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Abstract—In a multi-beam satellite communication sys-
tem, traffic requests are typically asymmetric across beams
and highly heterogeneous among terminals. In practical
operations, it is important to achieve a good match between
the offered and requested traffic, i.e., to improve the per-
formance of Offered Capacity to requested Traffic Ratio
(OCTR). Due to satellites’ payload constraints and limited
flexibilities, it is a challenging task for resource optimization.
In this paper, we tackle this issue by formulating a max-
min resource allocation problem, taking fairness into account
such that the lowest OCTR can be maximized. To exploit
the potential synergies, we introduce Non-Orthogonal Mul-
tiple Access (NOMA) to enable aggressive frequency reuse
and mitigate intra-beam interference. Although NOMA has
proven its capabilities in improving throughput and fairness
in 5G terrestrial networks, for multi-beam satellite systems
it is unclear if NOMA can help to enhance the OCTR
performance, and hence is worth quantifying how much gain
it can bring. To solve the problem, we design a suboptimal
algorithm to firstly decompose the original problem into
multiple convex subproblems by fixing power allocation for
each beam, and secondly adjust beam power to improve the
minimum OCTR in iterations. Numerical results show the
convergence of the proposed algorithm and the superiority
of the proposed NOMA scheme in max-min OCTR.

I. INTRODUCTION

From Cisco’s prediction, the amount of wireless and

mobile traffic will occupy 71% of total traffic by 2022,

and the traffic distribution will be heavily imbalanced over

a wide range of geographical areas [1]. The upward trend

and traffic asymmetry necessitate the development of new

types of data-service techniques. With the advantages

of wide coverage, service continuity, and fiber-like data

transmission, using satellites to serve terrestrial terminals,

e.g., satellite-based backhauling [2], is envisioned as one

of the most promising transmission solutions. A multi-

beam satellite system is suited to provide reliable and

low-cost wireless services to rural areas which incumbent

terrestrial mobile systems are hard to reach.

In practical satellite operations, one of the issues is the

presence of mismatches between the requested traffic and

the offered capacity [3]. This is because, firstly, in a multi-

beam satellite system, the requested traffic from terrestrial

terminals are highly asymmetric. Secondly, the satellite

resource allocation in multi-beam systems is constrained

by satellites’ payload design, e.g., limited flexibility in

bandwidth, time, or power allocation. As a consequence, it

could happen that, in some spot beams, the requested de-

mands from the associated terminals are unmet, resulting

in hot beams, whereas the offered capacity in some other

beams is unused, leading to cold beams. Both of them are

undesirable cases for satellite operators because the for-

mer loses revenue corresponding to the unmet demands,

and the latter wastes the investment in the unused capacity

[3]. Therefore, the capability to overcome this issue by

allocating on-board resources over the service coverage

is becoming a must for future broadband multi-beam

satellites. To well capture the impact of unmet and excess

capacity, resource optimization for the Offered Capacity

to requested Traffic Ratio (OCTR) has been considered in

the literature [3].

As an emerging research area, some efforts have been

devoted to introducing 5G new radio techniques, e.g.,

Non-Orthogonal Multiple Access (NOMA), to satellite

scenarios, in order to further enhance the satellite per-

formance. The major consideration is that, with breaking

the orthogonality, multiple terminals in NOMA can access

the same time-frequency resource simultaneously, which

improves the spectrum efficiency compared to Orthogonal

Multiple Access (OMA) in DVB-S2 standards [4]. In

addition, performing Multi-User Detection (MUD) and

Successive Interference Cancellation (SIC) in NOMA can

help to alleviate co-channel interference [5]. Thus NOMA

has potentials to enable aggressive frequency reuse but

suppress interference at an acceptable level in satellite

systems. In [6], NOMA was considered for satellite sce-

narios for the first time. Two user-scheduling algorithms

were proposed in their work to maximize the capacity for

over-loaded satellite systems. From a system-level point

of view, the authors in [7] analyzed the possibility and

applicability of integrating NOMA to satellite systems

and provided general approaches for cooperating NOMA

with precoding. In [8], the authors considered a satellite-

terrestrial system and applied NOMA in the terrestrial

part. A joint user pairing, precoding, and power allocation

scheme was proposed.

From the literature, NOMA has proven its advantages,

e.g., throughput, energy [5], [9], over OMA in terrestrial



systems. However, for satellite systems, the optimization

for the practical metric OCTR is studied to a limited

extent, motivating us to fathom this area. The contribution

of the paper lies at the following aspects:

• This paper aims at providing answers and algorithmic

solutions for the following two research questions:

Firstly, is NOMA able to improve the OCTR per-

formance in satellite systems? Secondly, how much

is the gain of applying NOMA to the considered

problem?

• We consider a max-min resource optimization prob-

lem in NOMA-based multi-beam satellite systems,

taking OCTR metric and terminals’ fairness into

account. The problem aims at improving the perfor-

mance of the terminal with the worst OCTR such that

the optimized capacity for terminals can be as close

as their requested traffic demands and the fairness

among terminals can be improved.

• To solve the problem, firstly we decompose the

original problem into multiple convex subproblems

by fixing beam power and find the optimum for each

beam. Secondly, we iteratively adjust beam power to

progressively improve the minimum OCTR.

Numerical results show the convergence of the pro-

posed algorithm. The algorithm also demonstrates the

superiority of NOMA over the OMA scheme.

II. SYSTEM MODEL

A. Multi-Beam Satellite Systems

We consider the forward link transmission in a multi-

beam satellite system, where a Geostationary Earth Orbit

(GEO) satellite is equipped with an array-fed reflector

antenna with multiple feeds to generate B spot beams

(one feed per beam) and provide services to number of

Kb ground terminals per beam. Let b = 1, . . . , B and

B be the index and set of beams, respectively, where

|B| = B. We denote k = 1, . . . ,Kb and Kb as the index

and set of the associated terminals in beam b, respectively,

where |Kb| = Kb. Let hbk ∈ C
1×B be the channel

vector of terminal k in beam b. The m-th element of

hbk, i.e., h
(m)
bk , indicates the channel coefficient from the

m-th beam feed to terminal k in beam b, which can be

expressed as h
(m)
bk = LmbkG

r
bkG

s
mbk, where Lbk is the

free-space propagation loss from the m-th feed to the k-

th terminal. Gr
bk is the k-th terminal’s receive antenna

gain. Gs
mbk is the gain from the m-th feed to the k-th

terminal in beam b. By adopting NOMA, we let all the

beams share the same frequency band, i.e., 1-color reuse

pattern. In terms of payload, we assume that the on-board

payload is equipped with the module of flexible Multi-

Port Amplifiers (MPAs) such that power can be adjusted.

B. Precoding and NOMA Scheme

Let wb ∈ C
B×1 denote the precoding vector for beam

b. For terminal k in beam b, the received signal can be

expressed as:

ybk =hbkwb
√
pbksbk︸ ︷︷ ︸

desired signal

+hbkwb

∑
j �=k

√
pbjsbj

︸ ︷︷ ︸
intra-beam interference

+ hbk

∑
b′ �=b

wb′
∑
l∈K

b
′

√
pb′ lsb′ l

︸ ︷︷ ︸
inter-beam interference

+nbk,
(1)

where pbk, sbk, and nbk ∼ CN (0, σ2) are the transmit

power, the transmit signal with unit power, and the addi-

tive noise for terminal k in beam b, respectively.

In the paper, we use precoding to reduce inter-beam

interference, while NOMA is adopted to eliminate part

of intra-beam interference for multiple terminals within

a beam. We adopt a linear precoding scheme, Minimum

Mean Square Error (MMSE), which is considered with

high efficiency and low computational complexity [6],

[10]. For MMSE, we denote H ∈ C
B×B as the channel

matrix. The b-th row represents the channel vector of the

terminal with the maximum channel coefficient in beam b
[8], i.e., argmaxk∈Kb

{|h(b)
bk |2}, where h

(b)
bk is the channel

coefficient of terminal k in beam b when receiving its

desired signal from the b-th feed. The precoding matrix

reads:

Wmmse = (HHH+ σ2I)−1HH , (2)

where I is the identity matrix. In this paper, we do not

discuss precoding design but power allocation for beams

and terminals. The power of each precoding vector is then

normalized as ‖wb‖2 = 1.

Within a beam, NOMA is applied to mitigate intra-

beam interference among the terminals. According to a

widely adopted approach for determining decoding order

[11], we define the SIC decoding order as the descending

order of the ratio between channel gain to inter-beam

interference plus noise, denoted by gbk:

gbk =
|hbkwb|2∑

b′ �=b

|hbkwb′ |2Pb′ + σ2
, (3)

where Pb′ =
∑

l∈K
b
′ pb′ l. We note that in this pa-

per gbk refers to the channel condition of each termi-

nal. We use vector P to collect all the beam power

P1, . . . , Pb, . . . , PB . The rationale is that, if terminal j
can decode the signal of terminal k, in order to ensure a

successful SIC, the SINR of terminal k’s signal at terminal

j’s receiver should be higher than that at terminal k, then

(3) is used to guarantee this inequality [11].

Based on the NOMA basis [11], a terminal k, before

decoding its own signal, first performs SIC to decode

and subtract the signals from the terminals whose channel

conditions are worse than k, whereas the signals from the

terminals with better channel conditions than k are treated

as noise. We define that φb(k) is the position of decoding

orders in beam b. If φb(k) < φb(j), then gbk > gbj



and terminal k can decode the signals of terminal j.

The decoding order position of the terminal with the best

channel condition is φb(k) = 1, whose SINR γbk can be

expressed as,

γbk =
|hbkwb|2pbk∑

b′ �=b

|hbkwb′ |2Pb′ + σ2
. (4)

This terminal has the highest ratio gb1, and is able to

remove all the intra-beam interference. For any terminals

with φ(k) > 1, the SINR γbk is,

γbk =
|hbkwb|2pbk∑

φ(k′ )<φ(k)

|hbkwb|2pbk′ +
∑
b′ �=b

|hbkwb′ |2Pb′ + σ2
.

(5)

The achievable rate of terminal k in beam b is

Rbk = log(1 + γbk). (6)

III. PROBLEM FORMULATION

In this section, we formulate a power allocation prob-

lem in P1 to max-min OCTR among terminals, in which

the optimization variables are pbk, ∀b ∈ B, ∀k ∈ Kb.

P1 : max
{pbk}

min
b∈B,k∈Kb

{
Rbk

Dbk

}
(7a)

s.t.
∑
b∈B

∑
k∈Kb

pbk ≤ Ptot, (7b)

∑
k∈Kb

pbk ≤ Pb,max, ∀b ∈ B. (7c)

In the objective, the OCTR metric for terminal k in

beam b is defined as Rbk

Dbk
, where Rbk and Dbk are the

offered capacity and the requested traffic, respectively.

By optimization, the terminals’ fairness can be enhanced

by improving the worst-OCTR terminal’s performance.

Constraint (7b) states that due to the limited on-board

power supply, the total power should be less than a budget

Ptot. In (7c), the allocated power to each feed should be

constrained by a peak power Pb,max, to avoid nonlinear

impairments in on-board high-power amplifiers.

Remark 1. In P1, the ideal case is Rbk

Dbk
= 1 for all the

terminals. We do not impose constrains as Rbk

Dbk
≤ 1 or

Rbk

Dbk
≥ 1, such that the fluctuation of OCTR around one

can be observed.
The problem can be equivalently transformed to P2 by

introducing an auxiliary variable t.

P2 : max
{pbk},t

t (8a)

s.t.
∑
b∈B

∑
k∈Kb

pbk ≤ Ptot, (8b)

∑
k∈Kb

pbk ≤ Pb,max, ∀b ∈ B, (8c)

Rbk

Dbk
≥ t, ∀b ∈ B, k ∈ Kb. (8d)

Some approaches based on standard interference func-

tion, e.g., [13], and Perron-Frobenius theory, e.g., [14],

were proposed to enable a convergence guaranteed so-

lution to interference control problems. If the decoding

order in each beam remains constant for any power

allocation, the problem satisfies the specific conditions of

these approaches and can be solved. However, in the most

general scenarios, it is impractical to keep decoding orders

always the same while adjusting transmit power. With the

changes of decoding orders, the function Rbk is no longer

continuous at the point where decoding orders change,

which makes the original problem non-convex and much

more difficult to solve. Even though the approaches based

on standard interference function and Perron-Frobenius

theory are mature, these approaches cannot be applied

directly since the function Rbk is not continuous and does

not satisfy the specific conditions of these approaches.

Thus we need to decompose the original problem and

propose a heuristic algorithm to solve the problem.

IV. PROPOSED ALGORITHMIC SOLUTION

To solve P2, firstly we consider decomposing the

optimization task into two levels, i.e., intra-beam and

inter-beam. The former is to find the maximum tb within

each beam by fixing beam power. The latter aims at

adjusting power P1, ..., PB among beams to progressively

improve the minimum value of tb.

A. Power Optimization within Each Beam

Specifically, we divide P2 into number of B subprob-

lems with fixed beam power for the moment. In this

phase, the decoding order within each beam is fixed. The

subproblem for beam b can be formulated as:

P3 : max
pb1,...,pb|Kb|,tb

tb (9a)

s.t.
∑
k∈Kb

pbk ≤ Pb, (9b)

Rbk

Dbk
≥ tb, ∀k ∈ Kb, (9c)

where Pb in (9b) represents the total allocated power for

beam b. The value of Pb can be further tuned to meet the

constraints (7b) and (7c) over iterations. Next, we show

that, by fixing the beam power, the allocation problem P3
is a convex problem. By adopting the substituting method

in [5], we can express pbk by a function of Rbk, e.g.,

pb1 = eRb1−1
gb1

and pb2 = eRb2−1
gb2

(gb2
eRb1−1

gb1
+1) for a two-

terminal example. P3 can be equivalently transformed to



P4 by treating Rb1, ..., Rb|Kb| as variables.

P4 : max
Rb1,...,Rb|Kb|,tb

tb (10a)

s.t.
∑
k∈Kb

(
1

gb[φb(k)]
− 1

gb[φb(k)−1]
)e

(
∑

φb(j)≥φb(k) Rbj)

− 1

gb[Φb]
≤ Pb,

(10b)

tbDbk −Rbk ≤ 0, ∀k ∈ Kb, (10c)

where we denote [φb(k)] as the index of the terminal

whose decoding order position is φb(k). Φb denotes the

decoding order position of the terminal with the worst

channel condition and [Φb] denotes the index of this ter-

minal. Constraint (10b) with the form of sum exponential

functions therefore concludes the convexity of (10b) as

well as P4 [12].

B. Power Optimization Among Beams

Deriving Karush-Kuhn-Tucker (KKT) conditions for

P4, the optimal value of tb can be obtained by the

following equation,

∑
k∈Kb

(
1

gb[φb(k)]
− 1

gb[φb(k)−1]
)e

(
∑

φb(j)≥φb(k) Rbj)

− 1

gb[Φb]
− Pb = 0,

(11)

where tbDbj = Rbj at the optimum. However, the closed-

form expression of tb by power P1, ..., PB is hard to

derive. From (11), we then express tb in an implicit way,

i.e., tb(P) = tb(P1, ..., PB). Thus, to obtain the max-

min OCTR, the task can be carried out by optimizing

P1, ..., PB instead of tuning power for each terminal. The

corresponding optimization problem P5 reads,

P5 : max
P1,...,PB

min
b∈B

{tb(P1, ..., PB)} (12a)

s.t.
∑
b∈B

Pb ≤ Ptot, (12b)

Pb ≤ Pb,max, ∀b ∈ B. (12c)

We remark that P5 may not be with an appropriate

formulation to derive a complete solution due to lack of

the explicit expression in the objective. However, deriving

a necessary condition for the optimum of P5 is possible

by applying the rule of implicit differentiation. The result

is elaborated in Lemma 1.

Lemma 1. Suppose η is the optimal objective value of
P5, then tb(P1, ..., PB) = η, ∀b ∈ B.

Proof. Suppose η is optimal to P5 and tb = η for beam b
while tb′ > η for ∀b′ 	= b ∈ B. Even though it is hard to

obtain the closed-form expression of tb(P1, ..., PB), we

can analytically derive the partial derivatives as
∂tb(P)
∂Pb

=
1

G(P) and
∂tb(P)
∂P

b
′ = F (P)

G(P) , where

t2

t1

t2=t1(t1(n),t2(n))

(t1(n+1),t2(n+1))

(t1(n+1),t2(n+1))

P1(n)+ΔP(n)

P2(n)-ΔP(n)

Fig. 1. Illustration of the proposed algorithm.

G(P) =
∑
k∈Kb

(
1

gb[φb(k)]
− 1

gb[φb(k)−1]
)

·e
∑

φ(j)≥φ(k) tDbj
∑

φ(j)≥φ(k)
Dbj ,

(13)

F (P) =
∑
k∈Kb

(βb[φb(k)]b
′ − βb[φb(k)−1]b′ )

·e
∑

φ(j)≥φ(k) tDbj − βb[Φb]b
′ ,

(14)

and βb[φ(k)]b′ =
|hb[φb(k)]wb

′ |2
|hb[φb(k)]wb|2 . Since

∂tb(P)
∂Pb

> 0 but

∂tb(P)
∂P

b
′ < 0, we can reduce power of any beam b

′
or/and

increase power of beam b to raise tb. Thus there exists

η
′
> η with a feasible solution, which contradicts the

assumption.

C. The Proposed Algorithm

The aim of the algorithm is to improve the minimal

value of tb. Since it is hard to identify the properties

of P5, we propose an iterative methodology to find a

suboptimal solution. We will illustrate the methodology

with the two-beam case.

From Lemma 1 we know that the necessary condition

of obtaining the optimal solution to P5 is t1 = t2.

Therefore we design the algorithm to increase the value

of η = minb=1,2{tb} as much as possible until the

condition t1 = t2 holds. At the n-th iteration of the

algorithm, if η(n) = t
(n)
1 < t

(n)
2 , for instance, there are

two ways to enhance the value of η: P
(n)
1 + ΔP (n) or

P
(n)
2 − ΔP (n). Suppose the step size ΔP (n) is small

enough. When P
(n)
2 decreases by the value of ΔP (n),

the variations of t1 and t2 can be approximately de-

rived as: t
(n+1)
1 − t

(n)
1 ≈ − ∂t1

∂P2
ΔP (n), t

(n+1)
2 − t

(n)
2 ≈

− ∂t2
∂P2

ΔP (n). With the specific precoding method MMSE,

βb[φb(k)]b
′ is relatively small compared to 1. So we can

derive approximately that | ∂t1∂P2
| < | ∂t2∂P2

| according to

the expressions of the partial derivatives of tb. Then

|t(n+1)
1 − t

(n)
1 | < |t(n+1)

2 − t
(n)
2 |. Similarly, when P

(n)
1

increases by ΔP (n), |t(n+1)
1 −t

(n)
1 | > |t(n+1)

2 −t
(n)
2 |. This

indicates that enhancing P1 can head to the path gaining



Algorithm 1 The proposed algorithm

1: Initialize P(0) satisfying constraints in P5.

2: Set the maximal number of iterations N , n = 0,

t(0) = (t
(0)
1 , . . . , t

(0)
B ) = 0.

3: Solve (11) and obtain t(0) with P(0), η = min
b∈B

{t(0)b }.

4: repeat
5: Select b ← argmin

b∈B
{t(n)b }, b ← argmax

b∈B
{t(n)b }.

6: if P (n)
b < min {Pb,max, Ptot −

∑
b �=b

P
(n)
b } then

7: Update: ΔP ← min {Pb,max, Ptot −
∑
b �=b

P
(n)
b }.

8: repeat
9: Calculate t

′
and η

′ ← min
b∈B

{t′b} with P
(n)
b +

ΔP .

10: Update: ΔP ← ΔP/2.

11: until η
′
> η or ΔP is small enough

12: Update P(n+1).

13: else
14: Update: ΔP ← Pb/2.

15: repeat
16: Calculate t

′
and η

′ ← min
b∈B

{t′b} with P
(n)

b
−

ΔP .

17: Update: ΔP ← ΔP/2.

18: until η
′
> η or ΔP is small enough

19: Update P(n+1).

20: Update: t(n+1) ← t
′
, η ← η

′
, n ← n+ 1.

21: until n = N or η converges

22: Output: P ← P(n), t ← t(n)

larger η than reducing P2. The variation tendencies of t1
and t2 while altering P1 and P2 are depicted in Fig. 1.

Thus for the beam with smaller tb, the effective way to

improve tb is to gain more transmit power rather than

reduce power of other beams.

The algorithm is described in Alg. 1. At each iteration,

it identifies if the power of the beam with the smallest tb
is smaller than the maximum limitation. If so, it chooses

to improve this beam’s power (line 7-12). In this phase,

the step size ΔP is first initialized as the gap between

its power level and the maximal power limitation. If η
gets larger after power rises, ΔP will be determined;

otherwise, ΔP is halved. If the power of the beam with

the smallest tb reaches the maximum limitation, it is

designed to reduce power of the beam with the largest

tb (line 14-19), in order to enhance the minimal value

of tb. In this phase, ΔP can be set as half of its power.

ΔP will be upgraded the same as the process of the first

phase.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the

considered NOMA scheme and the proposed algorithm.

The key parameters are summarized in TABLE I. In

NOMA, since the MUD receivers’ complexity increases
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Fig. 3. Evolution of Pb in 4 beams over iterations in Algorithm 1

exponentially with the number of signals to be detected

[7], in this work we limit the number of terminals per

beam to two. In total, we deploy 70 terminals in each

beam. At each run of the simulation, we select two of

them in each beam. One terminal is chosen randomly

first and the other one with large difference of channel

gain is then paired [6]. The results are averaged over

1000 instances. The terminals’ demands are uniformly

distributed between 1 and 5 bits/s/Hz. To evaluate the

performance of the proposed scheme, we adopt OMA

with precoding and 1-color reuse pattern, NOMA with

2-color reuse pattern (without precoding), NOMA with

4-color reuse pattern (without precoding), OMA with 1-

color reuse pattern (without precoding), and NOMA with

1-color reuse pattern (without precoding) for comparison.

Firstly, in Fig. 2 and 3, we evaluate the proposed

Algorithm 1 for the NOMA with precoding and 1-color

TABLE I
SIMULATION PARAMETERS

Parameter Value
Frequency 20 GHz (Ka band)
Bandwidth 500 MHz

Satellite location 13◦ E
Satellite height 35,786 km

Satellite antenna gain between 49.60 and 54.63 dBi
Receive antenna gain 42.1 dBi

Channel LoS channel (path loss)

Noise power (σ2) -126.47 dBW
Number of beams (B) 4

Pb,max, Ptot 120, 400 W [14]
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Fig. 4. Max-min OCTR in Algorithm 1 with respect to traffic demand.

reuse pattern. We show the Algorithm 1’s evolution over

iterations in terms of OCTR value tb and beam power

Pb, respectively. From the two Figures, we can observe

that if a beam with lower value of tb in an iteration,

e.g., see the curves of beam 2 and 3 in iteration 1 in

Fig. 2 and 3, at the next iteration, the algorithm will

assign more power to compensate t2 and t3, whereas the

beams 1 and 4 in iteration 1 with the higher OCTR will

be assigned by less power in later iterations. From Fig.

2, the algorithm demonstrates promising performance in

convergence. Around 11 iterations, the max-min OCTR

value approaches to the convergence point though with the

long-tail effect. Analogous to Fig. 2, the power allocation

for each beam converges around 13 iterations in Fig. 3.

Next, we use Fig. 4 to show the max-min OCTR perfor-

mance among six schemes. From the results, the scheme

of NOMA with precoding and 1-color reuse pattern out-

performs. This is because the scheme is largely bene-

fited from efficient frequency utilization and inter/intra-

beam interference mitigation. In addition, when apply-

ing NOMA with 1-color reuse pattern, the performance

is better than NOMA with 4-color as well as 2-color.

The reason can be explained below. In 2-color and 4-

color schemes, less inter-beam interference presents. To

improve the max-min OCTR performance, one way is

to increase the transmit power in a beam, say beam b.
When the transmit power has achieved the peak power

limitation Pb,max, the other way is then adopted to

reduce the inter-beam interference by decreasing power

P1, ..., Pb−1, Pb+1, ..., PB . As a result, when transmit

power meets the limitation Pb,max, the max-min OCTR

performance in 1-color scheme can be further improved

by reducing the power in the other beams, whereas the

2/4-color reuse pattern gains less improvement due to

less inter-beam interference, thus it results in performance

gaps among 1-color, 2-color, and 4-color schemes.

VI. CONCLUSION

In this paper, we consider a NOMA-based multi-beam

satellite system, and address a fairness issue in resource

optimization. We aim at maximizing the worst OCTR

performance by power optimization, such that the offered

and requested traffic can achieve a good match among

terminals. The formulated max-min OCTR problem is

non-convex in general scenarios. To solve the problem, we

decompose the power optimization into each beam, and

propose a suboptimal algorithm to enhance the fairness

among terminals by sequentially and iteratively optimiz-

ing beam power. The simulation results show the con-

vergence of the proposed algorithm, and the performance

gain of NOMA than other baseline schemes. The numeri-

cal results demonstrate that NOMA is able to enhance the

max-min OCTR performance, and the performance could

be further improved when more aggressive frequency

reuse schemes, e.g., 1-color, are adopted.
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