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Abstract—There has been a continuing demand for improving
the accuracy and ease of use of medical devices used on or
around the human body. Communication is critical to medical
applications, and wireless body area networks (WBANs) have
the potential to revolutionize diagnosis. Despite its importance,
WBAN technology is still in its infancy and requires much
research. We consider body channel communication (BCC),
which uses the whole body as well as the skin as a medium for
communication. BCC is sensitive to the body’s natural circulation
and movement, which requires a noncoherent model for wireless
communication. To accurately handle practical applications for
electronic devices working on or inside a human body, we config-
ure a realistic system model for BCC with on-off keying (OOK)
modulation. We propose novel detection techniques for OOK
symbols and improve the performance by exploiting distributed
reception and supervised-learning approaches. Numerical results
show that the proposed techniques are valid for noncoherent
OOK transmissions for BCC.

I. INTRODUCTION

There has been significant growth in research and com-

mercialization of medical devices over the last decade, with

a particular focus on integrated technologies that increase

life expectancy. Wireless communications is critical to many

medical devices [1]–[4], and the IEEE 802.15.6 task group

was organized for the standardization of wireless body area

networks (WBANs). WBANs can also be employed in non-

medical applications including gaming devices and mobile

applications linked to physical activities. To enable increased

use, improvements in WBAN power consumption, device

compactness, dependence on additional equipment, and other

areas are needed [5], [6].
The IEEE 802.15.6 task group defines three physical lay-

ers (PHYs) for WBANs: narrowband (NB), ultra-wideband

(UWB), and body channel communication (BCC) [7]. When

wireless communication in a WBAN system is conducted on

or inside a human body, the communication channel is signifi-

cantly affected by the body itself. If modeled probabilistically,

the channel operating on or near the body will follow a much

different distribution than those typically used for wireless

channels. Efforts for statistical channel characterization in such

a different environment were performed for NB and UWB [8]–

[10]. The theoretical performance analysis and verification of

the channel for these PHYs such as channel capacity, power

allocation, and outage probability were conducted in [11], [12].

The system for BCC operates in lower carrier frequencies

roughly in 5-50 MHz [5]. Unlike other WBAN communication

exploiting NB and UWB, BCC exploits not only the skin

but the whole body as a medium for communication. The

communication using NB or UWB suffers from blockage

of the body resulting in large path loss [13]. BCC, on the

contrary, utilizes the higher conductivity of the body than that

of air, and transceivers for BCC consume lower power by

using an electrode [14]. BCC is challenging, however, because

the channels used for communication vary significantly from

standard wireless channel models. One possible avenue for

understanding the channel is to use a simple electronic circuit

model, which operates in the way of capacitive and galvanic

coupling [14]–[16]. Typical stochastic channel modeling for

BCC, however, has not been developed because a number of

parameters configure the channel conditions, which makes the

classification and analysis of the channel difficult.

One common technique to overcome channel fading is the

use of diversity. Distributed diversity techniques, which utilize

multiple receive nodes distributed over a geographic area, have

been shown to be a low-cost and power-efficient solution

to achieve performance achievements [17]–[19]. Other than

a small number of works (e.g., [20]), distributed multiple

antenna techniques have received little attention for use in

or around the body. There is clearly a need to understand

how multiple receive nodes could be used in combination with

BCC.

In this paper, we consider a realistic communication model

for BCC exploiting distributed reception to obtain spatial

diversity. On-off keying (OOK) modulation is used to send

binary signals, which is a default mode of the WBAN standard

[1]. Distributed reception is conducted where a fusion center is

wired with the other receive nodes and collects the necessary

information for symbol detection. Because the body’s natural

circulation and movement make accurate channel estimation

difficult, we assume that a noncoherent model must be em-

ployed. We propose three novel techniques to detect OOK

symbols for BCC. With an assumption of limited resources for

symbol detection at the receive nodes, the proposed techniques

are based on supervised learning, which was similarly utilized

in [21]. Lastly, we verify their performance through numerical

simulations.978-1-7281-4490-0/20/$31.00 c© 2020 IEEE

http://arxiv.org/abs/2008.08286v1


Fig. 1 Structure of SIMO model for BCC.

II. SYSTEM MODEL

We formulate a single-input multiple-output (SIMO) system

model for BCC, as depicted in Fig. 1. The system includes a

transmitter and K distributed receive nodes, all of which have

a single antenna. An OOK symbol is transmitted at each time

slot by a single-antenna transmitter. The channel between the

transmitter and each receive antenna is tightly coupled with the

physiology of the human body and the body’s movements. For

these reasons, we assume that each receive node experiences a

different channel model. The chanel gain of each receive node

will also quickly fluctuate, which necessitates noncoherent

operation.

The received signal at the k-th receive node at time n is

defined as

yk[n] =
√
Phk[n]x[n] + nk[n], (1)

where P is the transmit power, and hk[n] is the real-valued1

channel gain of the k-th receive node and is assumed to follow

a probability density function fk(h). Note that hk[n] and fk(h)
are unknown to both the transmitter and the k-th receive node.

The transmitted OOK symbol is denoted by x[n] ∈ {0, 1}, and

nk[n] ∼ N
(

0, N0B
2

)

is independent and identically distributed

(i.i.d.) noise where N0 is the noise spectral density and B is

the bandwidth.

III. SUPERVISED-LEARNING-BASED OOK SYMBOL

DETECTION TECHNIQUES

We assume all the transceivers (i.e., the transmitter, receive

nodes, and fusion center) do not have any knowledge of in-

stantaneous or even statistical channel state information (CSI).

The property prevents performing typical channel estimation

and symbol detection. The proposed detection techniques are,

however, still based on a training phase. The fusion center

and receive nodes use training signals not to estimate the

channel, but to extract useful information in terms of simple

statistics such as sample averages to detect the transmitted

1The real-valued channel is widely adopted in optical communication
systems [22]. We have extended to the more practical complex-valued channel
model in [23].

(a)

(b)

Fig. 2 The process of OOK symbol detection that consists of (a) training
phase with Nt training time slots and (b) data transmission phase.

OOK symbols. We first explain the structure of the training

phase and a basic rule of detection, followed by three detection

techniques based on supervised learning in detail.

A. Training phase and detection framework

The overall process of training and data transmission is

depicted in Fig. 2. In the training phase, the transmitter sends

the training symbols known to all receive nodes as

x[n] =

{

1, for n = 1, 2, · · · , Nt

2

0, for n = Nt

2 + 1, · · · , Nt

(2)

during Nt time slots. Each receive node computes a reference

value (depending on a specific detection technique) using the

received training signals.

Data transmission is conducted during channel uses n =
Nt+1 and beyond. The fusion center evaluates likelihood with

weights that are functions of the reference values determined



during the training phase and an instantaneous received data

signal. The fusion center detects the OOK symbol as

x̂[n] =

{

1, for
∑K

k=1 w1,k[n] >
∑K

k=1 w0,k[n]

0, for
∑K

k=1 w1,k[n] <
∑K

k=1 w0,k[n].
(3)

In (3), w1,k[n] and w0,k[n] are the weights for the k-th

receive node concerning whether 1 or 0 is transmitted, which

are defined by specific detection techniques. The proposed

techniques exploit supervised-learning approaches using the

reference values to classify the received data signals, which

are explained in the rest of this section. It is assumed that

each transmitted data symbol is equally likely in this paper.

B. Probability technique

The probability technique for symbol detection uses empiri-

cal conditional probabilities using the received training signals.

We first define the threshold amplitude at the k-th receive node

as

Ath,k =
1

Nt

Nt
∑

n=1

|yk[n]|. (4)

The absolute value of each received training signal at the k-th

receive node is compared to Ath,k, which produces a detected

training symbol of

x̂k[n] =

{

1, for |yk[n]| ≥ Ath,k

0, for |yk[n]| < Ath,k

(5)

for n = 1, . . . , Nt. Using x̂k[n], two empirical conditional

probabilities are computed for each k. One is for the event of

x̂k[n] = 1 conditioned on x[n] = 1, and the other is similarly

for x̂k[n] = 0 given x[n] = 0. They are written as

P(1|1),k = min

(

∑Nt/2
n=1 δx̂k[n],x[n]

Nt/2
, 1− 2

Nt

)

(6)

and

P(0|0),k = min

(
∑Nt

n=Nt/2+1 δx̂k[n],x[n]

Nt/2
, 1− 2

Nt

)

, (7)

where δx̂k[n],x[n] indicates Kronecker delta, defined as

δx̂k[n],x[n] =

{

1, for x̂k[n] = x[n]

0, for x̂k[n] 6= x[n].
(8)

These empirical probabilities have discretized values by using

the number of correctly detected training symbols. Note that

with finite Nt, the empirical probability goes to one as the

transmit power increases, which will make the empirical

probability useless at high transmit power. To prevent this,

the probabilities in (6) and (7) are set to have an upper bound

of 1− 2
Nt

.

In the data transmission phase, a random symbol x[n] is

transmitted, and the amplitude of an instantaneous received

signal is measured at each receive node. Data symbol detection

for each k is conducted with (5), followed by allocating two

weights using (6) and (7) as

wp
1,k[n] =

{

logP(1|1),k, for x̂k[n] = 1

log (1− P(1|1),k), for x̂k[n] = 0
(9)

and

wp
0,k[n] =

{

log (1− P(0|0),k), for x̂k[n] = 1

logP(0|0),k, for x̂k[n] = 0
(10)

for k = 1, . . . ,K . By combining the weights of (9) and (10)

as in (3), the final detected symbol x̂p[n] is determined at the

fusion center. This technique is similar to a typical likelihood

ratio test (LRT) in a binary communication channel [24], but

uses empirical probabilities.

C. Deviation technique

The deviation technique uses the difference value between

the amplitude of an instantaneous received signal and the

reference values computed during the training phase. Two

sample averages are computed with the received training

signals for the cases of x[n] = 1 and x[n] = 0, defined as

A1,k =
2

Nt

Nt/2
∑

n=1

|yk[n]| (11)

and

A0,k =
2

Nt

Nt
∑

n=Nt/2+1

|yk[n]| (12)

for k = 1, 2, . . . ,K , which serve as the reference values for

the deviation technique.

The weights used in the deviation technique are a function

of the received data signal, written as

wd
1,k[n] = |yk[n]| −A1,k (13)

and

wd
0,k[n] = A0,k − |yk[n]| (14)

for each k. Increasing |yk[n]| makes wd
1,k[n] larger, which

results in smaller wd
0,k[n], and vice versa. The final symbol

detection is conducted by computing (3) using (13) and (14)

to derive x̂d[n].
Remark 1: Using the probability and deviation techniques

with K = 1, i.e., having only a single receive node, the fusion

center produces the same detection result, since the detecting

criterion is simplified to whether or not |yk[n]| is larger than

Ath,k as in (5) for both techniques. With multiple receive

nodes, however, the two techniques can result in different

symbol detection results. Considering high transmit power,

both P(1|1),k and P(0|0),k in the probability technique approach

to 1 − 2/Nt as in (6) and (7). One of the two weights in (9)

and (10) for all the receive nodes approaches to 0, which is the

maximum value of the weights when Nt is sufficiently large.

Once the instantaneous data signal is detected at the receive

nodes as in (5), symbol detection just follows the majority rule



TABLE I
CONSIDERED CHANNEL PROBABILITY DISTRIBUTIONS

fk(h) Distribution model Condition

f1(h) Burr ([4.71 ∗ 10−7, 2.43, 5.61]) weak

f2(h) Burr ([9.32 ∗ 10−7, 3.88 ∗ 101, 5.52 ∗ 10−1]) strong

f3(h) Burr ([2.29 ∗ 10−8, 1.21 ∗ 101, 5.07 ∗ 10−1]) weak

f4(h) Burr ([5.63 ∗ 10−6, 2.40 ∗ 101, 3.97 ∗ 10−1]) strong

f5(h) Weibull ([1.76 ∗ 10−6, 3.88]) weak

f6(h) Burr ([3.83 ∗ 10−7, 7.06, 1.26]) weak

f7(h) Burr ([1.31 ∗ 10−6, 5.25, 1.47]) weak

f8(h) Weibull ([1.01 ∗ 10−6, 4.05]) weak

f9(h) Burr ([7.76 ∗ 10−6, 9.71, 7.87]) strong

at the fusion center, regardless of the value of |yk[n]|. The

deviation technique, on the contrary, does not just perform the

majority rule even with high transmit power, since the weights

in (13) and (14) depend on the amplitude of the instantaneous

received signal |yk[n]|.
D. Combination technique

The combination technique exploits the reference values that

have been developed in the previous subsections to compute

weights, making a robust detector coping with various channel

conditions. The empirical conditional probabilities and sample

averages are computed as in (4), (6), (7), (11), and (12) during

the training phase. Using the received data signal and the

reference values with (4) and (9) to (14), the weights are

defined as

wc
1,k[n] = −

|wd
1,k[n]|2
A1,k

+
|wd

1,k[n]|2
Ath,k

wp
1,k[n] (15)

and

wc
0,k[n] = −

|wd
0,k[n]|2
A0,k

+
|wd

0,k[n]|2
Ath,k

wp
0,k[n] (16)

for each k.

Focusing on (15), the first term of wc
1,k[n] is a scaled and

squared version of the weights from the deviation technique.

Using the scaled form of the first term is appropriate to the

asymmetric magnitude distribution of the received data signal

for each case of x[n] = 1 and x[n] = 0. The second term of

wc
1,k[n] considers the probability technique. Since wp

1,k[n] is

defined as the logarithm of empirical probabilities in (9), the

premultiplied value to wp
1,k[n] serves as an exponent for the

probabilities as a base, which adjusts degree of penalty. Due to

the premultiplied value for the second term, the contribution

of the two terms to the weights is balanced. The fusion center

detects the final symbol x̂c[n], combining (15) and (16) as in

(3).

IV. NUMERICAL RESULTS

We evaluate the performance of the proposed detection

techniques by computing uncoded bit error rate (BER) with

Monte-Carlo simulations. Presuming that channels in BCC

have inconsistent probabilistic models, we make use of the

channel realization following the probability distributions in

Table I that are extracted from [11]. The noise spectral

Fig. 3 BERs using the probability technique with a single receive node for
nine different channel distribution models.

density N0 and the bandwidth B are set to -174 dBm/Hz and

100 kHz corresponding to that of the distribution models in

[11]. Classification of the distribution models as “strong” and

“weak” in Table I, which depends on the channel condition,

will be discussed later. We consider a limited situation where

the channel distribution between the transmitter and each

receive node does not change for the time of interest. However,

both the instantaneous channel value, which changes in every

time slot, and the channel distribution are not known to all

the transceivers, which makes the system noncoherent. The

number of training time slots is set to Nt = 50 for all

simulations except the last one in Fig. 7.

Depending on channel condition, the probability technique

with a single receive node shows all different BER perfor-

mance. The result is shown in Fig. 3 where we exploit nine

channel distribution models separately. The probability tech-

nique shows a bounded tendency of BERs with high transmit

power. As transmit power increases, the reference values used

in the technique are given less effect from the noise. The

reference values, however, would remain fixed after a certain

transmit power level as discussed in Remark 1 in Section

III-C, which do not handle fast-varying channels. Meanwhile,

we purposely classify the channel distributions into the group

of strong channels or the group of weak channels. The solid

green lines in Fig. 3 correspond to the weak channels, and the

dashed pink lines represent the strong channels. The BERs

of the strong channels start to decrease from small transmit

power, achieving lower bound with high transmit power, and

vice versa. Some channel distributions including the group of

strong channels have large mean or small variance, which leads

to reliable communication through the channels with small

randomness, and vice versa.

In Fig. 4, we focus on one of the channels f9(h) to clearly

verify the disadvantage of noncoherent detection with the

performance of the three detection techniques proposed in

Section III. A coherent combiner is used for comparison,

operating on the same WBAN deployment scenario with the

same channel models. For the coherent case, the fusion center



Fig. 4 BERs using the three detection techniques with K = 1 where f9(h)
is used for coherent and noncoherent cases.

Fig. 5 BERs using the three detection techniques for weak-channel-only
(K = 6) and strong-channel-only (K = 3) scenarios with solid lines and
dashed lines respectively.

performs maximum ratio combining (MRC) using perfect CSI.

The MRC technique shows good performance comparing to

all proposed noncoherent detection techniques. The probabil-

ity and deviation techniques give the same performance as

mentioned in Remark 1 in Section III-C. The combination

technique resolves the problem of bounded BERs and makes

the best performance among the proposed techniques with high

transmit power.

The dashed lines in Fig. 5 show the performance using

the group of three strong channels. This favorable situation

when only strong channels exist might rarely occur in practice

though. Meanwhile, for the solid lines in Fig. 5, the fusion

center uses six receive nodes following the distributions in

the group of weak channels. This channel situation is more

conservative than the other. The probability technique has un-

natural decrease by combining several conditional probabilities

P(1|1),k and P(0|0),k with various channels, i.e., as transmit

power increases, the empirical probabilities of the weak chan-

nels become unreliable as shown from the solid lines in Fig.

3. These unreliable empirical probabilities corrupt likelihoods

Fig. 6 BERs under the various channel distribution models with K = 9.

when the weights for all receive nodes are combined, leading

to a rough decrease of BER in some range of transmit power.

The deviation technique achieves lower BER than that of the

probability technique with low transmit power. The weights

that are a function of continuous values are more precise than

that using the discretized values, namely, (empirical) proba-

bilities. On the contrary, the deviation technique is inferior to

the probability technique with high transmit power. This is

because the strong channel in each group would have large

variance, which makes the weights using the amplitude of an

instantaneous received signal unreliable. Both the probability

and deviation techniques exhibit similar performance. The

combination technique, on the contrary, outperforms the two

techniques in both scenarios.

Fig. 6 shows the case of using both groups. Compared to

the previous two extreme cases with either weak or strong

channels only, this is definitely more realistic environment that

has a variety of channel condition for each receive node. The

probability and deviation techniques for K = 9 show some

performance degradation in some range of transmit power,

comparing to the group of strong channels in Fig. 5. The

combination technique gives no such degradation of BER

performance, meeting robustness to the channel conditions,

which is comparable to the MRC technique for the coherent

channel.

In Fig. 7, we verify BER performance with changing the

number of training time slots Nt from 10 to 1000 and fixed

transmit power of 10 dBm for the group of weak channels.

The deviation technique has negligible gain with larger Nt

because the two sample averages in (11) and (12) already

converge to certain values even with small Nt. The probability

technique, however, has steadily decreasing BER due to the

increasing accuracy of the empirical conditional probabilities.

The combination technique gives the best performance among

the three techniques. Although the transceivers operate with

a small value of Nt, the combination technique guarantees

adequate BER performance even for weak channels.



Fig. 7 BERs for the group of weak channels with K = 6 by changing the
number of training time slots from 10 to 1000 for fixed transmit power of 10
dBm.

V. CONCLUSION

In this paper, we formulated a realistic BCC system model

where OOK symbols are transmitted through fast-varying

channels. We showed that it is possible to benefit from multiple

distributed receive nodes by exploiting a supervised-learning

approach without conventional channel estimation. In this

set-up, only a small number of training symbols are used

to compute weights that are predefined. The weights are

combined at the fusion center for symbol detection.

We proposed three detection techniques called probability,

deviation, and combination techniques according to how the

weights are defined. Using distributed reception across the

multiple receive nodes, it is possible to achieve robust trans-

missions for the noncoherent BCC system. The combination

technique especially shows good performance by using well-

defined supervised-learning approaches with small training

overhead. By designing more effective reference values and

weights, it may be possible to make a detector more robust

to dynamic fluctuation of channel. A more realistic situation

such as multitap channel would be considered as an interesting

future work.
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