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Abstract—The Cloud-RAN (C-RAN) paradigm is envisioned
to increase the efficiency of future mobile networks by moving
the computational resources needed at the Remote Radio Heads
(RRH) to the cloud infrastructure. In this work, we provide
a framework that optimizes the number of allocated virtual
resources by considering both the computational requirements
of the RRH and the Quality of Service of users, which could
experience loss of service due to reassociations between the RRH
and the virtual machines. The provided optimization framework
is supported by data coming from a real mobile network of a
middle-sized European city, which provides an estimate for the
computational loads coming from the RRH. We evaluate the
performance of the framework in different scenarios, analyzing
the impact of different forecasting algorithms as well as different
look-ahead intervals for the predictions (short-term / long-term).
The results obtained by our framework can be used to assist
network operators in the optimization of C-RAN resources and
shed some light on the interplay between forecasting errors and
overall performance.

Index Terms—forecasting DSP load, decoding, DSP, OAI, C-
RAN

I. INTRODUCTION

The emerging 5G-and-Beyond networks will strongly rely
on the concept of Network Function Virtualization (NFV),
enabling network operators to move all network functions,
pertaining to both Core and Radio Access Network (RAN),
into the Cloud. Indeed, the so-called Cloud-RAN (C-RAN) ar-
chitecture envisions the aggregation of computational resources
of all Base Stations (BS) in a centralized baseband unit (BBU)
pool, which is connected to a densely distributed set of Remote
Radio Heads (RRH) through high capacity links [1]. Such an
approach is able to optimally allocate computational resources
in a dynamic way to the individual RRH, whose hardware
design is much simpler than legacy LTE eNodeBs. Compared
to traditional architectures, the C-RAN approach is envisioned
to lower overall hardware costs and energy consumption, at the
same time increasing spectral efficiency and network resource
utilization [2]–[5].

However, the actual realization of the C-RAN vision is not
without its challenges: first, the complexity of the front-haul
network (the network portion connecting the RRH with the
BBU pool) is increasing due to the higher and higher bandwidth
requirements. For the same reason, the time requirements of
the Digital Signal Processing (DSP) functions (e.g., frame
(de)modulation, (de)coding, and IFFT/FFT) to be implemented
at the BBU are tighter and tighter. It follows that performing
a paradigm shift in which such DSP functions are executed

on General Purpose Processing hardware (GPP) in the Cloud,
rather than on specialized hardware, is a complex operation
which may be successfully completed only by (i) properly
characterizing the computational requirements needed at the
BBU and (ii) being able to accurately forecast them so that
optimal dynamic reallocation (up/down scaling) of the virtual
resources can be accomplished.

This paper focuses exactly on such two aspects: first, the
computational load required for executing the decoding func-
tions of a real cellular network is characterized, starting from
a dataset of measurements related to the radio resources such
as Modulation and Coding Scheme (MCS) and used Physical
Resource Blocks (PRB). The characterization is performed
relying on the Open Air Interface (OAI) simulator, which
allows us to accurately evaluate the computational load needed
for frame decoding. Then, the obtained computational load
requirements are predicted using different forecasting models
and prediction look-ahead intervals, in order to thoroughly
characterize the prediction error. Finally, the results of these
two steps are used to cast a robust optimization problem which
minimizes the number of BBU resources needed (e.g., the
total cost for the network operator), while ensuring enough
computational resources for in-time decoding. The problem is
solved over multiple time intervals, also taking into account
possible re-associations between RRHs and BBU pools, which
could possibly impact the users’ Quality of Service. The result-
ing framework can be used to assist network operators in the
optimization of C-RAN resources, also giving insights on the
interplay between forecasting look-ahead intervals, prediction
errors, and overall performance.

The remainder of this paper is organized as follows: Sec-
tion II reviews related works in the literature; Section III
gives an overview of the system model, while the optimization
problem is formulated in Section IV. The characterization of
computational load and related forecasting insights are given in
Section V and Section VI respectively. Section VII reports on
the performance results obtained and Section VIII concludes
the paper and highlights future research directions.

II. RELATED WORK

Many recent works discuss the possibility of executing
network-related DSP functionalities in the cloud, according to
the C-RAN vision [3]. For what concerns frame decoding in
particular, some works focus primarily on obtaining speeded-
up implementations through the use of GPU and multicore



CPUs [6] or parallel architectures [7], which can be utilized in
Cloud scenarios. At the same time, several works analyze and
emphasize the computational complexity of frame decoding,
which is directly influenced by several network-related param-
eters, such as the Moduling and Coding Scheme (MCS), the
number of Physical Resource Blocks (PRB) to be processed
at the same time, the current Signal-to-Noise Ratio (SNR), as
well as Cloud-related parameters such as the CPU frequency
and number of cores of the particular virtual machine used for
decoding. The work in [8] gives an excellent review of the
related work in the area of C-RAN complexity requirements
characterization.

In order to perform realistic, repeatable and scalable exper-
iments in such a scenario, Nikaein et. al propose Open Air
Interface (OAI), an open-source reference software implemen-
tation1 of 3GPP-compliant LTE/LTE-A systems [9]. The frame-
work has been used in several works related to modeling and
analysis of the computational requirements of DSP decoding
functionalities in Cloud environments. As an example, [10]
proposes the CloudIQ resource management framework, where
OAI is used to implement and demonstrate such a solution in
a realistic scenario. Authors show that C-RAN architectures
can potentially save as much as 22% in computing resources
compared to legacy approaches, by exploiting the variations
in the processing load across base stations. In [11] virtual DSP
functions are implemented on OAI, where different virtual tech-
nologies (e.g., virtual machines, containers) are compared in
terms of total computing times for different values of MCS and
PRB. It is demonstrated that the processing requirements are
dominated by uplink decoding and can be estimated accurately
as a function of PRB, MCS and the virtualization environment.
The OAI framework is also leveraged in [12] to characterize the
computation energy consumed by a BBU pool. Consequently,
authors cast a resource allocation problem to minimize the
number of active virtual machines and therefore obtain energy
savings.

Several works are focused on optimizing the association
between RRHs and the BBU pool with the goal of either
reducing power consumption [13]–[15] or the total system
cost [16]. In [13] RRH DSP requirements from two template
cells (business/residential areas) of a real mobile network are
split in tasks (decoding, modulation, FFT/IFFT) and each
task is allocated to a different BBU so that the total power
consumption is minimized. The problem is solved through a
simulated annealing heuristic, showing power consumption sav-
ings between 5% and 20% compared to a static, non-virtualized
architecture. In [16], authors focus on minimizing the total
system cost, letting each UE to connect to multiple VMs
in the BBU pool and considering limited fronthaul capacity.
Each VM in the system is modeled as a FIFO queue, and
the resulting problem is solved optimally with efficient search
algorithms. However, all system parameters are set to arbitrary
values, and no realistic datasets are used. Finally, Boulos et
al. in [15] focus on RRH-BBU association optimization. The

1https://www.openairinterface.org/

problem is formulated as a bi-objective problem, minimizing
both power consumption and, similarly to our work, the total
number of RRH re-associations to a new BBU. The problem is
solved using a heuristic derived from the bin-packing problem
literature. Again, simulation parameters are chosen arbitrarily,
without leveraging realistic network datasets. To the best of
our knowledge, this is the first work that studies the impact
of DSP computational load forecasting on the optimal DSP
resource allocation framework performed on a realistic LTE
network dataset.

III. PROBLEM OVERVIEW

We consider a C-RAN network consisting of N RRHs,
connected to a BBU pool formed by M virtual machines (VM).
Each VM is responsible for executing the DSP functions of
one or more associated RRHs, and we assume that an RRH
may be connected to only one VM (e.g., M ≤ N ). At any
instant, only a subset of m ≤ M VMs is active, providing
enough computational resources to serve all RRHs. It is well
known that among the different DSP functions, frame decoding
is the most intensive one [11]. In this paper, we, therefore,
assume that the requirements of each RRH are dominated by
the decoding operation, whose computational complexity is
determined by the number of used PRBs, the MCS distribution
(i.e., the number of bits carried by each PRB) and the SNR.
Furthermore, we treat the scheduling algorithm controlling
the RRH (i.e., deciding how many PRBs to allocate and the
corresponding MCS distribution) as a black box and we assume
that our framework is able to observe only the output of
such a black box. This scenario closely reflects the knowledge
available at the operator side, which generally cannot modify
the operational details of the scheduler algorithm, but it is able
to observe the network KPIs resulting from its use.

We assume that the network operator relies on a third-party
platform for managing and running the VMs, paying a price for
the service which depends on how many VMs are active and
for how long. The main objective of the operator is to minimize
the total cost for the virtualization service, which requires to
forecast the computational requirements of all the RRHs in
order to activate/deactivate VMs accordingly. The process is
subject to two main constraints, both related to the Quality of
Service perceived by users of the network:

1) In-time decoding: frame decoding for each RRH must be
completed by the BBU within stringent time requirements
(the typical HARQ loop lasts a few ms in LTE [11], [17]).
Any delay in the process due to under provisioning of the
virtual resources may lead to the expiration of the corre-
sponding timeouts and triggers of frame retransmissions
at the user side, thus decreasing its QoS.

2) BBU-RRH reassociation: upon sudden peaks in the com-
putational requirements or any changes in the number of
active VMs, some of the RRHs will need to re-associate
to a new VM in the BBU pool. Depending on how such a
reassociation is handled, the process may cause all users
connected to the RRH to experience a loss of QoS. Such an
issue should be considered by the optimization framework.



IV. PROBLEM FORMULATION

The problem described in the previous section can be for-
malized as a bin packing problem. Time is divided into discrete
epochs of arbitrary length: at each epoch t the computational
requirements of all RRHs are fit to the smallest possible number
of VMs.

A. Decision variables

Let xi,j,t, 1 ≤ i ≤ N , 1 ≤ j ≤ M , be a binary variable
defined as:

xi,j,t =


1, if the i-th RRH is associated to the j-th VM

during epoch t,
0, otherwise.

(1)
Since each RRH must be associated to exactly one VM in each
epoch, we have that:

M∑
j=1

xi,j,t = 1, ∀i, t. (2)

At each epoch, a VM in the BBU pool can be active (i.e.,
associated to at least one RRH) or inactive. Let yj , t be a binary
variable tracking the state of each VM in each epoch, defined
as:

yj,t =

{
1, if

∑N
i=1 xi,j,t > 0,

0, otherwise.
(3)

It is easy to show that (3) can be rewritten using the two
following linear constraints:

N∑
i=1

xi,j,t ≤ yj,t ∗N, ∀j, t, (4)

N∑
i=1

xi,j,t ≥ yj,t, ∀j, t. (5)

B. QoS-related constraints

At the beginning of each epoch t, the operator forecasts
the computational load ci,t (expressed in the number of CPU
cycles) required for decoding frames coming from the i-th RRH
and uses it to allocate VMs properly. As aforementioned, two
constraints related to the QoS perceived by users should be
considered:

1) In-time decoding: frame decoding has strict time require-
ments, which must be satisfied in order to avoid QoS
degradation. Let d be the deadline (in seconds) for de-
coding frames at the BBU pool, and b the computational
budget (i.e., the CPU frequency) of each VM (in Hz). To
ensure that all frames are decoded within the deadline by
the BBU pool at epoch t, we may write:

N∑
i=1

xi,j,t ∗ ci,t ≤ yj,t ∗ b ∗ d ∀j. (6)

For simplicity, here we assume that all VMs have the same
computational budget b, although the model can be easily

generalized to the case where VMs have different CPU
frequencies.

2) RRH-BBU reassociation: due to load variations, an RRH
may be associated to different VMs between two consec-
utive epochs. During reassociation, all users connected to
the RRH may experience a loss of QoS, e.g., due to forced
handovers to other RRHs. Let ri,j,t be a binary variable
defined as:

ri,j,t =

{
1, if xi,j,t 6= xi,j,t−1,

0, otherwise.
(7)

Again, ri,j,t can be formalized with the help of the
following linear constraints:

xi,j,t − xi,j,t−1 ≤ ri,j,t, (8)
xi,j,t−1 − xi,j,t ≤ ri,j,t. (9)

Rather than expressing a direct constraint, RRH-BBU re-
associations are managed as a penalty term in the objective
function, as explained next.

C. Objective function

Let p be the per-VM price paid by the operator to the third-
party for managing the virtualization service in each epoch
(e.g., hourly or every 15 minutes). We assume that the operator
is able to forecast future RRH loads in a time window T
composed of several epochs (i.e., t = 1 . . . T ). The operator’s
goal is to minimize the following objective function:

J =

T∑
t=1

M∑
j=1

p ∗ yj,t + α

T∑
t=2

1

2

M∑
j=1

N∑
i=1

ri,j,t, (10)

where the first term captures the total cost for running the
VMs, the second term is a penalty introduced to limit the
number of RRH-BBU reassociations and the variable α is a
scaling factor which could be used for balancing the two terms
and prioritizing one over the other. The term 1

2 is added to
avoid counting twice a reassociation of an RRH from one VM
to another. Note that here we assume the cost p to be time-
invariant, although the model could be easily generalized to
the case where p changes with time.

V. LOAD CHARACTERIZATION

A. Dataset

In order to characterize the loads ci,t, we leverage a dataset
containing measurements from 443 LTE base stations deployed
in a middle-sized European city, all working at a frequency
of 2100 MHz and with a channel bandwidth of 10 MHz.
For each base station, two weeks of data sampled in 15
minutes are available. We focus on two specific measurements,
namely the MCS and PRB utilization uplink distribution. The
former reports the distribution of uplink MCS assigned by the
scheduler in each 15-minute interval, while the latter tracks the
distribution of used uplink radio resources (i.e., how many of
the 50 PRBs available in the 10 MHz channel are allocated
to users) in each 15-minute interval. Such distributions are
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Fig. 1: Maximum MCS (top) and PRB (bottom) utilization profiles of one base
station in the dataset over a full week.

pre-processed in order to obtain two single-valued time series,
by picking the maximum MCS and PRB utilization values
that occurred within each time interval. We prefer such a
conservative approach, rather than using the distribution mean,
in order to ensure that the worst-case scenario in terms of the
computational load is considered. Fig. 1 shows the MCS and
PRB traces for one base station in the dataset relative to one
week.

B. Emulation with OAI

The MCS and PRB traces are input to the Open Air Interface
(OAI) platform, which allows emulating the full 3GPP LTE
protocol stack, including highly optimized baseband process-
ing functionalities such as turbo decoding. In particular, we
leverage the ulsim tool of OAI, which emulates the Physical
Uplink Shared Channel (PUSCH) decoding pipeline at the
eNodeB. The tool allows to specify several input parameters,
including the sub-frame MCS, the current PRB load (how many
resource blocks are allocated to the user), channel parameters
such as bandwidth and SNR, as well as other options (e.g., the
number of iterations of the turbo decoder). For a given input
configuration, the tool emulates the decoding process and keeps
track of the corresponding CPU time t. Knowing the CPU
frequency f , it is possible to express the computational load
for decoding as c = f ∗ t. Fig. 2 shows the computation load
in Million Operations (MOP), obtained with OAI at different
MCS and PRB working points, averaged over 1000 sub-frames.
Due to the lack of fine-grained SNR measurements in our
dataset, simulations were run setting the lowest possible SNR
value allowed for each MCS configuration, which corresponds
to the working point with the highest computational load, as
demonstrated in [8], [18]. All tests were performed on a single-
core Intel(R) Xeon(R) CPU E5-1660 v3 @ 3.00GHz, 16 GB
RAM, with Ubuntu 16.04 OS, using an AWGN channel with
a bandwidth of 10 MHz (as in our dataset), setting the number
of iterations of the decoder to 4.
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Fig. 2: Computational load generated with OAI simulation for channel band-
width 10 MHz over all MCS and for different PRB utilization.

C. Estimation of RRH computational load

The curves in Fig. 2 are used to compute a load profile for
each base station in the dataset, starting from the MCS and PRB
traces described in Section V-A. We observe that different base
stations are characterized by different load profiles. Therefore
we perform k-mean clustering over the traces, choosing the
best k using both Silhouette and Davies-Bouldin cluster quality
indexes. We reveal the existence of 3 distinct clusters, shown
in Fig. 3, where each cluster centroid is represented by the red
bold line. As it can be observed, all clusters are characterized by
the day/night fluctuation typical of mobile traffic. However, the
first cluster is mainly composed of base stations characterized
by a constant, high load throughout the whole week, with a very
small decrease during nights. In the second cluster, the load
during nights is approximately halved, while the third cluster is
composed of cells that are completely offloaded during nights.
Among the 443 base stations in the dataset, 48% belong to the
first cluster, 9% to the second, and 43% to the third. We refer
to these three clusters as High Load (H), Moderate Load (M)
and Low Load (L), respectively.

VI. LOAD FORECASTING

A. Look-ahead interval

The optimization problem proposed in Section IV needs
as input the loads ci,t for the entire time window T . We
assume that load forecasting is performed up to a certain
prediction horizon, which we refer to as look-ahead interval
L. As an example, if each epoch t lasts 15 minutes and
L = 4, forecasting is performed to obtain load values up to
1 hour in the future. Note that L controls how many times
the optimization problem needs to be solved. When L = T the
forecast algorithms predict all values ci,t and only one instance
of the problem is solved. When L < T , the optimization
problem is solved dT/Le times, each time considering only the
L available predicted loads. In this latter case, we substitute the
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term T in (10) with L, and the variables ri,j,0 at the beginning
of each look-ahead interval except for the very first are stored
from the previous interval and passed as input parameters.

B. Forecasting algorithms

Let t be the epoch at which forecasts need to be computed.
We consider three different options for computing the predicted
load samples ci,l, l = t+ 1, . . . , t+ L:

• Last value (LV): predictions are obtained copying the last
available load sample ci,t, that is ci,l = ci,t.

• Last day (LD): the future samples are obtained from the
samples available from the last 24 hours, that is ci,l =
ci,l−96 when each epoch lasts 15 minutes.

• Multiple Linear Regression (MLR): the forecasts are ob-
tained using a machine learning model trained for pre-
dicting the next sample starting from W past samples,
that is ci,l = β0 +

∑W
k=1 βk · ci,l−k. Note that only the

sample ci,t+1 is predicted from past samples, while all
other forecasts up to L are predicted starting from already
predicted values. The model parameters βk and the value
of W are chosen following a standard machine learning
approach: the entire set of computational loads ci,t is di-
vided into training (first week of data) and test set (second
week). The model is trained and the parameters are chosen
so as to minimize the training Root Mean Squared Error
(RMSE). The value of W resulting from such a process is
equal to 96 samples, corresponding to one day. Increasing
values of W resulted in negligible improvements with a
considerably higher amount of memory used, and were
hence not considered.

C. Performance comparison

Fig. 4 shows the distributions of RMSE values for different
forecasting approaches and look-ahead intervals. Each boxplot
reports the average RMSE over all base stations in the dataset
(the bold line), as well as the 25th and 75th percentile. Whiskers
correspond to the minimum and maximum RMSE values.
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Fig. 4: Distributions of RMSE values for different forecasting methods over
different look-ahead intervals.

The following considerations can be done: (i) in general, as
expected the RMSE increases as look-ahead interval increases;
(ii) among all algorithms, MLR outperforms both LD and LV
for small look-ahead intervals, not only in terms of average
error but also in terms of maximum RMSE; (iii) for larger
look-aheads (e.g. 4 hours) the performance of MLR and LD are
similar on average, with MLR showing much lower variance
at small look-aheads; (iv) the LV algorithm shows the worst
performance among all methods. In the following section, we
use such an error characterization to analyze the impact of using
different algorithms and look-ahead intervals in the C-RAN
optimization problem.

VII. EXPERIMENTS

A. Setup

We evaluate the optimization framework considering 60 out
of the 443 available base stations, randomly selected from the
dataset according to the same cluster distribution reported in
Section V-C. The time window T is set to one day, coinciding
with the first day of the test week, and four look-ahead intervals
are tested: 15 minutes, 1 hour, 2 hours, and 4 hours. The
problem formulated in Section IV is implemented with Python
using the Gurobi interface and solved on an Intel(R) Xeon(R)
CPU E5-2640 v4 @ 2.40GHz, 40 cores, 126 GBs of RAM,
running Ubuntu 16.04 OS. In order to provide realistic values
for our scenario, we use parameters derived from the popular
Amazon EC2 cloud service. In particular, we set the budget
value b to 10 MOP, which corresponds to a price p of 0.2016
dollars for every 15-minute occupation of the resources.

B. Benchmarks

As a first experiment we run the optimization problem setting
α = 0, that is without considering RRH-BBU reassociations,
and assuming the availability of an oracle algorithm which is
able to forecast the L future load values perfectly. This serves
as a benchmark to evaluate the minimum VMs’ cost paid by
the operator in case of dynamic resource allocation. Fig. 5
compares such cost (in the number of allocated 15-minute
instances) with two other benchmarks: (i) static C-RAN, where
VMs are allocated in a static fashion through over-provisioning,



0.25 1.0 2.0 4.0
Look-ahead interval [hours]

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f a
llo

ca
te

d 
15

-m
in

ut
e 

in
st

an
ce

s
dynamic C-RAN static C-RAN without C-RAN

Fig. 5: Number of allocated 15-minute virtual instances for three benchmarks
over different look-ahead intervals, without considering moving cost penalties.

considering the peak load of each RRH and letting RRHs to
share the same VM instance; (ii) without C-RAN, representing
a scenario in which each RRH is associated with one full VM
instance, without the possibility of sharing resources among
RRHs. As one can see from Fig. 5, dynamic C-RAN allocation
is able to provide considerable cost savings, in the order of 25%
compared to the static C-RAN case and 2.5 times better than
without C-RAN. Note also that the look-ahead interval does
not have any effect in this case, since i) the prediction returned
by the oracle are not affected by the look-ahead interval and
ii) reassociations are not contemplated, making the temporal
dependency between adjacent epochs (i.e., the second term of
(10)) irrelevant.

C. Numerical results

Next, we run the optimization problem with different values
of α and considering several pairs of forecast algorithms and
look-ahead intervals. Note that, as illustrated in Fig. 4, each
pair is characterized by a different RMSE distribution. Since
the forecasts are used in (6) as input to the optimization
problem, it is important to leverage the knowledge of the RMSE
distribution to avoid that the predicted load are underestimated,
which would result in insufficient provisioning of VMs. We
take here a worst-case robust optimization approach in which
the forecasted loads ci,t are augmented with a value ε, which
is set equal to the maximum RMSE observed for the particular
algorithm/look-ahead interval pair under consideration. In this
way, we ensure that the active VMs are always enough to satisfy
the RRHs’ requirements, even when the forecasts are affected
by the maximum error. This satisfies the first QoS constraint
introduced in Section III. The four graphs in Fig. 6 show the
results obtained for different values of α in the set {0.1, 0.5, 1,
100}, that is gradually increasing the importance of minimizing
the RRH-BBU reassociations. Each graph shows on the left
side with solid bars the total VM cost (expressed in percentage
increase over the dynamic C-RAN benchmark), while on the
right side the number of reassociations (striped bars). We note
that:

• A clear trade-off is visible between the two terms of
the objective functions: small values of α keep the cost
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increase around 10% for all algorithm/look-ahead interval
pairs, with an associated number of reassociations higher
than 10 in most cases. Conversely, higher values of α are
able to reduce considerably the number of reassociations
at higher VM cost. An interesting case is given by the
LV predictor (red bars) for α = 100: the high error
associated with the LV algorithm has the effect of greatly
overestimating the RRH load requirements, making the
solution similar to the static C-RAN scenario. In this case,
no reassociations are performed.

• For low values of α, the optimal look-ahead interval
changes according to the algorithm used. As an example,



Look-ahead
interval (h)

No. of problem
solved

No. of variables
per problem

Total
solving time (s)

0.25 96 544 22
1 24 2176 363
2 12 4352 1855
4 6 8704 25016

TABLE I: Solving times for different look-ahead intervals.

for α = 0.1 and 0.5, the VM cost decreases as the look-
ahead interval increases in the LD and LR cases. This does
not hold for the LV case, for which the RMSE increases
drastically as the look-ahead interval expands.

• For high values of α, the number of reassociations in-
creases as the look-ahead interval increases for the LD and
LR case, suggesting that short-term predictions should be
preferred in place of long-term ones.

• In general, and as expected, no solution is able to decrease
simultaneously both the number of reassociations and the
VM cost. It is therefore the operator’s duty to tune the α
parameter according to the preferred scenario.

D. Problem complexity

As explained in Section VI-A, the look-ahead interval con-
trols the number of optimization problems run in the entire
interval T . Note that each problem is essentially a bin-packing
problem, which is known to be NP-hard. Table I shows the
solving times for α = 0.1, in the dynamic C-RAN with oracle
scenario and with 60 BS. As one can see, a higher look-ahead
interval means higher solving time. This is promising for cases
where short-term predictions provide better results than long-
term ones, as solving multiple small instances of the problem
is much more efficient than solving less larger. Tackling large
instances of the problem, entailing hundreds of RRHs and with
time intervals spanning over weeks, requires the development
of specific heuristic algorithms, which are left as future work.

VIII. CONCLUSION AND FUTURE WORKS

In this paper we introduce a framework that exploits com-
putational loads forecasting to optimally allocate VM instances
in a C-RAN architecture, additionally taking into account the
number of service interruptions for the final users due to RRH-
BBU reassociations. The outcomes of this work can be used
for various cases of 5G-and-Beyond networks in which DSP
resources of RAN are virtualized and combined with dynamical
algorithms for re-allocation of virtual instances according to
the current network loads. Furthermore, in combination with
slicing technologies, our approach could be applied differently
for various slices since it allows different treatments of service
interruptions, which could be defined by a network operator.
Future works include (i) improving the prediction algorithms
to obtain oracle-like forecasts and (ii) developing a heuristic
algorithm to tackle larger instances of the problem, considering
hundreds of base stations and larger look-ahead intervals.
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