the

training signal S are chosen as circularly shifted ZC sequences

of length T [25], and the number of paths are L = 4. We



Fig. 1. NMSE vs. SNR with M = N = 64, T = 80, and

L = 4, while BRX and BTX vary from algorithm to algorithm.

choose BRX = 256 ≫ M and BTX = 256 ≫ N for the

proposed BMSGraSP and BMSGraHTP to reduce the leakage

effect, but other channel estimators may use smaller BRX

and BTX to prevent the breakdown caused by the resulting

ill-conditioned sensing matrix. The accuracy of a channel

estimator is measured based on its normalized MSE (NMSE),

which is defined as

NMSE = E

{

‖Ĥ−H‖2F
‖H‖2F

}

(27)

where Ĥ = ARXX̂ATX with X̂ = unvec(x̂).
For BMSGraSP, we consider its debiasing variant, which

replaces Line 6 of Algorithm 2 with (24). We set Algorithms

2 and 3 to halt when supp(x̂) does not change from iteration to

iteration. We use the backtracking line search [21] to compute

κ in Line 3 of Algorithm 3. Lastly, we configure η so as to

satisfy Conjecture 1 by selecting the maximum η satisfying

min
i∈{1,...,B}

|Bη(i)| > 1. (28)

The other channel estimators to be compared are GraSP

[13] and GraHTP [14], which are non-BMS-based gradient

pursuit-based algorithms, the Bernoulli-Gaussian-GAMP (BG-

GAMP) [12], and fast iterative shrinkage-thresholding algo-

rithm (FISTA) [26]. BG-GAMP is a loopy BP-based iterative

approximate MMSE channel estimator, which assumes that x∗

is distributed as i.i.d. BG, meaning that each elements are

CN (0, 1) with probability L/B but zero otherwise. FISTA is an

accelerated proximal gradient descent method-based iterative

MAP channel estimator based on the assumption that the

logarithm of the PDF of x∗ is gFISTA(x) = −γ‖x‖1 without

the constant factor, which is the Laplace distribution. Then, the

FISTA estimate of x∗ is

argmax
x∈CB

(f(x) + gFISTA(x)), (29)

which can be interpreted as the generalized LASSO [27] with

arbitrary forms of objective functions. For a fair compari-

Fig. 2. Achievable rate lower bound [12] vs. SNR with M =
N = 64, T = 80, and L = 4, while BRX and BTX vary from

algorithm to algorithm.

son, we configure the regularization parameter γ so that the

expected sparsity of the FISTA estimate is 3L, a criterion

suggested in [13]. Since GraSP, GraHTP, and BG-GAMP

break down when the sensing matrix is ill-conditioned, we set

BRX = BTX = 64 for these channel estimators. For FISTA,

we choose BRX = BTX = 256 as in our BMSGraSP and

BMSGraHTP.

The NMSE of various channel estimators is shown in Fig. 1

at different SNRs. In Fig. 1, our channel estimators outperform

other channel estimators in the medium and high SNR regimes.

The poor performance of GraSP, GraHTP, and BG-GAMP

is caused by the leakage effect due to the small BRX and

BTX, but increasing these parameters is forbidden since these

channel estimators diverge when A is highly coherent. FISTA

performs poorly because the Laplace distribution deviates from

the true distribution of x∗. In contrast, since BRX and BTX

are large, BMSGraSP and BMSGraHTP do not suffer from the

leakage effect. As a side note, we mention that all channel

estimators experience performance degradation as the SNR

enters the high SNR regime. This phenomenon is due to

the coarse quantization of one-bit ADCs, which results in

magnitude information loss. To illustrate this phenomenon,

note that x∗ and cx∗ are indistinguishable in the high SNR

regime for c > 0 because

Q(
√
ρAx∗ + n)

(a)≈ Q(
√
ρAx∗)

(b)
= Q(c

√
ρAx∗) (30)

where (a) and (b) follow from the high SNR regime assumption

and (6), which implies that the information in c is lost. To

combat such performance degradation, the concept of dithering

was suggested in [28], but this is beyond the scope of this

paper.

We also compare the achievable rate lower bound of various

channel estimators in Fig. 2 at different SNRs. This achievable

rate lower bound, which was derived in [12], is obtained by



selecting the precoders and decoders based on Ĥ and applying

the Bussgang decomposition [29] in conjunction with the fact

that the Gaussian noise is the worst-case noise. According

to Fig. 2, our channel estimators outperform other channel

estimators, which agrees with Fig. 1.

V. CONCLUSION

In this paper, we proposed gradient pursuit-based iterative

approximate MAP channel estimators for mmWave massive

MIMO systems with one-bit ADCs. In the mmWave band, the

MAP channel estimation framework can be cast into a sparsity-

constrained optimization problem, which is NP-hard to solve.

To approximately solve such problem iteratively by pursuing

the gradient of the objective function, the GraSP and GraHTP

algorithms were proposed in the field of CS, which generalize

the well-known CoSaMP and HTP algorithms. GraSP and

GraHTP, however, break down when the objective function

is ill-conditioned, which is likely to occur in the mmWave

band. As a solution to such breakdown, the BMS technique,

which hard thresholds the gradient of the objective function

based on the band maximum criterion, was proposed in this

paper. The BMS technique was applied to GraSP and GraHTP

to produce the proposed BMSGraSP and BMSGraHTP algo-

rithms. The simulation results showed that the BMSGraSP and

BMSGraHTP algorithms outperform other channel estimators.
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