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Abstract—In this paper, we study the high-resolution chan-
nel estimation problem for intelligent reflecting surface (IRS)-
assisted millimeter wave (mmWave) multiple-input-multiple-
output (MIMO) communications, which is a prerequisite to guar-
antee further high-rate data transmission. Considering the typical
sparsity of mmWave channels, we formulate the cascaded channel
estimation problem from a sparse signal recovery perspective,
and then propose a novel two-step cascaded channel estimation
protocol to estimate the cascaded user-IRS-base station channel
with high-resolution for IRS-assisted mmWave MIMO commu-
nications. More specifically, the first step is to estimate the coarse
angular domain information (ADI) and further establish the
robust uplink by beam training. In the second step, by exploiting
the coarse ADI, an adaptive grid matching pursuit (AGMP)
algorithm is proposed to estimate the high-resolution cascaded
channel state information (CSI) with low complexity. Simulation
results verify that the proposed two-step channel estimation
protocol significantly outperforms the state-of-the-art scheme, i.e.,
beam training based channel estimation, and meanwhile can reap
near-optimal system performance achieved by perfect CSI.

Index Terms—Intelligent reflecting surface, millimeter wave,
high-resolution channel estimation.

I. INTRODUCTION

Millimeter wave (mmWave), as an essential technology
for 5G mobile communications, has attracted considerable
attentions from both academia and industry thanks to its suf-
ficient unoccupied spectrum resource [1]. However, mmWave
transmission inherently suffers from severe path-loss due to its
high operating frequency in the range of 30-300 GHz, which
poses a critical challenge for practical implementation [2].
Aiming to compensate the link-budget gap, large-scale antenna
arrays are usually equipped at transceivers to achieve direc-
tional beamforming with focused energy. However, the high
directionality coupled with poor penetrability makes mmWave
communications vulnerable to blockage events, which sig-
nificantly deteriorates the coverage capability and limits its
applications in urban cellular systems.

Recently, intelligent reflecting surface (IRS) is emerging as
a promising technology to achieve high spectral and energy
efficiency, and has been integrated into various communi-
cation systems on sub-6G band [3]–[5]. Specifically, IRS,
acting as a planar array, is composed of a large number

of low-cost passive reflective elements, which can smartly
steer the incident signals towards the dedicated directions
via a software-controlled manner [6]. Most recently, IRS is
also considered as an energy-efficient solution to combat the
blockage of mmWave communications by creating the virtual
light-of-sight (LOS) path [7]–[9]. Specifically, the authors in
[7]–[9] investigated the joint beamforming issue and verified
that the presence of IRS can improve the mmWave coverage
obviously. However, most of these works are based on the
assumption of perfect channel state information (CSI), while
CSI acquirement is actually a very challenging task, especially
for IRS-assisted mmWave communications. Specifically, on
the one hand, the introduce of IRS complicates the communi-
cation topology, and the user (UE)-IRS and IRS-base station
(BS) channels need to be estimated at the same time. On
the other hand, the passive IRS does not possess any signal
transmitting/receiving/processsing capabilities due to the lack
of active radio frequency (RF) chains, which results in that
the cascaded channel can be only estimated at receivers.

There are already some channel estimation schemes for IRS-
assisted wireless communications on sub-6GHz band [10]–
[14]. However, these schemes are not applicable to the IRS-
assisted mmWave multiple-input-multiple-output (MIMO)
communications. The reasons are listed as follows: 1) the
channel matrix has a large size due to the large-scale antenna
arrays deployed at both transceivers and IRS for mmWave
communications, which makes the entry-wise channel estima-
tion schemes suffer from prohibitive computation complexity
and pilot overhead; 2) the random phase of IRS is not
reasonable for high-directional mmWave links since beam
misalignment can significantly degrade the channel estimation
performance. Despite these difficulties, the research on channel
estimation for IRS-assisted mmWave communications is still
very limited [15]–[18]. Specifically, by exploiting the sparsity
of mmWave channels, the authors in [15], [16] studied the
compressive sensing (CS) based cascaded channel estimation
for IRS-assisted multiple-input-single-output (MISO) systems
with single-antenna transmitter/receiver. Moreover, the authors
in [17] divided the cascaded channel estimation into two
stages, i.e., estimating the BS-IRS channel and UE-IRS chan-
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Fig. 1. Illustration of the considered IRS-assisted mmWave MIMO system.

nel by equipping IRS with active RF chains, which makes
channel estimation a high energy-consuming operation. Most
recently, the authors in [18] proposed a beam training based
channel estimation scheme. However, due to the imperfect
hardware manufacturing technique, it is impractical to fab-
ricate IRS with infinite phase-resolution, which severely de-
grades the accuracy of channel estimation. We can observe that
there is little discussion on high-resolution cascaded channel
estimation for IRS-assisted mmWave MIMO communications,
while it is imperative for further system optimization and data
transmission.

In this paper, by exploiting the sparsity of mmWave chan-
nels, we formulate the cascaded channel estimation into
a sparse recovery problem. Taking the hardware-constraint
into consideration, we propose a two-step cascaded channel
estimation protocol to acquire high-resolution CSI. In the
first step, the beam training procedure is utilized to estimate
coarse angular domain information (ADI), which is regarded
as an important prior information for uplink establishment
and further high-resolution channel estimation. In the second
step, enhanced by the prior ADI acquired by the first step,
a low-complexity adaptive grid matching pursuit (AGMP)
algorithm is proposed to estimate the high-resolution cascaded
CSI. In particular, the beam training based channel estimation
scheme [18] is adopted as the benchmark. The simulation
results show that the proposed two-step channel estimation
protocol provides a more accurate CSI as compared to the
benchmark and reaps better system performance in terms of
spectral efficiency (SE).

Notation: j =
√
−1. A, a and A are matrix, vector and

set, respectively. AH , A∗ and AT denote conjugate transpose,
conjugate and transpose of A, respectively. A(i) denotes the
ith row of A. E (·) denotes the expectation operation. ‖A‖F
is the Frobenius norm of A. vec (A) represents the column-
wise vectorization of A, and its inverse operation is unvec (a).
A⊗B denotes the Kronecker product of A and B.

II. CHANNEL MODEL

We consider an IRS-assisted mmWave MIMO system con-
taining a single BS, a single IRS and a single user, which
is shown in Fig. 1. More specifically, the IRS is deployed to

provide a virtual LOS link for the user that is blocked by the
obstacles. Similar to [19], we consider that both BS and user
are equipped with an analog antenna architecture consisting of
a full-connection uniform linear array, where the numbers of
antennas are NBS and NUE , respectively. The IRS is equipped
with a planar array consisting of NI passive reflective elements
whose amplitude and phase can be adjusted dynamically via
the IRS-controller.

The geometric channel model is adopted to characterize
the channels for the considered IRS-assisted mmWave MIMO
communications, and the channel matrix H ∈ CNR×NT is
expressed as [20]

H =

√
NTNR
L

L∑
l=1

αlaR (NR, Φl)aT (NT , Ωl)
H
, (1)

where NT and NR denotes the number of antennas at trans-
mitter and receiver, respectively. L is the number of path, and
αl is the channel complex gain of the lth path. θ and ϕ denote
the angle-of-arrival (AoA) and angle-of-departure (AoD). For
convenience, we have Φ = cos (θ) and Ω = cos (ϕ), which are
called AoA and AoD in the rest of this paper. aR (·) and aT (·)
are the steering vectors at receiver and transmitter, respectively,
which are given by

aR (NR, Φ) =
1√
NR

[
1, ej2π

d
λΦ, ..., ej2π(NR−1)

d
λΦ
]T
,

aT (NT , Ω) =
1√
NT

[
1, ej2π

d
λΩ , ..., ejπ(NT−1)

d
λΩ
]T
,

(2)

where λ is the wavelength of the carrier, and d is the antenna
spacing which is equal to the half-wavelength. The channel
model in (1) can be written in a more compact form as

H = ARHaA
H
T , (3)

where Ha =
√

NTNR
L diag (α1, ..., αL) represents the angular

domain channel, AR = [aR (NR, Φ1) , ...,aR (NR, ΦL)] ∈
CNR×L, AT = [aT (NT , Ω1) , ...,aT (NT , ΩL)] ∈ CNT×L.

For the considered IRS-assisted mmWave system, let HB ∈
CNI×NBS denotes the channel from BS to IRS, HI ∈
CNUE×NI denotes the channel from IRS to UE. Assuming
that the direct link from BS to UE is blocked, we mainly
focus on the cascaded channel acquirement. The BS-IRS-UE
cascaded channel HS ∈ CNUE×NBS can be expressed as

HS = HIΘHB , (4)

where Θ = diag
(
β1e

jφ1 , ..., βNIe
jφNI

)
denotes the phase-

shift matrix of IRS with βn ∈ [0, 1] and φn ∈ [0, 2π) being
the reflection amplitude and phase-shift parameters of the
nth passive reflective element, respectively. Without loss of
generality, we assume βn = 1 for all elements to maximize
beamforming gain brought by IRS [6].

III. TWO-STEP CASCADED CHANNEL ESTIMATION
PROTOCOL

In this section, we propose a novel two-step cascaded
channel estimation protocol to acquire high-resolution CSI,
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Fig. 2. The frame structure of the considered IRS-assisted mmWave system.

and the specific frame structure is shown in Fig. 2. First, a
downlink beam training procedure is performed to estimate the
coarse ADI, and further the rubost UE-IRS-BS communication
link is established. In the second step, the coarse ADI is
utilized to facilitate the uplink cascaded channel estimation,
and meanwhile, the AGMP algorithm is proposed to estimate
the high-resolution CSI, which is vitally important to enable
further high-quality data transmission. More details will be
described in the sequel.

A. First Step: Beam Training based Coarse ADI Acquirement

In the first step, we estimate the coarse ADI of the BS-IRS-
UE link by downlink beam training. To do this, we design a
hierarchical beam training protocol, which is shown in Fig.
3. Specifically, we assume that the geometric information of
the deployed IRS is a priori information, and thus the BS can
transmit the training signals towards the IRS directly. Then, the
IRS performs hierarchical searching with different beamwidth
by adjusting the phase of the passive reflective elements. More
specifically, the IRS firstly searches the full-space with wide-
beam. At the receiver, the user performs narrow-beam sweep-
ing to determine the optimal beam direction. Subsequently,
the wide-beam is further refined until the required phase-
resolution of IRS is reached.

In this way, the coarse ADI of both transceivers and IRS
can be obtained. However, due to the limited hardware man-
ufacturing capacity, the IRS is fabricated with limited phase-
resolution in practice. The performance of beam training based
channel estimation can be significantly affected by the ADI
estimation error. When the coarse CSI is exploited for further
data transmission, the system performance may be degraded
severely. In view of this, it is necessary to estimate the high-
resolution CSI for achieving the full advantages brought by
IRS. Hence, we utilize the coarse ADI to guide the active
beamforming at transceivers and passive beamforming at IRS,
and thus the uplink can be established to prepare for further
uplink cascaded channel estimation, which will be detailed
in the next subsection. Furthermore, more details about beam
training for IRS-assisted mmWave systems can refer to our
prior work [21].

Remark 1. Beam training is an indispensable procedure for
initial access of mmWave communications. Here, the coarse
ADI obtained by downlink beam training is further utilized
to facilitate high-resolution channel estimation with low com-
plexity.
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Fig. 3. Illustration of the hierarchical beam training protocol for IRS-assisted
mmWave MIMO communications.

B. Second Step: Uplink Cascaded Channel Estimation

1) Sparse Problem Formulation: According to the coarse
ADI obtained by the first step, the beamforming vector of user,
the combining vector of BS, and the phase-shift matrix of IRS,
can be determined, and the robust uplink is further established.
Then, the user transmits the uplink pilot signal towards the
target IRS with beamforming vector f . Meanwhile, the IRS
performs passive beamforming with phase-shift matrix Θs to
steer the incident pilot signals towards the BS. Finally, the BS
combines the pilot signal with combining vector w. Hence,
the received signal at BS is given by

y = wHHBΘsH
Ifx+ wHn, (5)

where x is the pilot symbol, and we define x = 1 for
convenience. n is the Gaussian noise vector with mean zeros
and variance σ2.

Since there are very limited scatters around BS and IRS
but rich scatters around the users, we assume that the BS-IRS
channel is a rank-one channel, while the UE-IRS channel is
regarded as a multi-path channel. According to the channel
model in (1), (5) can be rewritten as

y = wHβaR
(
ΦB
)
aT
(
ΩB
)H

Θs

L∑
l=1

αlaR
(
ΦIl
)
aT
(
ΩIl
)H

f

+ wHn
a
= bHs Hf + wHn
b
=
(
fT ⊗ bHs

)
vec
(
H
)
+ wHn

c
=
(
fT ⊗ bHs

) (
A
∗
U ⊗AI

)
vec
(
Ha

)
+ wHn

d
=
(
fT ⊗ bHs

)
ADvec

(
Ha

)
+ wHn

(6)
with

H = β

L∑
l=1

αlaR
(
ΦIl
)
aT
(
ΩIl
)H

,

bs = ΘH
s aT

(
ΩB
)
,

(7)

where β denotes the channel complex gain of the IRS-BS
channel HB , whose AoA and AoD are represented by ΦB



and ΩB , respectively. H ∈ CNI×NUE denotes the effective
cascaded channel. bs ∈ CNI is the effective combining vector.
(a) is derived under the assumption that the position of IRS
is a priori information at BS, and BS combines the pilot
signals from IRS directly, i.e., wHaR

(
ΦB
)
= 1. (b) is derived

according to the equation vec (ABC) =
(
CT ⊗A

)
vec (B).

(c) is derived when the channel matrix is represented in the
angular domain, i.e.,

H = AIHaA
H

U , (8)

where AI =
[
aR
(
Ω1

)
, ...,aR

(
ΩG
)]

and AU =[
aT
(
Φ1

)
, ...,aT

(
ΦG
)]

, which possess the same resolution
G and constitute the dictionary matrix AD = A

∗
U ⊗ AI ∈

CNUENI×G2

, where each column has the form aT
(
Φg
)∗ ⊗

aR
(
Ωg
)
, g = 1, ..., G. Ha is a sparse angular domain

channel matrix consisting of only L non-zero elements. The
AoAs/AoD pairs of different paths can be determined accord-
ing to the positions of the non-zero elements in Ha, and
the values of these elements are the corresponding channel
complex gains.

In this way, the cascaded channel estimation is converted
into a sparse recovery problem, which can be solved by basic
pursuit theory [22]. More details will be described in the
sequel.

2) AGMP Solution: Regarding the coarse ADI obtained by
beam training as prior information, a low-complexity AGMP
algorithm is designed to estimate the high-resolution cascaded
CSI in this subsection. In particular, following reference [23],
we only estimate LOS path while neglecting other non-LOS
(NLOS) paths. The reason is that the energy of LOS path is
dozens of times stronger than that of NLOS paths according
to practical field measurements [24], and thus the influence
of NLOS paths is dispensable for mmWave communications.
In particular, our AGMP algorithm can be readily extended
to the multi-path channel estimation cases by estimating the
paths one by one [25]. More details about the proposed AGMP
algorithm can refer to Algorithm 1.

The operations of Algorithm 1 are summarized as follows.
In step 1-4, the dictionary matrix and sensing matrix, also
known as grid, are generated adaptively according to the
coarse ADI obtained by the first step. Then, matching pursuit
algorithm is utilized to estimate high-resolution CSI. For each
iteration, the column of Q̃, which is most strongly correlated
with residual, is selected (step 7) to update the column index
set (step 8), in which each element is related to an AoA/AoD
pair from the quantized grid ÃU and ÃD. Then, the channel
gains corresponding to selected AoA/AoD pairs are obtained
by step 9, and the residual is updated by removing the
contribution of the selected columns (step 10). When the
maximal number of iterations is reached, the angular domain
channel Ĥa is estimated (step 13-14). Therefore, the estimated
effective cascaded channel Ĥ can be constructed with high-
resolution (step 15).

Complexity analysis: For standard CS theory based
mmWave channel estimation, where random beamforming is

Algorithm 1 AGMP Based High-resolution Channel Estima-
tion
Input: Coarse ADI estimated by beam training: Ω̂ and Φ̂ for

user and IRS, respectively.
Parameters: the resolution of the dictionary matrix G̃, the
number of iteration ζ, phase-resolution of IRS RI , phase-
resolution of user RU .
Received signal at BS y.

Output: The effective cascaded channel Ĥ.
Step 1: Generate adaptive grid

1: Determine the range of ADI estimation error c1 = 2π/RU
for user and c2 = 2π/RI for IRS.

2: Generate the dictionary matrix ÃD by dividing the coarse
angular range into G̃ grids:

ÃU =

[
...,aT

(
Ω̂ − c1/2 +

c1

G̃
g

)
, ...

]
,

ÃI =

[
...,aR

(
Φ̂− c2/2 +

c2

G̃
g

)
, ...

]
,

g = 0, ..., G̃− 1,

ÃD = Ã∗U ⊗ ÃI .

(9)

3: Generate beamforming vector f of user and efficient
combining vector bs according to the coarse ADI.

4: Generate the sensing matrix

Q̃ =
(
fT ⊗ bHs

)
ÃD. (10)

Step 2: Matching pursuit based high-resolution cascaded
channel estimation

5: I0 = empty set, residual r0 = y, set the iteration counter
t = 1.

6: for t 6 ζ do
7: g = argmax

∣∣∣Q̃ (g)
H
rt−1

∣∣∣ , g = 1, ..., G̃2

8: It = It−1 ∪ {g}
9: ht = argmin

∥∥∥y − Q̃Itht

∥∥∥
10: rt = y − Q̃Itht
11: t = t+ 1
12: end for
13: For g ∈ It−1, ĥa (g) = ht (g) and ĥa (g) = 0 otherwise.
14: Ĥa = unvec

(
ĥa

)
.

15: return Ĥ = ÃIĤaÃ
H
U .

performed without the assistance of coarse ADI, the compu-
tation complexity is O

(
ζNTNRG

2
)

(G > max (NT , NR)),
which is proportional to dimension of the dictionary matrix
G2. Moreover, it requires at least NTNR measurements to
recover the sparse channel. Due to the large number of an-
tennas equipped at both transceivers and IRS for IRS-assisted
mmWave MIMO communications, the computation complex-
ity is almost prohibitive. For the proposed AGMP algorithm,
by exploiting the coarse ADI obtained by beam training, the
dimension of dictionary matrix can be significantly reduced
G̃ � min (NT , NR), which further reduces the computation
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complexity of channel estimation to O
(
ζNTNRG̃

2
)

. In par-
ticular, the simulation results show that the SE performance
can converge to the upper bound even when G̃ = 3.

Remark 2. The performance of the benchmark scheme can
be severely impaired by imperfect hardware manufacturing
technique. To address this challenge, the coarse ADI obtained
by beam training in the first step is fully utilized to reduce
the dimension of the dictionary matrix, which enables the
high-resolution channel estimation with simplified computa-
tion complexity of its solution.

IV. SIMULATION RESULTS

In this section, the performance of the proposed two-
step cascaded channel estimation protocol is evaluated via
computer simulation. In our simulation, the corresponding
system parameters are set as following: the number of antennas
at BS NBS = 64, the number of antennas at IRS NI = 64, the
number of antennas at user NUE = 16, the carrier frequency
fc = 28 GHz, the number of paths from IRS to user L = 3.

We evaluate the normalized mean square error (NMSE)
performance of our proposed two-step concatenated channel
estimation protocol against signal-to-noise ratio (SNR). As
shown in Fig. 4, assuming the dictionary resolution G̃ = 5, the
NMSE performance against SNR is compared under different
iterations of the AMGP algorithm. The NMSE is defined as

NMSE = 10 log10

(
E
[∥∥∥H− Ĥ

∥∥∥2
F
/ ‖H‖2F

])
, (11)

where H is the perfect CSI, and Ĥ is the estimated CSI.
Moreover, we assume that there are a single LOS path and
two NLOS paths between the IRS and user, and the Rician K-
factor is set as 20dB. Obviously, even with few iterations, the
proposed scheme shows great superiority over the benchmark
scheme [18], in which the CSI is obtained directly by beam
training. Moreover, we can observe that increasing the iteration
will improve the NMSE performance. In particular, the beam
training based channel estimation scheme suffers from poor
NMSE performance even at high-SNR, and thus we can
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conclude that the ADI estimation plays a dominant role for the
accuracy of channel estimation, especially for high-directional
mmWave channel.

Fig. 5 shows the comparison of SE performance against
SNR. In particular, the SE performance achieved by perfect
CSI is adopted as the upper bound, and the random beamform-
ing is shown as the lower bound. We can observe that our
proposed two-step channel estimation protocol outperforms
the benchmark scheme even with limited dictionary resolution
(G̃ = 5) and iteration ζ = 4, and meanwhile can achieve the
near-optimal SE performance obtained by perfect CSI with
the increase of iteration. Moreover, we also present the SE
performance for the case without IRS, which verifies that
the presence of IRS indeed improves the SE performance of
mmWave communications due to the additional beamforming
gain brought by IRS. Comparing Fig. 4 with Fig. 5, we
can conclude that the beam training based channel estimation
scheme can only estimate coarse ADI due to the limited phase-
resolution of IRS, while the estimated channel gain is not
accurate drastically due to the effects of the angular estimation
error, multi-path and noise. When the coarse CSI is adopted
for data detection or system optimization, poor performance
may be generated. In this regard, we propose a high-resolution
channel estimation scheme to mitigate the influence of these
factors by exploiting an AGMP algorithm. Since the IRS can
reinforce the signal power through directional beamforming,
which is equivalent to degrade the influence of the noise, the
proposed protocol can still reap a great NMSE performance
even at low-SNR for IRS-assisted mmWave MIMO commu-
nications.

Fig. 6 and Fig. 7 compare the NMSE performance and
SE performance against the dictionary resolution G̃ under
different SNR cases, respectively. With the increase of the
dictionary resolution G̃, the NMSE and SE performance can be
significantly improved for different SNR cases. In particular,
the SE performance converges to the upper bound obtained by
perfect CSI quickly even when G̃ = 3, which suggests that
G̃ = 3 is the optimal selection for the given system settings.
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V. CONCLUSION

In this paper, we have studied the high-resolution cascaded
channel estimation issue for IRS-assisted mmWave MIMO
communications. Specifically, by exploiting the sparsity of
mmWave channels, we formulate the cascaded channel esti-
mation problem into a sparse recovery problem, and propose a
two-step cascaded channel estimation protocol to achieve high-
resolution channel estimation. The simulation results verify the
advantages of our proposed protocol in terms of SE and NMSE
performance as compared to the beam training based cascaded
channel estimation scheme. Moreover, our proposed AGMP
algorithm can approach the optimal performance achieved by
perfect CSI with low computation complexity.
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