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Abstract—This paper investigates the hybrid precoding (HP)
design for simultaneous wireless information and power transfer
in a multiple-input single-output broadcast channel setup where
the terminals adopt the power splitting architecture. The problem
of interest is the maximization of the signal-to-interference-plus-
noise-ratio and the harvested power for all terminals under a
total transmit power constraint. Our focus is on the derivation of
frequency- and setup-agnostic low-complexity HP methods. Two
baseline approaches for the determination of the analog precoder
are considered. In the first one, the phases are computed via the
singular value decomposition (SVD) of the channel matrix, while
in the second they are selected randomly. Then, the baseband
precoder is computed by applying semidefinite relaxation (SDR) to
the problem under study. Alternatively, we combine the aforemen-
tioned analog precoders with a fixed zero-forcing baseband pre-
coder, in order to further reduce the computational load. Another
proposed strategy focuses on the minimization of the Euclidean
distance between the optimal fully-digital precoder, which is
obtained via SDR, and the hybrid one. To this end, an alternating
minimization algorithm that employs Gaussian smoothing to
convexify the problem and utilizes stochastic gradient descent to
update the phases is introduced. The performance of the proposed
HP methods is comparatively evaluated versus the one achieved
by the optimal fully-digital precoder via numerical simulations.
The simulation results indicate that the stochastic optimization
approach presents a favorable performance-complexity trade-off
as well as substantial power gains.

Index Terms—Simultaneous wireless information and power
transfer (SWIPT), MISO broadcast channel, hybrid precoding,
stochastic optimization, Gaussian smoothing.

I. INTRODUCTION

A massive growth of low-power communication devices,
such as smartphones, wireless sensors, and Internet-of-Things
(IoT) nodes, is anticipated in the foreseeable future [1]. Si-
multaneous wireless information and power transfer (SWIPT)
is considered a promising approach for prolonging the battery
lifetime of such energy-constrained devices, whilst ensuring a
prescribed quality-of-service (QoS) level [2]. This is achieved
by exploiting the power of the information-bearing signals that
are transmitted in the downlink for energy harvesting (EH)
purposes. The realization of SWIPT systems requires the design
of novel transmission strategies [3]–[7].

Our focus in this paper is on multi-user multiple-input
multiple-output (MU-MIMO) SWIPT setups. It is well-known
that the performance of MU-MIMO systems improves, from a
sum-rate perspective, with the number of transmit antennas.

Under a fully-digital transmitter architecture, though, where
each antenna element is fed by a radio frequency (RF) chain,
even the installation of a moderate number of antennas leads to
substantial power consumption. This is problematic for small
access points (AP) in IoT setups and small-cell base stations
or remote radio units in cellular mobile radio communication
networks, which commonly have limited power supply. Fur-
thermore, in view of the ongoing ultra-densification of the radio
access network infrastructure, this paradigm raises significant
cost considerations. Analog-digital (A/D) transmitters provide
a workaround to the above problems by reducing the number of
RF units required for approaching a target performance level.
This is accomplished by combining a low-dimensional digital
or baseband (BB) precoder with a high-dimensional analog or
RF one. The latter is commonly implemented with the help of
phase shifters [8].

The joint optimization of the RF and BB precoders is a
non-trivial task, due to the non-convex constant modulus con-
straints imposed by the phase shifters and the coupling between
these precoders. Massive MIMO (mMIMO) literature is rich
on corresponding hybrid precoding (HP) techniques, which
typically decouple the optimization of these precoders. While
some methods exploit the sparsity of millimeter-wave (mmWave)
channels [9], others are frequency-agnostic. However, these
schemes present high computational complexity. For instance,
the matrix decomposition (MDP) method presented in [10]
involves as many quadratic programming tasks as the number
of antennas, whereas the conjugate gradient method described
in [11] makes use of backtracking line search. Similarly, the
Nelder-Mead simplex scheme applied in [12] performs multiple
matrix inverse or associated QR factorization recomputations.

Interestingly, the application of HP in SWIPT systems has
been studied mainly in the contexts of multi-group multicast-
ing [13] and mmWave mMIMO communication [14], [15]. The
only relevant work that focuses on sub-6 GHz spectrum and
conventional (non-massive) MIMO broadcasting is [16], to the
best of our knowledge. This study considers the total transmit
power (TTP) minimization problem for a multiple-input single-
output broadcast channel (MISO BC) with a single information
receiver and multiple energy receivers under QoS and EH
constraints. To this end, the authors introduce a HP method
that is based on the setup-specific geometric representation of
the optimization problem under study.978-1-7281-4490-0/20/$31.00 c© 2020 IEEE



In this work, we extend the study on SWIPT with energy-
efficient transmitters by investigating the design of setup- and
frequency-agnostic low-complexity HP schemes. We consider a
MISO BC setup with terminals that adopt the power splitting
(PS) architecture to concurrently perform information decoding
(ID) and EH and focus on the signal-to-interference-plus-
noise-ratio (SINR) / EH balancing problem, which is closely
related to the TTP minimization problem. Two baseline RF
precoder design approaches are described. In the first one,
phase computation is based on the singular value decomposition
(SVD) of the channel matrix. The second technique refers to
random phase selection. After fixing the RF precoder, we can
either obtain the BB precoder by applying the semi-definite
relaxation (SDR) framework or we can design it according to
the zero-forcing (ZF) principle. Next, we describe a stochastic
optimization approach based on an iterative minimization algo-
rithm that alternates between the RF and BB precoder updates.
The goal of this algorithm is to minimize the Euclidean distance
between the optimal fully-digital precoder and the hybrid one.
The former is computed via SDR. In this case, Gaussian
smoothing is applied to the multi-extremal cost function, in
order to convexify it. Then, the stochastic gradient descent
(SGD) algorithm is used to determine the phases. By generating
a sequence of minimization runs for the smoothed cost function
with reduced amount of smoothing in each one, we filter
out the approximation noise, thus enabling SGD to gradually
converge towards its global minimum. Numerical simulations
indicate that the proposed stochastic optimization approach
approaches the performance of the optimal fully-digital solution
and presents substantial power savings. In addition, they shed
light on the effect of various parameters on the performance of
these HP methods.

The remainder of the paper is organized as follows: In
Section II, the system model and the problem formulation are
introduced. Section III and Section IV present the proposed
HP methods and fixed HP schemes, respectively. Performance
evaluation via numerical simulation results is conducted in
Section V. Section VI provides our conclusions.

Notation: a, a, and A denote a scalar, a column vector, and a
matrix, respectively. R, C, and N denote the sets of real, com-
plex, and natural numbers, respectively. j ,

√
−1 and Re {·}

denote the imaginary unit and the real part of a complex scalar,
respectively. |·| refers to the magnitude of a complex scalar. Cn
and Cm×n represent the sets of complex n-dimensional vectors
and m× n matrices, respectively. [a]n and [A]m,n denote the
n-th element of a and the (m,n) entry of A, respectively. In,
0m×n, and 0n denote the n × n identity matrix, m × n null
matrix, and n-dimensional null vector, respectively. rank (·),
tr (·), and det (·) correspond to the rank, trace, and determinant
of a matrix, respectively, whereas diag (·) denotes the conver-
sion of a vector into a diagonal matrix. (·)∗, (·)T , (·)†, (·)−1,
(·)#, ‖·‖, and ‖·‖F denote the conjugate, transpose, conjugate
transpose, inverse, Moore-Penrose pseudo-inverse, Euclidean
(L2) norm, and Frobenius norm of a matrix, respectively. vec (·)
represents the vectorization of a matrix, while ⊗ and � denote

the Kronecker and Handamard (element-wise) matrix product
operations, respectively. A � 0 indicates that A is a positive
semi-definite matrix. A circularly symmetric complex Gaussian
(CSCG) random variable z with mean µ and variance σ2 is
denoted as z ∼ CN

(
µ, σ2

)
. By X ∼MNm×n (M,Σ,Ψ) we

denote that the random matrix X ∈ Cm×n follows the matrix
Gaussian distribution with mean M ∈ Cm×n and covariance
matrices Σ ∈ Cm×m and Ψ ∈ Cn×n. E [·] represents the
expectation operator and U (·) denotes the uniform distribution.
∇f denotes the gradient of function f , whereas f ∗ g denotes
the convolution of f with g.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Fully-Digital Transmitter

We consider a MISO BC for SWIPT consisting of a fully-
digital AP with Nt antennas (and RF chains) and K ≤ Nt
single-antenna user equipment (UE) devices that employ single-
user detection. The AP applies linear precoding at the digital
BB to serve the users on a single time-frequency resource.
Availability of perfect channel state information (CSI) at both
the AP and the terminals is considered. The latter devices
utilize PS, i.e., a portion ρk ∈ (0, 1) of the received signal’s
power at the k-th UE (k ∈ K = {1, . . . ,K}) is driven to the
information decoder for BB conversion and data detection
whereas the remaining portion is driven to the energy harvester
for conversion into a direct current (DC) voltage and energy
storage, as illustrated in Fig. 1.

1) System Model: Due to the limited communication range
in practical SWIPT systems, there is typically a dominant line-
of-sight (LoS) path between the AP and each UE, in addition to
the multiple non-LoS (NLoS) paths attributed to the reflection
and scattering of the propagating radio signal by obstacles in
the environment. Hence, we consider quasi-static frequency-flat
uncorrelated Rician fading channels. That is, the complex BB
channel between the k-th UE and the AP, denoted as hk ∈ CNt ,
is expressed as

hk =

√
R

R+ 1
L(dk)hLoS

k +

√
1

R+ 1
L(dk)hNLoS

k , k ∈ K, (1)

where R is the Rician factor, L(dk) corresponds to the distance-
dependent path loss at propagating distance dk, hLoS

k ∈ CNt
refers to the LoS (specular) component, and hNLoS

k ∈ CNt
represents the Rayleigh fading component. The path loss is
given by

L(dk) = C0

(
dk
d0

)−α
, (2)

where C0 is the path loss at a reference distance d0 = 1 m in
the far-field of the AP and α denotes the path loss exponent. By
assuming a uniform linear array (ULA) with omni-directional
transmit antennas, the LoS component is given by

hLoS
k =

[
α0 · · · αNt−1

]T
, k ∈ K, (3)

where

αm−1 = e−j(m−1)(2πd/λ) sin(ϕk), m ∈M, (4)



Fig. 1. System setup.

with M = {1, . . . , Nt} and λ, d = λ/2, and ϕk denoting
the wavelength, antenna spacing, and angle-of-arrival (AoA),
respectively. Finally, the elements of the Rayleigh fading com-
ponent,

[
hNLoS
k

]
m

, represent the fading coefficient of the chan-
nel between the k-th UE and the m-th antenna of the AP. These
fading coefficients are independent and identically distributed
(i.i.d.) according to CN (0, 1) and they remain constant during
a coherence block, but they change independently from one
block to the other.

The complex BB received signal at the k-th UE is given by

yk = h†kx + nk = h†kWs + nk = h†k

∑
i∈K

wisi + nk

= h†kwksk︸ ︷︷ ︸
information

+ h†k

∑
i∈K\k

wisi︸ ︷︷ ︸
inter-user interference

+nk, k ∈ K, (5)

where x = Ws ∈ CNt is the transmitted signal, wk ∈ CNt
and sk ∼ CN (0, 1) correspond to the beamforming (BF) vector
and the transmitted symbol for the k-th user, respectively, W =[
w1 · · · wK

]
∈ CNt×K and s =

[
s1 · · · sK

]T ∈ CK
represent the precoding matrix and the transmitted symbols vec-
tor, respectively, and nk ∼ CN

(
0, σ2

)
denotes the receiver’s

additive white Gaussian noise (AWGN).
Transmission is subject to a number of constraints: (i) the

transmit power should not exceed a budget PT > 0 and (ii)
the SINR Γk and harvested power Phk at the k-th UE should
be at least equal to a minimum target γ̄k > 0 and Q̃k > 0,
respectively. The harvested power is expressed as a non-linear
function of the received power P rk , i.e., Phk = F ((1− ρk)P rk ).
Several models of this function exist in the literature, including
the sigmoid function [17], [18] and models based on the
characteristic equation of the diode [19], [20]. In general,
F (·) is monotonically increasing. Therefore, we can find the
inverse mapping F−1 (·) and form the equivalent EH constraint
(1− ρk)P rk ≥ F−1

(
Q̃k

)
, Q̄k.

2) Problem Formulation: We consider the optimization
problem of maximizing the ratios of the received SINRs and
harvested powers over their respective target requirements,
i.e., max

{
Γ1

γ̄1
, . . . , ΓK

γ̄K
,
Ph1
Q̄1
, . . . ,

PhK
Q̄K

}
, subject to the TTP con-

straint. To make this SINR / EH balancing problem more
tractable, we introduce an auxiliary variable t. Thus, the max-
imization problem is formulated as follows [7]:

P1: max
{wk,ρk,t∀k∈K}

t (6a)

s.t. Γk =

∣∣∣h†kwk

∣∣∣2∑
i∈K\k

∣∣∣h†kwi

∣∣∣2 + σ2 +
σ2
c

ρk

≥ tγ̄k , γk, (6b)

(1− ρk)P rk = (1− ρk)

(∑
i∈K

∣∣∣h†kwi

∣∣∣2 + σ2

)
≥ tQ̄k , Qk,

(6c)
0 ≤ ρk ≤ 1, (6d)∑
k∈K

‖wk‖2 ≤ PT . (6e)

The expressions in Eq. (6b), Eq. (6c), and Eq. (6e) correspond
to the QoS, EH, and TTP constraints, respectively. σ2

c in
Eq. (6b) represents the variance of the additive zero-mean
complex Gaussian circuit noise νk that arises during the BB
conversion of the received signal for ID purposes due to phase
offsets and non-linearities, as shown in Fig. 1.

It is difficult to solve P1, due to the fact that the QoS
and EH constraints are non-convex. Nevertheless, the optimal
solution to this optimization problem, which is quasi-convex in
t, can be obtained by solving the following TTP minimization
problem [7]:

P2: min
{wk,ρk}

∑
k∈K

‖wk‖2 ≤ PT (7a)

s.t. Eq. (6b) – Eq. (6d). (7b)

Notice that P2 incorporates the variable t in the QoS and EH
constraints. This non-convex problem is solved by using an
SDR reformulation. This is achieved by introducing matrix
variables Wk ∈ CNt×Nt defined as Wk = wkw

†
k [7]:

P3: min
{Wk,ρk}

∑
k∈K

tr (Wk) (8a)

s.t.
tr
(
hkh

†
kWk

)
∑

j∈K\k
tr
(
hkh

†
kWj

)
+ σ2 +

σ2
c

ρk

≥ γk
1 + γk

, k ∈ K, (8b)

∑
j∈K

tr
(
hkh

†
kWj

)
+ σ2 ≥ Qk

1− ρk
, k ∈ K, (8c)

0 ≤ ρk ≤ 1, Wk � 0, k ∈ K. (8d)

The formulation in P3 is a convex problem and, therefore, can
be efficiently solved via numerical software packages such as
CVX [21] to obtain Wopt

k and ρopt
k (k ∈ K). Moreover, it has

been proven that this SDR is tight, i.e., rank
(
Wopt

k

)
= 1 [22].

Hence, the optimal BF vectors wopt
k in P2 (which are the

columns of the optimal fully-digital precoder W∗) can be
recovered from Wopt

k via eigenvalue decomposition. Once wopt
k

and ρopt
k have been determined, P1 can be solved for obtaining



Fig. 2. Analog-digital fully-connected transmitter structure.

topt by using the bisection algorithm [7]. Note that P3 is feasible
if and only if

∑
k∈K γk/ (1 + γk) ≤ rank (H) [22].

B. Analog-Digital Transmitter

1) System Model: Next, we consider an A/D transmitter
architecture for the AP, wherein K ≤ NRF < Nt (i.e., the
number of RF chains is smaller than the total number of
antennas) and linear precoding is performed on both the analog
(RF) and digital (BB) domains, as shown in Fig. 2. Thus, the
composite transmitted signal is given by

x = Fs = FRFFBBs, (9)

where FRF ∈ CNt×NRF and FBB ∈ CNRF×K are the RF and BB
precoding matrices, respectively, whereas F ∈ CNt×K denotes
the HP matrix given by F = FRFFBB.

We consider a fully-connected A/D transmitter structure,
wherein each RF unit is connected to all antennas through
Nt phase shifters, as depicted in Fig. 2. This architecture
outperforms the sub-array one, where each RF module is
connected to a disjoint subset of antennas through several phase
shifters, and approaches closely the performance of a fully-
digital system when NRF ≥ 2K, in terms of the achieved sum-
rate, at the cost of higher insertion loss due to the large number
of phase shifters and combiners required [8].

Each entry of FRF satisfies the constant modulus constraint:

[FRF]m,n = ejφm,n , n ∈ N , m ∈M, (10)

where φm,n is the phase of the phase shifter that connects the
m-th antenna to the n-th RF chain (n ∈ N = {1, . . . , NRF})
and

∣∣∣[FRF]m,n

∣∣∣ = 1. FBB can be decomposed as

FBB =
[
fBB
1 · · · fBB

K

]
, (11)

where fBB
k ∈ CNRF is the BB BF vector for the k-th user.

2) Problem Formulation: The joint optimization of
{FRF,FBB} is a challenging task, as mentioned earlier.
However, once dealing with the constant modulus constraints,
we can compute the RF precoder. Then, given such a constant
matrix FRF, there are two main approaches for computing
the BB precoder. In the first one, we focus on solving the
equivalent TTP minimization problem. To this end, we define
FBB
k = fBB

k

(
fBB
k

)† ∈ CNRF×NRF and we apply SDR to obtain

and solve via CVX the following convex optimization problem,
which is the equivalent of P3 for this scenario:

P4: min
{FBB

k ,ρk∀k∈K}

∑
k∈K

tr
(
FRFF

BB
k F†RF

)
(12a)

s.t.
tr
(
hkh

†
kFRFF

BB
k F†RF

)
∑

j∈K\k
tr
(
hkh

†
kFRFFBB

j F†RF

)
+ σ2 +

σ2
c

ρk

≥ γk
1 + γk

,

(12b)∑
j∈K

tr
(
hkh

†
kFRFF

BB
j F†RF

)
+ σ2 ≥ Qk

1− ρk
, (12c)

0 ≤ ρk ≤ 1, Wk � 0. (12d)

Alternatively, we can seek to minimize the Euclidean dis-
tance between the optimal fully-digital precoder W∗ derived
in Sec. II-A and the hybrid one:

P5: min
{FBB}

‖W∗ − FRFFBB‖2F s.t. FRF ∈ F . (13)

In Eq. (13), F denotes the set of matrices whose entries satisfy
the constant modulus constraint. This problem leads to the well-
known least squares (LS) solution [23], i.e.,

FBB = F#
RFW∗ = F†RF

(
FRFF

†
RF

)−1

W∗. (14)

III. PROPOSED HYBRID PRECODING SCHEMES

A. Random and SVD-based Phase Selection

In random phase selection (RPS), the phases φm,n in Eq. (10)
are randomly selected from U [−π, π]. In SVD-based phase
selection (SPS), on the other hand, we consider the SVD of
the channel matrix H =

[
h1 · · · hK

]T ∈ CK×Nt given by
H = UΛV†, where the columns of the unitary matrices U and
V =

[
v1 · · · vNt

]
are the left and right singular vectors of

H, respectively, and Λ is a diagonal matrix that holds on its
diagonal the singular values of H in a descending order. In this
case, we define the phases of the RF precoder as [16]

φm,n = θm,n, m ∈M, n ∈ N , (15)

where θm,n is the phase of the m-th element of vn. Once
fixing the RF precoder via RPS or SPS, the BB precoder can be
obtained by solving P4 (first approach mentioned in Sec. II-B).

B. Stochastic Optimization Approach

The non-convex joint optimization problem can be solved
iteratively based on P5 (second approach mentioned in
Sec. II-B). Let the RF precoder be expressed as FRF = g (Φ) =
ejΦ, where Φ ∈ RNt×NRF . Then, the cost function of P5
is given by f (Φ) =

∥∥∥W∗ − g (Φ) F
(i)
BB

∥∥∥2

F
. We start from a

random RF precoder F
(0)
RF , where the phases Φ0 are computed

according to the HP-RPS scheme. At the i-th iteration, given
F

(i)
RF , the BB precoding matrix is computed by

F
(i)
BB =

(
F

(i)
RF

)†(
F

(i)
RF

(
F

(i)
RF

)†)−1

W∗, i = 0, 1, . . . . (16)



For the update of the RF precoding matrix, we have to find
Φi+1 that minimizes the cost function f (Φ):

F
(i+1)
RF = argmin

Φ

∥∥∥W∗ − g (Φ) F
(i)
BB

∥∥∥2

F
. (17)

We note that f has multiple local minima. Nevertheless, this
function is smooth and its gradient is given in Eq. (19) at the
top of the next page [23].

Consider a random matrix S ∼MNNt×NRF (M,Σ,Ψ) with
vec (S) ∼ NNtNRF (vec (M) ,Ψ⊗Σ). Let M = 0Nt×NRF ,
Σ = b2INt , Ψ = c2INRF , and µ = bc. Then, the probability
density function (p.d.f.) of this matrix is given by

p (S, µ) =
e
− 1

2µ2
‖S‖2F

µNt×NRF

√
(2π)

Nt×NRF

. (20)

We apply convolutional smoothing to the cost function f
by using the weighting Gaussian p.d.f. p (S, µ). The smoothed
approximation of the cost function can be expressed as:

fµ (Φ) = (p ∗ f) (Φ) =

∫
RNt×NRF

p (S, µ) f (Φ− S) dS

=

∫
RNt×NRF

p (S) f (Φ− µS) dS, (21)

where p (S) = p (S, 1). Hence, fµ (Φ) = ES [f (Φ− µS)] and,
therefore,

∇Φfµ (Φ) = ES [∇Φf (Φ− µS)] . (22)

The two-sided gradient estimate is given by Eq. (23) at the top
of the next page [23]. In Eq. (23), N denotes the number of
samples used for the gradient estimation; N = 1 corresponds
to a stochastic approach.

Based on the above, instead of trying to minimize the original
cost function, we attempt to solve the following stochastic
optimization task in each iteration:

P6: min
Φ
{fµi (Φ) = ES [f (Φ− µiS)]} , (24)

where the sequence {µi}i∈N is strictly decreasing with
limi→∞ µi = 0. In practice, a sequence with finite length
L is sufficient for the approximation. The SGD algorithm is
employed for the update of the phases in each iteration. The
HP via stochastic approximation with Gaussian smoothing (HP-
SAGS) and SGD algorithms are presented in Algorithm 1 and
Algorithm 2, respectively, where εt and ε are the convergence
accuracy and threshold of SGD, while η is its step size.

C. Computational Complexity and Convergence

The computational complexity of the interior-point algo-
rithm that is used by CVX to solve the dual problem
of an X-dimensional optimization task with Y variables is
O
(√

Y X
(
Y 3X2 + Y 2X3

))
[7]. Regarding P3, we have X =

Nt and Y = K when a fully-digital transmitter is utilized,
whereas X = NRF and Y = K when HP-RPS or HP-SPS is
applied. In any case, the algorithm is guaranteed to converge
to the optimal solution, since the SDR is tight.

Algorithm 1 Hybrid Precoding via SAGS
1: procedure HPSAGS(W∗,Φ0, (µi)

L−1
i=0 , η, Tmax, ε)

2: Set i← 0
3: while i < L do
4: Select µ← µi
5: Compute F

(i)
BB in Eq. (16) with F

(i)
RF = g (Φi)

6: Φi+1 ← SGD
(
F∗,Φi,F

(i)
BB , µ, η, Tmax, ε

)
using Alg. 2

7: Set i← i+ 1
8: end while
9: Compute F

(L)
RF = g (ΦL) and F

(L)
BB from Eq. (16)

10: Output: F
(L)
RF ,F

(L)
BB

11: end procedure

Algorithm 2 Stochastic Gradient Descent

1: procedure SGD(F∗,Φi,F
(i)
BB , µ, η, Tmax, ε)

2: Set t← 0, εt ←∞ and Φ
(t)
i ← Φi.

3: while t < Tmax and εt > ε do
4: Draw one sample from p (S, 1) in Eq. (20).
5: Compute the gradients at Φ

(t)
i + µS,Φ

(t)
i − µS using Eq. (19)

6: Compute ∇Φfµ
(
Φ

(t)
i

)
in Eq. (23) with N = 1

7: Update gradient Φ
(t+1)
i ← Φ

(t)
i − η∇Φfµ

(
Φ

(t)
i

)
8: Set εt ←

∥∥∥Φ
(t+1)
i −Φ

(t)
i

∥∥∥
F

/∥∥∥Φ
(t)
i

∥∥∥
F

and t← t+ 1

9: end while
10: Output: Φi+1.
11: end procedure

The computational efficiency of the HP-SAGS algorithm,
on the other hand, which runs much faster than, for instance,
MDP [23], is expressed in terms of its worst-case complex-
ity O

(
NtN

2
RFLTmax

)
, where Tmax represents the number of

iterations [23]. Moreover, the convergence of this algorithm
cannot be proven, since the optimality of alternating minimiza-
tion approaches for non-convex optimization tasks is still an
open problem [24]. Nonetheless, we validated via numerical
simulations that the relative error is strictly decreasing in the
vast majority of the independent Monte Carlo simulation runs.

D. Total Power Consumption at the Transmitter

Based on [25], [26], the total power consumption at the AP
for the cases where a fully-digital or an A/D fully-connected
transmitter architecture is utilized is given by

PD =Nt (Nt + 1)

(
1

η0
PTX

)
+Nt (PRFC + PDAC) + PBB , (25)

PA/D =Nt (NRF + 1)
1

η0
PTX +NRF (PRFC + PDAC)

+ PBB +NtNRFPPS , (26)

where 0 ≤ η0 ≤ 1 is the power amplifier efficiency, PTX
denotes the transmission power, PBB corresponds to the power
consumption of the BB unit, and PRFC , PDAC , and PPS refer
to the power consumption of each RF chain, digital-to-analog
converter, and phase shifter, respectively. The power consump-
tion reduction that can be achieved with the A/D transmitter
architecture is given by ηpc = PA/D/PD. Clearly, smaller
values of ηpc imply larger power consumption reduction.



∇Φf (Φ) = −2Re
{
jg (Φ)�

(
W∗ − g (Φ) F

(i)
BB

)∗ (
F

(i)
BB

)T}
. (19)

∇Φfµ (Φ) =
1

2N

N∑
n=1

(
∇Φf

(
Φ + µS[n]

)
+∇Φf

(
Φ− µS[n]

))
. (23)

IV. FIXED HYBRID PRECODING SCHEMES

Consider a HP method where the RF precoder FRF ∈
CNt×NRF is computed based on the HP-RPS or HP-SPS
schemes. Let us define the effective channel after the appli-
cation of the RF precoder H̃ =

[
h̃1 · · · h̃K

]T ∈ CK×NRF

as H̃ = HFRF, where h̃k ∈ CNRF . In HP-RPS-ZF or HP-SPS-
ZF, a ZF BB precoder FZF

BB ∈ CNRF×K follows the RPS or
SPS based RF precoder, respectively, in order to manage the
inter-user interference. This precoder is defined as

FZF
BB = H̃# = F†RFH

†
(
HFRFF

†
RFH

†
)−1

. (27)

We express the BB precoder in terms of its BF vectors ac-
cording to Eq. (11). Then, we decompose these non-normalized
BF vectors as fBB

k =
√
Pkf

BB,f
k (k ∈ K), where fBB,f

k is the
normalized BB BF vector for the k-th user with

∥∥∥fBB,f
k

∥∥∥ = 1 and

Pk is the power allocated to the k-th UE. Let Gkj =
∣∣∣h̃†kfBB,f

j

∣∣∣2.
Then, in order to obtain the optimal power allocation and
PS parameters, we formulate the following TTP minimization
problem:

P7: min
{Pk,ρk}

∑
k∈K

Pk (28a)

s.t.
(

1

γk
+ 1

)
GkkPk ≥

1

ρk
σ2
c +

∑
j∈K

GkjPj + σ2, k ∈ K

(28b)∑
j∈K

GkjPj + σ2 ≥ Qk
1− ρk

, k ∈ K (28c)

Pk ≥ 0, 0 ≤ ρk ≤ 1, k ∈ K. (28d)

This problem is convex and can be solved using CVX.

V. PERFORMANCE EVALUATION VIA SIMULATIONS

In this section, we comparatively evaluate the performance
of the proposed HP methods versus the one achieved by the
optimal fully-digital precoding scheme via numerical simula-
tions. The simulation parameters are summarized in Table I.
Note that, for convenience and without loss of generality, we
consider the same SINR and EH thresholds for all users.

In Fig. 3 is illustrated the minimum achievable SINR and
EH ratio for an EH threshold ranging in −25 dBm ≤ Q̄ ≤
−5 dBm. We see that the HP-SAGS outperforms the other
methods and provides a favorable complexity-performance
trade-off. We also note that the variants that employ a ZF BB
precoder perform worse than their counterparts. The reason

TABLE I
SIMULATION PARAMETERS

Number of transmit antennas Nt = 8
Number of RF chains (A/D transmitter) NRF = 4
Number of single-antenna terminals K = 2
Distance of the k-th user from the AP [m] dk ∼ U (1, 5)
AoA for the k-th user [rad] ϕk ∼ U (−π, π)
Carrier frequency [MHz] 915
Rician factor [dB] 5
Reference distance [m] 1
Path loss at reference distance [dB] 31.67
Path loss exponent 2.5
AWGN power [dBm] −70
Circuit noise power [dBm] −50
Transmit power budget [W] 2
SINR threshold [dB] γ̄k = γ̄ = 10
EH threshold [dBm] Q̄k = Q̄ = −15
Power amplifier efficiency η0 = 0.5
BB unit power consumption [mW] PBB = 5
RF chain power consumption [mW] PRFC = 40
DAC power consumption [mW] PDAC = 200
Phase shifter power consumption [mW] PPS = 30

for that is twofold: (i) In this case, the digital precoder is
not optimized. In fact, interference cancellation improves the
SINR but reduces the harvested power at the terminals. (ii)
ZF precoding is inherently power-inefficient. Furthermore, we
notice that for more stringent EH constraints, the performance
gap between the fully-digital and HP solutions is reduced.

In Fig. 4, the power consumption reduction achieved by HP-
SAGS and HP-SPS as a function of the number of RF chains
in the A/D transmitter is depicted, assuming Nt = 8. We
observe that HP-SAGS provides greater power consumption
reduction than HP-SPS. This is essentially translated into
smaller transmission power, since the remaining components of
the power consumption equations are the same. Fig. 4 indicates
also that as the number of RF chains increases, the power saving
attributed to HP is reduced, as expected.

VI. CONCLUSIONS

In this paper, we presented several frequency-agnostic low-
complexity HP methods for broadcast MISO SWIPT, as a step
towards end-to-end energy-sustainable wireless communication
networks. Numerical simulations demonstrated that the pro-
posed HP-SAGS scheme achieves good performance and sub-
stantial power consumption reduction without suffering from
the inherent computational complexity of other approaches such
as the ones described in [10]–[12].
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