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Abstract—S5G is regarded as a revolutionary mobile network,
which is expected to satisfy a vast number of novel services,
ranging from remote health care to smart cities. However,
heterogeneous Quality of Service (QoS) requirements of dif-
ferent services and limited spectrum make the radio resource
allocation a challenging problem in 5G. In this paper, we
propose a multi-agent reinforcement learning (MARL) method
for radio resource slicing in 5G. We model each slice as an
intelligent agent that competes for limited radio resources, and
the correlated Q-learning is applied for inter-slice resource block
(RB) allocation. The proposed correlated Q-learning based inter-
slice RB allocation (COQRA) scheme is compared with Nash
Q-learning (NQL), Latency-Reliability-Throughput Q-learning
(LRTQ) methods, and the priority proportional fairness (PPF)
algorithm. Our simulation results show that the proposed CO-
QRA achieves 32.4% lower latency and 6.3% higher throughput
when compared with LRTQ, and 5.8% lower latency and 5.9 %
higher throughput than NQL. Significantly higher throughput
and lower packet drop rate (PDR) is observed in comparison to
PPF.

Index Terms—5G RAN slicing, resource allocation, Q-learning,
correlated equilibrium

I. INTRODUCTION

The forthcoming 5G networks will provide support for vast
amount of services and applications, where heterogeneous
requirements for latency, bandwidth and reliability will coexist
[1]. Three major traffic types are supported in 5G, namely
enhanced Mobile Broad Band (eMBB), Ultra Reliable Low
Latency Communications (URLLC), and massive Machine
Type Communications (mMTC). The eMBB is regarded as an
extension of LTE-Advanced services, which aims to provide
high data rate for applications such as video streaming. The
URLLC is proposed to provide a sub-millisecond latency
and 99.999% reliability, which is critical for applications
such as autonomous vehicles and remote surgery. The mMTC
is designed to connect large number of Internet of Things
devices, where data transmissions occur sporadically.

The stringent and heterogeneous QoS requirements of ser-
vices have become a challenging problem in 5G, especially
when different traffic types are multiplexed on the same chan-
nel. Considering the limited radio resources and increasing
bandwidth demand, different methodologies are proposed for
5G radio resource allocation. A joint link adaptation and re-
source allocation policy is proposed in [2]], which dynamically
adjusts the block error probability of URLLC small payload
transmissions based on cell load. A risk sensitive method is

used in [3] to allocate resources for the incoming URLLC traf-
fic, while minimizing the risk of the eMBB transmissions and
ensuring URLLC reliability. Puncturing technique is applied
in [4]] to guarantee minimum latency of URLLC, where eMBB
traffic is scheduled at the beginning of slots, while URLLC
traffic can puncture at any time with a higher priority.

A common feature of aforementioned works is that URLLC
traffic is scheduled on top of eMBB traffic such as puncturing
technique [3]], [4], and a potential priority is applied to
guarantee the latency and reliability of URLLC traffic [2]-[5].
As a result, the eMBB traffic will be affected with degraded
throughput [2f], [4]], [S]. Meanwhile, another important prob-
lem is the increasing complexity of wireless networks, e.g.,
the evolving network architecture, dynamic traffic patterns and
increasing devices numbers, which makes it harder to build a
dedicated optimization model for resource allocation.

To this end, the emerging reinforcement learning (RL)
techniques become a promising solution [|6]. In [[7], a Latency-
Reliability-Throughput Q-learning algorithm is proposed for
jointly optimizing the performance of both URLLC and eMBB
users. [8] develops an RL method to select different scheduling
rules according to the scheduler states, which aims to minimize
the traffic delay and Packet Drop Rate (PDR). The random
forest algorithm is applied in [9] to accomplish the Transmis-
sion Time Interval (TTI) selection for each service, and the
result shows a lower delay and lower PDR for URLLC traffic
while guaranteeing the eMBB throughput requirements. Fur-
thermore, [[10]], [11]] use deep reinforcement learning (DRL)
scheme for resource allocation in 5G, in which neural networks
are used to learn allocation rules.

In this paper, we propose a multi-agent reinforcement
learning (MARL) based resource allocation algorithm, where
the performance of URLLC and eMBB are jointly opti-
mized. Different than aforementioned works, we apply the
network slicing scheme to aggregate users with similar QoS
requirements. Network slicing is an important feature in 5G
[12]]. Based on software defined network (SDN) and network
function virtualization (NFV) techniques, physical network
infrastructures are divided into multiple independent logical
network slices. Each slice is presumed to support services with
specific QoS requirements, and the whole network achieves a
much higher flexibility and scalability. In the proposed cor-
related Q-learning based inter-slice RB allocation (COQRA)
scheme, firstly, each slice is assumed to be an intelligent agent
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to compete for limited RBs, and the model-free correlated Q-
learning algorithm is applied for inter-slice resource allocation.
Then resources (more specifically, RBs of the 5G New Radio
(NR)) are distributed by each slice among its attached users by
proportional fair algorithm, which is the intra-slice allocation
[2]. Compared with Nash Q-learning (NQL) and Latency-
Reliability-Throughput Q-learning (LRTQ) techniques [7], the
results present a 5.8% and 32.4% lower latency for URLLC
traffic, and 5.9% and 6.3% higher throughput for eMBB traffic.
COQRA also achieves significantly higher throughput and a
lower PDR than priority proportional fairness (PPF) algorithm.

The main contribution of this work is that we develop a
MARL-based RAN resource slicing scheme for 5G NR. In
the proposed multi-agent COQRA, each agent makes deci-
sions autonomously, where they coordinate by exchanging Q-
values among each other. Compared with other multi-agent
coordination methods, such as Nash equilibrium, the correlated
equilibrium is readily solved using linear optimization [13],
which is critical for the fast response requirement of wireless
network.

The rest of this paper is organized as follows. Section
presents related work. Section defines the system model
and problem formulation. Section [[V|introduces the proposed
COQRA scheme and the baseline algorithms. Simulation
results are presented in section [V} and section [VI] concludes
the paper.

II. RELATED WORK

In the literature, various slicing based resource allocation
methods have been investigated using both model-free and
model-based algorithms. For instance, a QoS framework is
proposed in [14] for network slicing, in which three types of
slices are defined. [[15]] presents an RL method for resource
optimization in 5G network slicing, and the results show an
improvement in network utility and scalability. A QoS-aware
slicing algorithm is proposed in [16] where the bandwidth
is distributed based on utility function and priority rules.
In [17], a network slicing and multi-tenancy based dynamic
resource allocation scheme is presented, in which hierarchical
decomposition is adopted to reduce complexity in optimiza-
tion. Considering the multi-slice and multi-service scenarios,
deep Q-learning is deployed in [18]] for end to end network
slicing resource allocation.

Allocation of limited bandwidth resources among slices has
been the main challenge in RAN slicing [19]. The allocation
should meet various QoS requirements under the constraint
of limited bandwidth budget. Different from existing works,
in this paper we solve the resource allocation problem by a
MARL approach. We propose a multi-agent COQRA method
to distribute RBs among slices. Correlated Q-learning has been
applied in microgrid energy management in [20] to maximize
the profit of agents. However, 5G network has much more
stringent requirements for agents such as latency and PDR,
which is different than the microgrid system.

Coi]tzlo\ller Resource Allocation Scheme
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Resource Inter-Slice Resource Inter-Slice
Require Allocation Require Allocation
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Layer URLLC Slice | eMBB Slice
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Fig. 1. Network slicing based two-step resource allocation.

III. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig[l] we consider URLLC and eMBB slices
where each slice serves several users. First, the slice manager
collects QoS requirements of the users such as bandwidth and
latency, then the collected information is sent to the SDN
controller for the required resources. Based on the received
requirements, SDN controller implements the inter-slice RB
allocation to distribute RBs between slices. Then, the users are
scheduled within the allocated RBs for that particular slice. We
consider numerology 0 where one RB contains 12 sub-carriers
in frequency domain.

Here we assume each slice manager is an intelligent agent
making decisions autonomously. For the eMBB agent, it needs
to maximize the throughput, as denoted by:

J Ej
77m:EZij,e¢7 (1)

j=1le=1

where bj . ; is the throughout of e'" eMBB user in ;" Base
station (BS) at time ¢, and F; is the number of eMBB users
of j!" BS.

URLLC agent needs to minimize the delay as follows:

J Uj
min» Y " dju, )

j=1u=1

where d; ,, ¢+ is the delay of u‘" URLLC user in j** BS at time
t, and U; is the number of URLLC users of 4t BS.
The packet delay d mainly consists of three components:

d= dtw + Jave + drtw’ (3)

where d*® is the transmission delay, d74¢ is the queuing delay,
and d"** is the HARQ re-transmission delay.

The transmission delay of a packet depends on the link
capacity between the UE and the BS:
L,
Cuj’

where L,, is the packet size of u*® UE, and Cy,; is the link

capacity between 1! UE and the BS it belongs to.
The link capacity is calculated as follows:

Cuj = Z crlog(1 +

reNEB

dtm —
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Fig. 2. Proposed COQRA architecture for intelligent resource management
among slices.

where NP is the set of RBs that the u'" UE uses, ¢, is the

bandwidth of r** RB, p;, is the transmission power of rt
RB in j'" BS, ;. is a binary variable to indicate whether
this RB is distributed to u!* UE, gj.ru 18 the channel gain
between BS and UE, N is the unit noise power density, and
j' € J_; is the BS set except j* BS.

IV. CORRELATED Q-LEARNING BASED RESOURCE
ALLOCATION (COQRA)

A. COQRA architecture

The architecture of the proposed multi-agent COQRA is
illustrated in Fig.2. Each slice is an independent agent, and
it observes its own state from the environment. The agent
exchanges Q-values with its peers to make decisions, and
the action selection is determined by correlated equilibrium.
Then, the selected actions are sent to wireless environment,
and eMBB and URLLC users are scheduled RBs within the
slide resources according to the proportional fairness algorithm
[2]]. Users transmit packets based on allocated bandwidth, and
the experienced throughput and delay are sent back to agents.
Finally, the reward is received, and slice managers make next
decisions based on new state and updated Q-values.

B. Markov decision process and Q-learning

In this section, based on the system model in Section
we will define the Markov decision process (MDP) to describe
agents and introduce the learning scheme. Here we define each
slice manager as a intelligent agent, which will interact with
the environment and make decisions autonomously.

We assume each agent has its own state, action and reward
signal. The state s* for URLLC slice manager agent (from
hereon, referred to as URLLC agent) is the number of packets
in its queue, and the action a“ is the number of RBs it

allocates. The state and action for the eMBB slice manager
agent (from hereon, referred to as eMBB agent) is defined
similarly, namely s® and a®. Thus, the Q-space for both agents
are Q" = {s*,a"} and Q" = {s°,a®}.

The reward function for eMBB agent is given in (6), where
obtaining higher throughput leads to higher reward.

J Ej

2
T'chﬁ/[BB = arctan(z Z bjet) (6)
j=1e=1

v

The reward function for URLLC agent at time ¢ is:

1 max (d)?, |HY| £0,
P = 3 et @)

0, |H1?| =0,

where di"¢ is the queuing delay for u‘* URLLC user, |H}|
denotes the length of the queue for URLLC users at time slot
t. In (7), a lower queuing delay means a higher reward, which
depends on the number of RBs that the agent gets. URLLC
agent competes for more RBs to reduce the queuing delay.
Meanwhile, to guarantee the PDR performance, we apply a
penalty if any packet is dropped.

In Q-learning, one agent always aims to maximize the long-
term accumulated reward. For one agent ¢, the state value is:

oo
Vi (si) = EW(Z 0"7;(Si,ns @in)|Si = 8i0), ®)

n=0

where 7 is the policy, s;o is the initial state, 7;(8; n,@in)
is the reward of taking action a;, at state s;,, 6 is the
reward discount factor. V7 (s;) represents long-term expected
accumulated reward at state s;.

Then we define the state-action value Q7 (s;, a;) to describe
the expected reward of taking action a; under state s;:

Q7 (siyai) = (1 = @)Q7 (si, ai) + a(r(si, a;) + vy max QF (s;, a;))
&)
where s; and s are current and next state, and a; and a} are
current and next action, and « is the learning rate. By updating
the Q-values, the agent will learn the best action sequence, and
achieve a long term best reward.
When there is only one agent, the e-greedy policy is
generally applied to balance the exploration and exploitation.

random action, rand < e,

arg max(Q7 (s, a;)), "o

a; = .
otherwise,

where € is the exploration probability and 0 < € < 1, and
rand indicates a random number between 0 and 1.

On the other hand, in a multi-agent environment, the action
of one agent will affect both the environment and the reward
of the other agents. Therefore, we propose a correlated Q-
learning based resource allocation approach to address the
multi-agent 5G environment.
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C. Correlated equilibrium

Given the limited bandwidth resources, in our multi-agent
environment, each slice manager agent will compete for more
RBs to optimize their own goal, which may lead to a conflict.
We use the correlated equilibrium to balance the reward of
each agent, and maintain a good overall performance for the
whole multi-agent system. In correlated equilibrium, agents
exchange Q-values to share information with each other, and
the joint action is chosen according to the following equations:

max »  Pr(3,d)Q(3,a)
acA
sub.to Z Pr(s,a)=1
acA (11)
> Pr(5,d)(Q(s, @) — Q(5,d—i,a;)) > 0

a_;€A_;
0< Pr(s,a)<1

where § is the system state of eMBB and URLLC agents
§=(s%s"), d= (a® a") is the joint action, Pr(5,d) is the
probability of choosing action combination @ under state S, a;
is the action of agent 4, @_; is the action combination except
agent 4, and A_; is the set of d_;. The correlated equilibrium
is described as a linear program in (II). The objective is
to maximize the total expected reward of all agents, and
the constraints guarantee a probability distribution of action
combination in which each agent chooses an optimal action.

Based on correlated equilibrium, an improved e-greedy
policy is applied for action selection:

mils) = random action, rand < €, (12)
s equation7 rand > €.

Exploration is performed whenever rand < e, i.e., random
action is selected. Otherwise the exploitation is implemented
by correlated equilibrium. The COQRA scheme is summa-
rized in Algorithm 1. In COQRA, the two-step resource
allocation method aviods the complexity of processing all UE
requirement by a central controller, which will reduce the
computational complexity of learning algorithm by a smaller
action space.

D. Nash equilibrium

In this section, we introduce the NQL algorithm, which
is generally used in multi-agent problems. Compared with
correlated equilibrium, the Nash equilibrium is a iterative
based coordination method. There could be more than one
Nash equilibrium or no equilibrium in some cases. We use
NQL as a baseline algorithm. In NQL, agents select actions
by:

Ui(d',i,ai) > Uz(d’),d’ € A,@',Z‘ € A,% (13)

where @ is the action combination, d_; is the action combi-
nation except agent i, A is the set of @, and A_; is the set of
d—_;. U; is the utility function for agent 4, which refers to Q-
values in this paper. At Nash equilibrium, agents are less likely
to change their actions as this will lead to lower observed

utility. Similarly, we apply an improved e-greedy policy to
select actions as (I2). The NQL scheme is summarized in
Algorithm 2. We assume the equilibrium is randomly selected
if more than one equilibrium are found.

E. LRTQ and PPF algorithms

To further investigate the performance of the proposed
method, two more baseline algorithms are used in this paper.
LRTQ was proposed in [7]. LRTQ is also a learning-based
resource allocation method, but it only defines one reward
function for all users. PPF algorithm is applied in [2]]. In PPF,
the RBs are first allocated to URLLC users to guarantee low
latency, then the remaining RBs are distributed among eMBB
users. Note that network slicing is not implemented in both
Algorithm 1 COQRA based Resource Allocation

1: Initialize: Q-learning and wireless network parameters

2: for TTI =1to T do
3:  if rand < € then
4 Choose ay and af randomly.
50 else
6 Agents exchange Q-values under their current state.
Find correlated equilibrium using eq. (IT)) and choose
action ay, ag
7. end if
Complete the inter-slice resource allocation.
Implement intra-slice allocation. Schedule users on
respective slice resources using the proportional fair
algorithm.
10:  Agents calculate reward based on received QoS metrics.

11:  Update agent state s*, s® and Q-table Q“ and Q° .
12: end for

Algorithm 2 NQL based Resource Allocation
1: Initialize: Q-learning and wireless network parameters
2. for TTI =1to T do
3:  if rand < € then
Choose a; and af randomly.
else
for Each agent do
Search its own Nash equilibrium using eq. (I3).
end for
Match each agent’s equilibrium to get the system
Nash equilibrium.
10: Agents choose actions according to system Nash
equilibrium.
11:  end if
12:  Complete the inter-slice resource allocation.
13:  Implement intra-slice allocation, using the proportional
fair algorithm.
14:  Agents calculate reward based on received QoS metrics.

R AN

15:  Update agent state s*, s¢ and Q-table Q* and Q°.
16: end for
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TABLE I
PARAMETERS SETTINGS

Value
URLLC Traffic: 80% Poisson distribution
and 20% constant bit rate.

eMBB Traffic: Poisson distribution.
Packet Size: 32 Bytes.
128.1+437.6log(distance(km)).

Log-Normal shadowing with 8 dB.

Transmission power: 40 dBm
(Uniform distributed)

Tx/Rx antenna gain: 15 dB.
3GPP urban network.

Parameters

Traffic Model

Propagation Model

Transmission settings

Learning rate: 0.9

Q-learning Discount factor: 0.5

Epsilon value: 0.05
of these baseline algorithms. These algorithms perform RB
allocation decisions only.

V. PERFORMANCE EVALUATION

A. Parameter settings

We use MATLAB to implement our proposed algorithm.
We consider five gNBs with 500 meter inter-site distance, each
serving one eMBB and one URLLC slice. Each eMBB slice
is serving 5 users, and URLLC slice has 10 users, which is
randomly distributed in the cell. The bandwidth for a cell is
20 MHz, and there are 100 RBs. Each RB contains 12 sub-
carriers, and each sub-carrier has 15kHz. 100 RBs are divided

COQRA URLLC Load:2Mbps
———— NQL URLLC Load:2Mbps | |
———— LRTQURLLC Load:2Mbps
PPF URLLC Load:2Mbps

URLLC Latency [ms]

0 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1

ECCDF
Fig. 3. URLLC latency distribution[ms] under load=2Mbps per cell.
1
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VZI 0.4 Eii‘gvr 1T
=
=3t
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0
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Fig. 4. URLLC latency [ms] with varying offered load [Mbps] per cell.

into 13 RB groups, where the first 12 groups contain 8§ RBs
each, and the last group contains 4 RBs. The simulation period
is 5000 TTIs, and each TTI contains 2 OFDM symbols (5G
mini-slot length 0.143ms) allocations. The e-greedy policy is
implemented in first 3000 TTI, and the rest 2000 TTTI is pure
exploitation. Other parameters are shown in Table [l Each
scenario is repeated 10 runs to get an average value with 95%
confidence interval.

B. Simulation Results

First, we set eMBB load to 0.5 Mbps per cell, and consider
that URLLC load changes from 1 Mbps to 3 Mbps per cell.
The latency distribution of four algorithms are shown in Fig[3]
Meanwhile, Fig[] presents the average URLLC latency against
varying URLLC offered loads. The results show that COQRA,
NQL and PPF have a comparable latency distribution, while
the LRTQ has a relatively higher latency. The PPF has the
lowest overall latency for URLLC traffic, and the main reason
is that URLLC traffic has a priority in this method. Whenever
URLLC packet arrives, it will be directly scheduled over
eMBB traffic in the PPF algorithm. Meanwhile, the COQRA
achieves 4.4% and 5.8% lower latency than NQL when
URLLC load is 2 Mbps and 3 Mbps, respectively. Compared
with LRTQ, the COQRA has a 27.1% lower latency under 2
Mbps load, and 32.4% lower latency under 3 Mbps load.

Furthermore, the eMBB throughput under different URLLC
load is shown in Fig@ The result shows that COQRA, NQL
and LRTQ have a close performance of throughput, while
the PPF has a much lower value. When URLLC load is 3
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S 40t
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Fig. 5. eMBB throughput with varying URLLC loads [Mbps].
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Fig. 6. Average PDR under varying URLLC loads [Mbps].
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Fig. 7. Convergence performance of COQRA and NQL.

Mbps, the COQRA method has a 5.9% higher throughput
over NQL method, and 6.3% higher than LRTQ. Although the
PPF has a good latency performance for URLLC, the eMBB
throughput is almost 90% lower than other three algorithms.
This result can still be explained by the priority settings in
PPF, which means the eMBB throughput will decrease with
increasing prioritized URLLC load. On the other hand, the
COQRA, NQL and LRTQ benefit from the jointly optimizing
scheme, and they maintain a good throughput performance. In
Fig[6l we compare the PDR of four algorithms. We show that
COQRA, NQL and LRTQ maintain a much lower PDR than
PPF method. In learning algorithms, agents will get a negative
reward when dropping packets. However, PPF fails to maintain
low PDR under all traffic loads, where a worst case PDR
of 1.8% is observed. Finally, we compare the convergence
performance of COQRA and NQL, and a faster convergence
is observed for COQRA in Fig[7] The reason is that COQRA
has a more efficient way to find the equilibrium. Overall,
COQRA outperforms all baseline methods in terms of latency,
throughput, packet loss and convergence time.

VI. CONCLUSION

5G and beyond 5G networks will serve heterogeneous users
of multiple slices which calls for new ways of network slicing
and resource allocation. Machine learning techniques provide
a promising alternative to the existing schemes. In this paper,
we propose a Radio Access Network (RAN) slicing based
resource allocation method for 5G, namely correlated Q-
learning based inter-slice RB allocation (COQRA), to allocate
radio resources to eMBB and URLLC slices. The proposed
algorithm is compared with Nash Q-learning method, Latency-
Reliability-Throughput Q-learning method and priority pro-
portional fairness algorithm. Simulation results show that the
proposed COQRA scheme achieves the best overall perfor-
mance. In the future works, we plan to enhance the scalability
of COQRA such that it can be used for intra-slice allocations.
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