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Abstract—We consider multiple unmanned aerial vehicles
(UAVs) at a common altitude serving as data collectors to a
network of IoT devices. First, using a probabilistic line of sight
channel model, the optimal assignment of IoT devices to the UAVs
is determined. Next, for the asymptotic regimes of a large number
of UAVs and/or large UAV altitudes, we propose closed-form
analytical expressions for the optimal data rate and characterize
the corresponding optimal UAV deployments. We also propose a
simple iterative algorithm to find the optimal deployments with
a small number of UAVs at high altitudes. Globally optimal
numerical solutions to the general rate maximization problem
are found using particle swarm optimization.

Index Terms—UAV-aided communications, rate maximization.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been recently uti-

lized in a variety of applications. For example, UAVs can serve

as base stations providing service for mobile users [1]–[3]. A

similar use case is UAVs as data collection units [4], [11], es-

pecially in the context of Internet of Things (IoT) applications

[5]–[7]. In [7], the authors study UAVs as data collectors from

time-constrained IoT devices for offloading excessive traffic

of existing wireless networks. Another example is [8], which

investigates UAV-IoT data capture and networking for remote

scene virtual reality immersion.

Energy efficiency is a fundamental issue in UAV-aided IoT

networks as both the UAVs and the IoT devices typically have

severe battery and power limitations. Several solutions have

thus been proposed to address the energy efficiency challenges

of UAV-aided IoT networks [9]–[13]. In particular, [11] studies

the tradeoffs between the energy efficiency of the ground

IoT sensors and the overall system throughput by optimizing

various system parameters including the UAV flying speeds

and altitudes. In [12], the authors consider the hovering

altitude and power allocation problem for a three tier network

consisting of satellites, UAVs, and the IoT devices. The power

efficiency provided by multiple UAV relays between a density

of IoT devices and base stations is studied in [13].

Trajectory optimization and optimal deployment of UAVs

is another important problem in designing UAV-aided systems

[2], [7], [14]–[17]. In general, this class of problems are

non-convex optimization problems in which dimensionality

increases with the number of UAVs. Hence, providing a

globally optimal solution is very challenging. Several dif-

ferent optimization methods have been proposed, including

evolutionary algorithms [1], [20]. In [2], the authors propose

a quantization theory approach to solve the deployment and

trajectory optimization problem. However, the used commu-

nication model is a line of sight (LOS) model and does not

consider the non line of sight (NLOS) effects [21]. We refer

to [18], [19] for other applications of quantization theory to

the deployment of non-UAV networks. In [10], the authors

consider a cooperative approach to provide coverage and

long term information services for IoT nodes in UAV-aided

networks. The authors divide the original non-convex problem

into three subproblems and use a block coordinate descent-

based iterative algorithm to solve mentioned subproblems. In

[7], the authors jointly optimize the UAV trajectory and the

radio resource allocation to serve the maximum number of IoT

devices. Globally optimal solutions are found for small scale

scenarios using the branch, reduce and bound algorithm, and

suboptimal algorithms are developed for larger scale scenarios.

Most of the previous works rely on a numerical approach

to solve the UAV deployment problems in IoT networks. In

addition, in some works, the communication model is too

simple and does not capture NLOS attenuation. In this work,

we consider a probabilistic LOS model and formulate the

rate maximization problem accordingly. We find the optimal

assignment of the IoT nodes to the data collector UAVs. In

addition, for the asymptotic regimes of either a large number of

UAVs or large UAV altitudes, we find the optimal deployment

of UAVs, and the corresponding optimal data rates. We also

verify our analysis with numerical simulations conducted

using the particle swarm optimization (PSO) algorithm.

The rest of this paper is organized as follows: In Section

II, we introduce the system model. In Section III, we study

the optimal assignment of IoT nodes to their UAVs. We also

present our asymptotic analysis on the optimal placement of

UAVs and corresponding data rates. In Section IV, we present

the numerical simulation results. Finally, in Section V, we

draw our main conclusions and discuss future work. Some of

the technical proofs are provided in the appendices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Let q be the location of an IoT device in the d-dimensional

Euclidean space R
d where d ∈ {1, 2}. Also, let xi be the

projection of UAV location on R
d, and h denote a common

altitude for the UAVs. In this work, we adopt the probabilistic

LOS model for the UAVs, as presented in [21]. According to

this model, there can be LOS communication between UAV

i at (xi, h) and the IoT device at q with a certain probability

PLOS . Otherwise, the IoT-to-UAV link can only support NLOS

communication with probability of PNLOS = 1−PLOS . The

LOS probability PLOS has an explicit dependence on the

distances as defined through

PLOS(‖xi − q‖) ,
1

1 + ce
−b(tan−1( h

‖xi−q‖
)−c)

, (1)
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where b and c are environment-dependent parameters. An

example scenario consisting of one IoT device communicating

with two UAVs is illustrated in Fig. 1.

Once again following [21], let us assume that the NLOS

path incurs an extra attenuation of δ compared to the LOS

path, where 0 < δ < 1. In such a scenario, using Shannon’s

well-known capacity formula for the Gaussian channel, the

achievable data rate between the IoT device at q and the UAV

at xi can be epxressed as

Ri(q) = log2

(

1+
ρA

N0(‖xi − q‖2 + h2)r/2

)

PLOS(‖xi−q‖)

+ log2

(

1+
ρAδ

N0(‖xi − q‖2 + h2)r/2

)

PNLOS(‖xi−q‖), (2)

where ρ is the fixed power of IoT devices, r is the path loss

exponent, N0 is the noise power, and A is a constant which

depends on the system parameters such as operation frequency

and antenna gain [22]. Obviously, it is optimal for each IoT

device to connect to the UAV that will maximize its data rate.

In other words, an IoT device at location q should be connected

to the UAV with index

I⋆(q) , argmax
i

Ri(q) (3)

The maximum data rate that can be provided to the IoT

device is then maxiRi(q). Suppose now that the IoT devices

are distributed over the area of interest according to a certain

density function f(q), where
∫

Rd f(q)dq = 1. Averaging out

the maximum data rate of an IoT device maxiRi(q) over

the IoT device density f , the maximum achievable data rate

between the IoT devices and the UAVs are given by

R(X, f) =
∫

Rd

maxi

[

log2

(

1 +
γ

(‖xi − q‖2 + h2)r/2

)

PLOS(‖xi − q‖)

+log2

(

1+
γδ

(‖xi−q‖2+h2)r/2

)

PNLOS(‖xi−q‖)

]

f(q)dq, (4)

where γ ,
Aρ
N0

and X = [x1 x2 · · ·xn] is the UAV deploy-

ment. The goal of this paper is to find the optimal deployment

X such that R(X, f) is maximized. In other words, we wish

to find the solution to the following optimization problem:

X⋆ = [x⋆
1 x⋆

2 · · · x⋆
n] = argmaxXR(X, f) (5)

In the following, we first determine an explicit expression for

the optimal UAV assignment to each IoT device (3). We will

then focus on the asymptotic regimes of a large number of

UAVs or high UAV altitudes to analytically solve the optimal

UAV deployment problem as given by (5).

III. OPTIMAL PLACEMENT OF UAVS

In this section, we present our main analytical results. We

first determine the optimal assignment of IoT devices to UAVs.

To gain initial insight on this problem, first consider the simple

scenario of a pure LOS model, where we consider PLOS = 1
and PNLOS = 0, independently of the locations of the UAVs

Fig. 1. An IoT device communicating with two UAVs over possible LOS
and NLOS channels.

and the IoT device. In this case, according to (2) and (3), the

optimal UAV assignment evaluates to

I⋆(q) = argmax
i

log2

(

1 +
γ

(‖xi − q‖2 + h2)r/2

)

(6)

= argmin
i

‖q − xi‖ (PLOS = 1, PNLOS = 0). (7)

In other words, each IoT device should be connected to its

closest UAV. However, in our probabilistic LOS model, the

same conclusion cannot be reached immediately, due to the

non-trivial dependence of the LOS probabilities and the rate

expressions on the IoT-to-UAV distances. Nevertheless, con-

necting each IoT device to its closest UAV, i.e., the assignment

rule in (7) still turns out to be optimal in the case of the

probabilistic LOS model, as the following proposition shows.

Proposition 1. With the probabilistic LOS model, the maxi-

mum rate is achieved when each IoT device is connected to

the closest UAV. In other words, I⋆(q) = argmini ‖q − xi‖.

Proof. Let d = ‖q − xi‖. According to (2), we have

Ri(q) = log2

(

1 +
γ

(d2 + h2)r/2

)

PLOS(d)+

log2

(

1 +
γδ

(d2 + h2)r/2

)

(1− PLOS(d)) (8)

= L1(d)PLOS(d) + L2(d), (9)

where

L1(d) = log2

(

1 +
γ(1− δ)

(d2 + h2)r/2 + γδ

)

, (10)

L2(d) = log2

(

1 +
γδ

(d2 + h2)r/2

)

(11)

and PLOS(d) is as defined in (1). The equality of (8) and

(9) can be verified through straightforward algebraic manip-

ulations. The result then follows as L1, PLOS , L2 are all

monotonically decreasing functions of their arguments.

Now, let νi = {q : ‖xi − q‖ ≤ ‖xj − q‖, ∀j 6= i} denote

the Voronoi region corresponding to UAV i. Then, according

to Proposition 1, the IoT device q ∈ νi should be connected

to UAV i to maximize the average data rate.



We can now optimize the UAV deployment and determine

the corresponding best possible average IoT data rates. Our

main result in this context is the following theorem.

Theorem 1. For asymptotically large UAV altitudes h and/or

a large number of UAVs, the optimal deployment of UAVs is

derived by solving the following optimization problem:

X⋆ = argminX
∫

mini‖xi − q‖f(q)dq (12)

= argminX
∑n

i=1

∫

νi
‖xi − q‖f(q)dq (13)

The corresponding optimal data rate is

R(X⋆, f) = log2

(

1 +
γ

hr

) 1

1 + c′
+log2

(

1 +
γδ

hr

)

c′

1 + c′

−
bc′

h(1 + c′)2
log2

(

γδ + hr

γ + hr

) n
∑

i=1

∫

νi

‖x⋆
i − q‖f(q)dq

+ log2

(

γδ + hr

γ + hr

) n
∑

i=1

∫

νi

o

(

‖x⋆
i − q‖

h

)

f(q)dq, (14)

where c′ , ce−b(π
2
−c).

Proof. See Appendix A.

An interesting byproduct of Theorem 1 is that for large

number of UAVs and/or arbitrary number of UAVs at high

altitudes, the optimal placement is derived from (12) which

is independent of h and δ. Hence, the optimal placement

in the mentioned asymptotic regimes is not a function of

altitude or attenuation. In addition, the problem of finding

the optimal deployment is reduced to solving (12), for which

many methods and results are already available, especially

from the quantization theory literature. Once a solution to

(12) is obtained, it can be substituted to (14) to obtain an

asymptotically tight expression for the data rates. We now

discuss two methods to solve (12). The first theoretical method

provides an analytical solution for the asymptotic regime of a

large number of UAVs. The second numerical method will be

applicable to any number of UAVs.

A. Quantization Theory Approach

We first present an analytical approach to solve (12). We

note that (12) can be interpreted as the average ℓ1-norm

distortion of a quantizer with reproduction points x1, . . . , xn

for a given source density f [2]. As n → ∞, the optimal

UAV deployment in (12) can be characterized in terms of a

density function of UAVs, rather than the individual locations

of each UAV. To that end, consider a point density function

λ(q) such that the cube [q, q + dq] of volume dq contains

nλ(q)dq reproduction points (UAVs) with
∫

Rd λ(q)dq = 1.

According to the classical results of quantization theory [25],

[26], the optimal point (UAV) density function is as follows:

λ⋆(q, f) = f
d

d+1 (q)/
∫

Rd f
d

d+1 (q′)dq′ (15)

Hence, as n → ∞, for any q, the infinitesimal [q, q+dq] should

contain nλ⋆(q, f)dq UAVs in an optimal deployment. Further-

more, also using the results in [25], [26], the corresponding

optimal value of (12) can be derived in closed-form as

minX

∫

mini‖x
⋆
i −q‖f(q)dq=kdn

− 1
d ‖f‖ d

d+1
+o(n− 1

d ), (16)

where ‖f‖α , (
∫

Rd(f(q))
αdq)

1
α is the α-norm of the density

f and k1 and k2 are the normalized first moments of the origin-

centered interval and the origin-centered regular hexagon, re-

spectively. The normalized ℓth moment of an arbitrary origin-

centered A ⊂ R
d is defined as

m(A) ,
∫

A
‖q‖ℓdq/(

∫

A
dq)

d+ℓ
d . (17)

In particular, for the interval and the regular hexagon, which

correspond to the optimal Voronoi cell shapes in one and two

dimensions respectively, the normalized first moments can be

calculated to be k1 = 1
4 and k2 = 4+log 27

12
3
4 3

, respectively.

Equation (16) provides a complete asymptotic characteri-

zation of the achievable date rate for Theorem 1, because the

closed forms of (14) are immediately calculated by substituting

the optimal value of minX
∫

mini‖x
⋆
i −q‖f(q)dq from (16) to

(14). The final result is summarized via the following theorem.

Theorem 2. For an asymptotically large number of UAVs, the

optimal UAV point density function that maximizes the data

rate is given by (15). The corresponding optimal data rate is

R(X⋆, f) = log2

(

1 +
γ

hr

) 1

1 + c′
+log2

(

1 +
γδ

hr

)

c′

1 + c′

−
bc′

h(1+c′)2
log2

(

γδ+hr

γ+hr

)

[

kdn
− 1

d ‖f‖ d
d+1

+o(n− 1
d )
]

. (18)

This provides a complete asymptotic characterization of the

rate for large number of UAVs. Unfortunately, the knowledge

of the optimal density function of the UAVs does not imme-

diately lead to the knowledge of the optimal discrete UAV

locations. However, for the special case of one dimension,

the optimal discrete placement of UAVs can also be approxi-

mated using a variant of inverse transform sampling [2]: Let

X⋆ = [x⋆
1 x

⋆
2 · · ·x

⋆
n] be the optimal deployment. Suppose

x⋆
1 ≤ x⋆

1 ≤ ... ≤ x⋆
n without loss of generality. For x∈ [0, 1],

let Λ⋆
inv(x, f) be the unique real number that satisfies

∫ Λ⋆
inv(x,f)

0
λ⋆(q, f)dq = x. (19)

Then, x⋆
i can be approximated as

x⋆
i ≃ Λ⋆

inv

(

2i−1
2n , f

)

(20)

Hence, to find the optimal placement of UAVs, we can first

solve (19) for Λ⋆
inv(x, f) and then use (20) to calculate

the optimal UAV locations. For two dimensions, or a non-

asymptotic number of UAVs, we consider a numerical solution

to (12). Details of the solution are described in what follows.

B. Iterative Approach

In this numerical approach to solving (12), the UAV loca-

tions x1,0, ..., xn,0 are first initialized randomly at Iteration 0.

We then perform the following procedure iteratively, essen-

tially considering a generalized Lloyd algorithm [27] for the



ℓ1-norm distortion measure. At Iteration k, where k ≥ 1, we

first calculate the Voronoi regions

νi,k = {q : ‖xi,k−1 − q‖ ≤ ‖xj,k−1 − q‖, ∀j 6= i}, (21)

Keeping the Voronoi regions fixed, we then solve the following

optimization problem to update the optimal solution X :

Xk = argminX

n
∑

i=1

∫

νi,k

‖xi − q‖f(q)dq. (22)

Solving (22) is equivalent to solving the optimization problem

xi,k = argminxi

∫

νi,k

‖xi − q‖f(q)dq (23)

for each i ∈ {1, 2, ..., n}. The problem (23) is a convex

optimization problem, as the objective function is the positive

weighted summation of convex norms. Therefore, we can solve

(23) by using any globally optimal approach such as gradient

descent. Furthermore, for one dimension, we can provide a

closed form solution for (23) by solving

∂

∂xi

∫

νi,k

‖xi−q‖f(q)dq =

∫

νi,k

sign(xi−q)f(q)dq = 0 (24)

Solving for xi, we obtain xi,k = median(fc(q)), where

fc(q) ,
f(q)∫

νi,k
f(q)dq

, q ∈ νi,k.

Note that one can also attempt to directly solve (4) in

an iterative fashion. The calculation of the Voronoi regions

νi,k remains the same as it is optimal for each IoT device

to be connected to its closest UAV. We can update the UAV

locations as xi,k = argmaxxi

∫

νi,k
Ri(q)dq. The end result is

an iterative ascent algorithm for the original objective function,

which is very much desirable. On the other hand, the problem

with this approach is that the optimization of xi,k still remains

non-convex. The strength of our iterative approach stems from

the fact that it convexifies the entire optimization, resulting

in a very fast implementation. The numerical simulations in

the next section also show that our convexification approach

results in only negligible loss of performance.

IV. NUMERICAL RESULTS

In this section, we provide numerical simulation results that

confirm our analytical findings. For a general approach that is

applicable to all scenarios, we used the PSO method [23] to

solve the optimization problem (5).

The PSO method is a population-based iterative algorithm

for solving non-convex optimization problems. In general,

population-based optimization algorithms such as PSO are

known to outperform the simpler gradient descent like ap-

proaches. Specifically, multiple candidate solutions (popula-

tion agents) helps to avoid locally optimal solutions. This

makes PSO-like algorithms particularly suitable for multiple-

UAV optimization problems [1] which are complicated non-

convex problems in general.

We provide simulation results to validate Theorems 1 and

2 by deriving the optimal solution of (12) using quantization

theoretical and iterative approaches. We also investigate the

effects of altitude and attenuation factors on the achievable

rates. For our numerical simulations, we have used b = 0.43,

c = 4.88, γ = 50dB, r = 2, unless specified otherwise.

Also, in the figures, “Quantization Theory approach” refers to

the results of Theorem 2, while “Iterative approach” refers to

Theorem 1 where the optimal deployment is calculated via the

iterative algorithm in Section III.B.

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

Number of UAVs(n)

O
p

ti
m

a
l 
d

a
ta

 r
a

te
(b

p
s
/H

z
)

h=50m, Quantization Theory approach

h=50m, Iterative approach

h=50m, PSO

h=100m, Quantization Theory appraoch

h=100m, Iterative approach

h=100m, PSO

h=300m, Quantization Theory approach

h=300m, Iterative approach

h=300m, PSO

Fig. 2. Comparison of UAV deployment algorithms for a one-dimensional
uniform density at different altitudes and δ = 0.5.
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Fig. 3. Comparison of UAV deployment algorithms for a one-dimensional
uniform density at different altitudes and δ = 0.9.

Fig. 2 shows the optimal rate derived with Theorem 1 in

comparison with results provided by PSO method for different

value of altitudes h and different number of UAVs. The

horizontal axis represents the number of UAVs, and the vertical

axis represents the data rate. One dimensional uniform density

f(q) = 10−3, q ∈ [0, 1000]m is considered for IoT density.

We can observe that for n > 3 and h = 300m which can be

considered as a relatively high altitude, the results of Theorem

1, which are applicable to high altitudes matches the exact

results derived by solving the original optimization problem

(5) using PSO. Furthermore, for a large number of UAVs and

any altitude, Theorem 2 provides almost the same results as



the exact solution of (5). The mentioned scenarios confirm the

accuracy of Theorem 2.

A key observation from Fig. 2 is that the optimal data rate

converges as the number of UAVs increases. This is more

obvious for the case with h = 300m. Accordingly, we can

conclude that adding more UAVs will not improve the system

performance noticeably after some point which depends on

the altitude. Specifically, as the altitude increases, the optimal

results are achievable with less number of UAVs.

In Fig. 3, we consider the setup of Fig. 2 with attenuation

factor (δ = 0.9). Similar observations and conclusions as the

previous figure can be made. This shows the flexibility of our

framework for different environment with variable attenuation.
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Fig. 4. Comparison of UAV deployment algorithms for a two-dimensional
Gaussian density at different altitudes and δ = 0.5.

In Fig. 4, we consider a two-dimensional Gaussian density

with zero mean and covariance matrix 100 · I, where I is the

identity matrix. Similar conclusions can be made as compared

with the one dimensional examples: At high altitudes both the

quantization theoretical and the iterative approaches provides

a close approximation to the exact performance as provided

the the PSO algorithm. At low altitudes, as the number of

UAVs grow to infinity, the approximations again converge to

the optimal performance. An interesting difference is that the

quantization theoretical approach provides a better approxi-

mation than the iterative approach when the number of UAVs

are small. A more precise theoretical analysis is needed to

understand this phenomenon.

Consider now a time-varying IoT device density ft(q) =
(1+2|t|)(q−2+2|t|)2|t|, q ∈ [2−2|t|, 3−2|t|], with 5 UAVs,

where t ∈ [−1, 1] represents the time index. At each time, we

can optimize the UAV deployment to come up with the optimal

UAV trajectories for the time interval [−1, 1]. According to

(20), the optimal trajectory of UAV i can be approximated as

x⋆
i,t ≃ Λ⋆

inv

(

2i− 1

2n
, ft

)

. (25)

In order to calculate the optimal UAV trajectories, we need to

first derive Λ⋆
inv from (19). Using (15), we first obtain

λ⋆
t (q, f) = (1 + |t|)(q − 2 + 2|t|)|t| (26)

Hence, Λ⋆
inv can be calculated as

Λ⋆
inv(x, ft) = 2− 2|t|+ x

1
1+|t| (27)

Accordingly, the optimal trajectory of UAV i can be approxi-

mated by

x⋆
i,t ≃ 2− 2|t|+

(

2i− 1

2n

)
1

1+|t|

(28)

Fig. 5 illustrates the optimal trajectories provided by the

PSO method, quantization theory (28), and the iterative ap-

proach. The trajectories provided by the iterative approach

and the quantization theory approach of (28) are almost the

same. Both trajectories are slightly different than the trajectory

provided by the PSO algorithm. These results show that for

the asymptotic scenarios (high altitudes or large number of

UAVs) where Theorems 1 and 2 become valid, we may use

either the quantization theoretical or the iterative approach to

calculate the optimal UAV deployments without great loss in

performance. This way, we avoid running the computation-

ally expensive PSO algorithm (or a similar globally optimal

optimization algorithm) to solve the original problem in (5).
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V. CONCLUSION

We have studied the optimal deployment of UAVs serving

as data collectors from time constrained IoT devices. Our

objective has been to maximize the collected data in an

specified time by maximizing the communication data rate. We

provided the optimal solution of IoT device-UAV association

problem. Furthermore, we approximated the original non-

convex problem with multiple convex problems and provided

quantization theory based closed form solutions. We also

proposed an iterative approach to solve the approximated

problem. Finally, we compared the results of the proposed

approaches with the results derived by solving the original

non-convex problem. The simulation results shows the flexi-

bility of proposed approaches for different practical scenarios.
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APPENDIX A

PROOF OF THEOREM 1

We consider the following asymptotic expansions for dif-

ferent parts of the proof (the expansions are valid for t → 0):

log2(a+ t) = log2(a) +
t

log(2)a
+ o

(

t

log(2)a

)

(29)

(1 + t)r = 1 + rt+ o(t) (30)

tan−1(1/t) = π/2− t+ o(t) (31)

1

1 + cebt
=

1

c+ 1
−

bct

(c+ 1)2
+ o(t) (32)

We now proceed with the proof of the theorem. Let d ,

mini‖xi − q‖ and t , d
h . In an optimal deployment, for large

number of UAVs we have d ≃ 0. Therefore, for large number

of UAVs and/or high altitudes, t ≃ 0 is a valid assumption.

Having this assumption, the following is concluded from (30):
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Using (33) and (29), we obtain
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−
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(34)

Furthermore, according to (31), we have

PLOS(d) =
1

1 + ce−b(π
2
− d

h
+o( d

h
)−c)

, (35)

and, by (32), we obtain

PLOS(d) =
1

1 + c′
−

bc′d

h(1 + c′)2
+ o

(

d

h

)

, (36)

where c′ = ce−b(π
2
−c).

Substituting (34) and (36) to (2), we have

max
i

Ri(q) = log
(

1 +
γ

hr

) 1

1 + c′
+log2
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hr
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o

(

d
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Substituting the value of d and averaging out the IoT device

density, we obtain the theorem statement.
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