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Abstract—This paper studies the viability of feedforward
neural networks (NNs) for centralized power control in
the uplink of cell-free wireless systems with matched-filter
reception. The formulation relies only on large-scale channel
behaviors as inputs, without the need for user location
information, and on unsupervised learning, to avoid the
onerous precomputation of training data that supervised
learning would necessitate for every system or environment
modification. Two different power control objectives are en-
tertained, and for both of them the NN closely approximates
the optimum solutions produced by convex solvers while
vastly reducing the complexity, thereby opening the door
to power control implementations for very large systems.

I. INTRODUCTION

Cell-free wireless systems can be interpreted as a
deconstruction of cellular massive MIMO where, rather
than concentrated at cell sites, the antennas are scattered,
and the associations between users and cells are released.
What results is a dense infrastructure of access points
(APs), each featuring one or a few antennas, with every
user potentially communicating with every AP [1]–[6].
This can also be seen as a form of network MIMO [7]–[9]
or of centralized radio access [10], [11]. At the expense of
extensive fronthaul, cell-free systems offer multiple advan-
tages over their cellular counterparts, including large-scale
diversity and reduced distances to the end users.

Focusing on the uplink, one of the challenges that
arises is power control. Given the major differences in
pathloss and shadowing among links, large-scale power
control appears crucial to keep users near an AP from
overwhelming other users’ signals at that AP, and to avoid
major performance disparities altogether.

The uplink power optimization in a cell-free system,
and in fact in any multiple-access setting with linear recep-
tion, is often a nonconvex problem [12], [13]. Specifically,
the maximization of the weighted sum of the user spectral
efficiencies—a maximization that allows delimiting the
spectral efficiency combinations that are fundamentally
feasible—is in general nonconvex. This is because, while
increasing a user’s transmit power improves that user’s
reception, it also inflicts worse interference to the rest
of users, and vice versa. Fortunately, less general yet
highly relevant power control objectives, say the maxi-
mization of the minimum signal-to-interference-plus-noise
ratio (SINR), can be cast in convex form [1, Sec. IV].
These objectives are hence particularly appealing, and in
small systems a real-time convex solver could control the

transmit powers. However, this approach does not scale to
hundreds or let alone thousands of users.

To scale up the cell-free power control process, we
seek to exploit the ability of feedforward neural networks
(NNs) to approximate arbitrary function mappings [14],
an ability that is also being applied to tackle other prob-
lems in wireless communications [15]–[18]. Of particular
relevance to this work is [18], which applies a NN with
supervised learning to approximate the mapping between
user locations and downlink transmit powers in a cellu-
lar massive-MIMO system. The features that we desire
for our cell-free NN-based power control are somewhat
different, precisely:
• Being based only on the channel gains between users

and APs, with no reliance on the user positions. Such
location information could be unreliable, or outright
unavailable, especially in indoor settings.

• Tracking only the large-scale behavior of these chan-
nel gains, i.e, their local-averages. This is congruent
with a centralized approach, as it averts having to
recompute the transmit powers every few millisec-
onds and every few hundred kilohertz in reaction to
small-scale fading fluctuations.

• Unsupervised learning. This avoids the precomputa-
tion of tailored training data for every conceivable
environment and costly retraining every time there
are changes in the system.

Given the above, the power control instrument of our
choice is an unsupervised NN approximating the mapping
between the system’s large-scale channel gains and the up-
link transmit powers with specific performance objectives.

II. SYSTEM AND CHANNEL MODELS

The systems under consideration feature N APs and
K users per time-frequency resource unit, with N sub-
stantially larger than K so as to render matched-filter
reception effective. APs and users are equipped with a
single antenna, omnidirectional in azimuth.

Every user can potentially communicate with every AP
on each time-frequency resource. A share of the resource
units are reserved for pilot transmissions from the users,
based on which the channels are estimated by the APs.

A. Large-scale Modeling

The APs and users are randomly placed, such that their
locations conform to respective (mutually independent)



binomial point processes. As the system grows, these
converge to Poisson point processes.

The operating bandwidth is in the microwave range.
The signals are subject to pathloss with exponent η as
well as log-normal shadowing, and the combination of
both phenomena gives rise to a large-scale channel gain
Gn,k between the nth AP and the kth user.

Letting P denote a user’s radiated power, measured at
1 m so that no scaling constants are needed, and with σ2

the noise power, P
σ2 is the SNR at 1 m. At the nth AP, the

local-average SNR from user k is then SNRn,k = Gn,k
P
σ2 .

The local-average SNRs, and the large-scale parameters in
general, are stable and known.

B. Small-scale Modeling

Besides Gn,k, the channel that connects the kth user
with the nth AP features a small-scale fading coefficient
hn,k ∼ NC(0, 1), independent across users and APs.

C. Simulation Environment

To generate performance distributions over many sys-
tem snapshots, we resort to a wrapped-around (i.e., with-
out boundaries) universe. Under the assumption that the
AP positions are agnostic to the radio propagation, shadow
fading has been shown to render networks approximately
Poisson-like from the perspective of any user [19]. This
approximation sharpens as the shadowing variance grows,
being highly precise for values of interest [19]–[21]. Capi-
talizing on this result, in our simulator the AP positions are
drawn uniformly, avoiding the need for explicit modeling
of the shadowing as it is then already implicitly captured
by the geometry. Likewise, the user positions are drawn
uniformly.

Results are generated from 10000 system snapshots
with N = 100 APs each, ensuring a 95% confidence
interval below 0.03 dB.

III. CELL-FREE UPLINK FORMULATION

A. Channel Estimation

Disregarding pilot contamination, which can be kept
at bay through procedures such as the ones described in
[1, Sec. IV] or in [22], [23], the linear MMSE estimate
ĥn,k gathered by the system upon observation of a pilot
transmission per user and coherence block satisfies hn,k =
ĥn,k + h̃n,k where [13, Sec. 3.7]

h̃n,k ∼ NC

(
0,

1

1 + SNRn,k

)
(1)

is uncorrelated error and the channel estimate’s power
equals

E
[
|ĥn,k|2

]
=

SNRn,k
1 + SNRn,k

. (2)

B. Data Transmission

Upon payload data transmission, the nth AP observes

yn =

K−1∑
k=0

√
Gn,khn,k

√
pkPsk + vn, (3)

where sk is the unit-variance symbol transmitted by user
k while pk ∈ [0, 1] is its power control coefficient. For its
part, vn ∼ NC(0, σ2) is the noise.

With matched filtering, the signal of user k is recovered
as
∑N−1
n=0 w

∗
n,k yn where wn,k =

√
Gn,k ĥn,k. This gives
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(4)
from which the SINR of user k, conditioned on the known
{ĥn,k}N−1n=0 , equals

sinrk =
E
[
|Sk|2 | {ĥn,k}N−1n=0

]
E
[
|Ik|2 + |Ek|2 + |Vk|2 | {ĥn,k}N−1n=0

] (5)

=
P
(∑N−1

n=0 Gn,k
√
pk |ĥn,k|2

)2
denk

(6)

with
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After some simplifications, and substituting for MMSEn,k,

sinrk =
pk
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n=0 SNRn,k |ĥn,k|2

)2
denk

(8)

with
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∗
n,k ĥn,`
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In interference-limited conditions, (8)–(13) simplify into

sirk =
pk

(∑N−1
n=0 Gn,k |hn,k|2

)2
∑
` 6=k p`

∣∣∣∑N−1
n=0

√
Gn,kGn,` h∗n,khn,`

∣∣∣2 . (10)

IV. SIR-BASED POWER CONTROL OBJECTIVES

If, in (10), we replace |hn,k|2 and |hn,`|2 by their
expected value (unity), and we replace the cross-terms
containing h∗n,khn,` with k 6= ` also by their expected
value (zero), we obtain

SIRk =
pk

(∑N−1
n=0 Gn,k

)2
∑
` 6=k p`

∑N−1
n=0 Gn,kGn,`

, (11)

which, except for the absence of a self-interference term
corresponding to ` = k, coincides with the SIR that
would be achieved by a receiver that, rather than decode
the signal of user k based on {ĥn,k}N−1n=0 , exploited
channel hardening [1]. From {SIRk}K−1k=0 , certain power
control objectives can be formulated as geometric pro-
gramming problems and tackled with off-the-shelf convex
optimization toolboxes. The power control coefficients
thereby obtained can then be plugged into (10) to assess
the {sirk}K−1k=0 that receivers reliant on channel estimates
would attain.

To date, cell-free power control has almost exclusively
pursued a max-min objective, hence such is our starting
point as well, but our scope expands to include a second
and highly relevant objective, namely max-product.

A. (Soft) Max-Min

This pursuit of this objective, or more precisely a soft
version thereof, can be formulated as the minimization
over {pk}K−1k=0 of the cost

LMM =

K−1∑
k=0

e−αkSIRk (12)

where, recall, {SIRk}K−1k0
are functions of {pk}K−1k=0 as per

(11), while {αk}K−1k=0 are parameters that determine the
softness of the max-min operation. As these parameters
grow large, the cost becomes dominated by the smallest
SIR, and the minimization of LMM converges to a hard
max-min formulation. Conversely, if the parameters de-
crease, the behavior softens as SIRs other than the smallest
begin playing a role; this prevents users in highly adverse
situations from dragging down the entire system.

B. Max-Product

The maximization of ΠK−1
k=0 SIRk, or more precisely

its logarithm, can be posed as the minimization over
{pk}K−1k=0 of the cost

LMP = − 1

K

K−1∑
k=0

βk log SIRk (13)

where {βk}K−1k=0 are again parameters. When these param-
eters are equal, the combination {SIRk}K−1k=0 minimizing

LMP is termed the proportional fair operating point, which
exhibits very satisfying properties in terms of the tradeoff
between aggregate performance and fairness [24]. The
parameters provide further freedom to prioritize users.

V. UNSUPERVISED LEARNING PROCEDURE

As mentioned, our interest is in an unsupervised feed-
forward NN that accepts as inputs the large-scale channel
gains and outputs the power control coefficients {pk}K−1k=0 .
While, in supervised learning, the cost would be a function
of the difference between the predicted and the correct
output, in our unsupervised approach we never explicitly
represent the correct output for each input. Rather, we
define the cost as LMM or LMP and compute the gradient
directly on it. We do not know the correct output for a
given input, but we can compute the cost in LMM or LMP

given the current prediction of {pk}K−1k=0 and attempt to
update such prediction in order to minimize this cost.

Recognizing that, with matched-filter reception, the
effective gain between user k and the system is

Gk =

N−1∑
n=0

Gn,k, (14)

rather than feed the NN with the NK large-scale gains, we
reduce the input dimensionality and feed only the effective
gains {Gk}K−1k=0 . This compresses the learning process
rather drastically while affording excellent performance,
as exemplified in Section VI.

The effective gains {Gk}K−1k=0 are further preprocessed
by converting them to log-scale, subtracting their mean,
and dividing by their standard deviation, following which
they are fed to an input layer equipped with rectified linear
unit (RLU) activation functions. After feature extraction
on the part of this input layer, a hidden layer processes
the data also via RLU activation functions, and an output
layer with linear activation functions spits out power
control coefficients in log-scale; this guarantees positive
and nonzero outputs and prevents numerical problems.

From the NN outputs and the corresponding large-scale
gains, the cost of choice (soft max-min or max-product) is
quantified and an Adam optimizer—a typical algorithm to
update NN weighs iteratively [25]—of learning rate 0.001
is applied to minimize such cost. To avoid overfitting, L2-
norm regularization is used in conjunction with the Adam
optimizer. Specifically, a portion λ = 0.001 of the L2
norm of the weights is added to the cost.

The complete scheme is illustrated in Fig. 1, while the
parameters of the NN are summarized in Table I.

To simplify the learning, rather than a single large
database we generate multiple small databases. Precisely,
M databases of 6400 system snapshots are produced
and, over each one, L updates of the NN weights take
place; each such update uses a randomly selected batch
of B = 64 snapshots. In total, 6400M system snapshots
are produced for learning purposes, and the NN weights
are updated LM times.

The learning process is a nonconvex problem, and the
weights of the NN are initialized randomly, hence a single
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Fig. 1: NN learning procedure.

TABLE I: NN parameters.

Input layer Hidden layer Output layer

Number of neurons 2000 200 40

Activation function RLU RLU Linear

Regularization L2 norm
λ = .001

L2 norm
λ = .001

L2 norm
λ = .001

NN does not provide sufficient effectiveness guarantees.
To address this issue, we train 100 distinct NNs and the
performance is averaged over them.

VI. PERFORMANCE EVALUATION

We consider a system with N = 100 and K = 40,
and with a pathloss exponent η = 3.8. (Much larger
systems can be handled by the NN, the bottleneck are
the baseline convex optimizations.) Both the NN and the
convex optimization are driven by the SIRs in (11) while
the performance evaluations are conducted with the SIRs
in (10), averaged over the small-scale fading.

A. (Soft) Max-Min

Shown in Fig. 2 is the learning curve of the NN
with this objective and αk = 1 for k = 0, . . . ,K − 1.
Since the learning occurs over small databases, there is
a certain degree of overfitting. A spike ensues whenever
a new database is fed in, confirming that the NN was
partially overfitted to the previous database. However, the
amplitude of these spikes decreases gradually as more data
is fed in; the overfitting vanishes and the NN can then
generalize well to unseen data. We note that the cost need
not vanish, as the optimum power allocation in general
does not map to a zero cost.

Fig. 3 portrays the CDF of sirk achieved by the NN-
based power control under a soft max-min objective with
αk = 1 for k = 0, . . . ,K − 1, as well as its convex-
optimization counterpart and the hard max-min solution
obtained also via convex optimization. This figure prompts
two observations:
• The NN matches very closely its convex optimization

counterpart (with orders-of-magnitude less complex-
ity, as established later in the section).

• A hard max-min approach is unwise, as its solution is
dragged down by worst-case users. In contrast, a soft
max-min allows those users to underperform while
the rest achieve substantially higher SIRs.
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Fig. 2: Learning curve (averaged over 100 NNs) for soft max-min with
unit parameters.
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Fig. 3: CDF of sirk: NN and convex optimization for soft max-min with
unit parameters, and convex optimization for hard max-min.

The superior performance of softer max-min versions,
with αk ≈ 1, is a welcome development for another
reason, namely that the NN runs into numerical problems
and becomes unstable as {αk}K−1k=0 grow large.

B. Max-Product

The learning curve for this objective is similar to its
max-min brethren, hence for the sake of compactness it is
not shown. The CDF of sirk for max-product power con-
trol with the parameters βk equal for all users is presented
in the main plot of Fig. 4. The match between the NN and
its convex-optimization counterpart is slightly less precise
than for max-min, but still satisfactory. The figure’s inset
depicts the max-product itself, evidencing that the small
discrepancy between the NN and the convex-optimization
solutions is the manifestation of an equally small shortfall
(about 0.5 dB) in the achieved objective.

C. Complexity

As a proxy for complexity, we invoke the running
time on a common computational plartform. Table II
summarizes the average running time for both the NN and
the CVX convex solver [26]. Once the NN has undergone
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TABLE II: Average running time (s) per system snapshot.

Learning Test time

NN 1230 < 0.01
Max-min CVX - 2.4

Max-product CVX - 2.7

the learning process, its evaluation for a given system
snapshot is as fast as a matrix multiplication while the
convex optimization process requires well over two orders
of magnitude more time.

The training time is not a primary concern because
retraining needs to take place only sporadically, upon
substantial changes in the system or the environment.

VII. SUMMARY

This paper has shown that a feedforward NN with
unsupervised learning can closely approximate the perfor-
mance of vastly more computationally demanding convex
solvers, opening the door to centralized power control
for very large cell-free systems. Such centralized control
can ensure superior performance while enforcing specific
SIR objectives such as the max-min and max-product
considered herein.

In our implementation, the NN is only fed the K
effective channel gains {Gk}. We have verified that, if
the NK large-scale channel gains {Gn,k} themselves are
used as inputs, the approximation tightens even further, at
the expense of a longer learning stage.
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