
ar
X

iv
:2

10
3.

11
54

2v
1

 [
cs

.L
G

]
 2

2
M

ar
 2

02
1

Smart Scheduling based on Deep

Reinforcement Learning for Cellular Networks

Jian Wang∗, Chen Xu∗, Rong Li∗, Yiqun Ge†, Jun Wang∗

∗Hangzhou Research Center, Huawei Technologies, Hangzhou, China

†Ottawa Research Center, Huawei Technologies, Ottawa, Canada

Emails: {wangjian23, xuchen14, lirongone.li, yiqun.ge,

justin.wangjun}@huawei.com

Abstract

To improve the system performance towards the Shannon limit, advanced radio resource manage-

ment mechanisms play a fundamental role. In particular, scheduling should receive much attention,

because it allocates radio resources among different users in terms of their channel conditions and QoS

requirements. The difficulties of scheduling algorithms are the tradeoffs need to be made among multiple

objectives, such as throughput, fairness and packet drop rate. We propose a smart scheduling scheme

based on deep reinforcement learning (DRL). We not only verify the performance gain achieved, but

also provide implementation-friend designs, i.e., a scalable neural network design for the agent and a

virtual environment training framework. With the scalable neural network design, the DRL agent can

easily handle the cases when the number of active users is time-varying without the need to redesign

and retrain the DRL agent. Training the DRL agent in a virtual environment offline first and using it as

the initial version in the practical usage helps to prevent the system from suffering from performance

and robustness degradation due to the time-consuming training. Through both simulations and field

tests, we show that the DRL-based smart scheduling outperforms the conventional scheduling method

and can be adopted in practical systems.

Index Terms

artificial intelligence, cellular networks, deep reinforcement learning, smart scheduling

March 23, 2021 DRAFT

http://arxiv.org/abs/2103.11542v1

1

Smart Scheduling based on Deep

Reinforcement Learning for Cellular Networks

I. INTRODUCTION

The wireless communication industry has been keeping a fast growing and updating speed

for several decades. About every ten years, new generations of mobile communication system

were standardized with lots of new features and supported scenarios. Thanks to the evolution of

wireless communications technologies, we are now enjoying diverse services and applications

conveniently. It is well known that the fifth generation (5G) mobile communications system

supports three major categories of services, i.e., enhanced mobile broadband (eMBB), ultra-

reliable and low-latency communications (uRLLC) and massive machine-type communications

(mMTC). Meanwhile, new applications and scenarios have never stopped coming up, which sets

up new requirements including even higher throughput, more connected devices, faster access

with lower latency and higher efficiency for wireless communication systems. With all these

requirements in mind, designing a new generation of mobile communications system becomes

a quite challenging work. The overall improvement calls for progress not only in the link level

such as new signal processing schemes in the physical layer, but also in the system level such

as scheduling and coordination methods in upper layers.

Scheduling is essentially a decision making task, usually modeled and solved through a utility

maximization problem. The formulation of the problem is based on the mathematical representa-

tion of the whole communication system, which inevitably results into some approximations and

assumptions. In the wireless scenario, many factors have impacts on the system modelling, such

as user equipment (UE) mobility, traffic model, channel variance, etc. These factors make the

wireless communication network a system with high dynamics, hence it is almost impossible for

the utility maximization based methods to be optimal across all ranges of scenarios in practice.

Promoted by the advanced algorithm, powerful computing capability and rich-content data

sets, artificial intelligence (AI) [1] has been as the driving force of a new wave of technical

revolution. As a specific sub-set of AI technologies, reinforcement learning (RL) provides a novel

way of solving decision making problems. Instead of an explicit mathematical model, decision

optimization in a dynamic system can be modeled into a Markov Decision Process (MDP) whose

March 23, 2021 DRAFT

2

states and actions are led by a reward to be defined. A RL agent approaches to an optimal solution

of a MDP by learning from its interactivity with its true physical environment. It firstly gathers

the state information of the physical environment, yields the best policy to maximize the reward,

and makes a series of actions based on the policy. The agent can adjust its policy continuously

until the best policy is approached. The usage of conventional RL algorithms such as Q-learning

is usually limited by the dimension of the problem. To handle practical problems with large

state and action spaces, DNNs are recently introduced to be used as RL agents, which brings the

technique named deep reinforcement learning (DRL). In this paper, to address the scheduling

problem in cellular networks, we propose a deep reinforcement learning (DRL) based method.

To be specific, the scheduling problem is modelled into an MDP and solved through DRL. The

state of the MDP includes the channel-related parameters indicating the current wireless channel

quality and the buffer-related ones reflecting the Quality-of-Service (QoS) requirement. The DRL

agent is trained to make decisions to maximize the reward, a joint consideration of throughput,

fairness and packet loss performance. As a result of scheduling each involved UE, the action

issued by the DRL agent are realized by the scheduling signalling from BS to UEs.

To embed the proposed DRL based scheduling scheme into practical systems, we have to

carefully address several issues. Firstly, compared with the conventional scheduling schemes, the

proposed one should have superior performance. Otherwise, it would be unreasonable to conduct

algorithm replacement. Secondly, the sporadic arrival and departure of UEs for a target cell keep

resizing the scheduling problem. Accordingly, the DRL agent should be scalable enough to avoid

retraining new agents whenever the scheduling problem is resized. Thirdly, the training of the

DRL agent is time-consuming, in which exploration of potential actions may results in really

bad performance. In facing the performance and robustness degradation due to the exploration,

AI-based methods should be accelerated. Finally, the action decisions should be conducted in

time, which have the inference completed within the scheduling period.

With the practical considerations mentioned above and some preliminary results published in

[2] and [3], we do contributions in this paper as follows:

• We propose a DRL based smart scheduling scheme for cellular networks. Both the wireless

channel quality and the packet buffer condition are included into the state of the system.

Throughput, fairness and packet loss performance are jointly considered and optimized.

With improvements to facilitate the training and inference of the DRL agent, the proposed

scheme outperforms baseline in both simulation and field test. Two gene-aided scheduling

March 23, 2021 DRAFT

3

schemes with global and future information available are elaborated. Through comparisons

between the proposed scheme and the two gene-aided ones, the performance gain space of

the scheduling problem is verified.

• We propose a scalable DRL agent, which exploits the same fixed-size DNN structure in

different deployments with different numbers of UEs. Thanks to the scalability, we neither

limits the maximum number of UEs nor re-train the agent when the scheduling problem is

resized.

• We propose a virtual environment training framework. The DRL agent can be firstly trained

in a background virtual environment that is built upon information collected from the prac-

tical system. After converging in the virtual environment, the pre-trained DNN parameters

can be deployed as the initial version of the DRL agent in practice. During the background

training, some conventional algorithms can be used in the practical system to prevent the

system from adopting a not-well-trained agent and experiencing disastrous performance.

• We build up both simulation platform and field test prototype, and verify that the perfor-

mance gain of the proposed smart scheduling scheme is stable in both simulation and field

test. More importantly, through the field test, we prove that the proposed DRL agent can

make scheduling decisions in time within a scheduling period of 10ms.

The rest of this paper is organized as follows. We review the related work in Section II. The

system model and problem formulation are described in Section III. The exploration methods of

the performance gain space are shown in Section IV. In Section V, we propose the DRL based

scheduling scheme. Then, the evaluations of the proposed scheme are done in both simulation

and test field. The results and discussions are provided in Section VI. Finally, we conclude the

paper in Section VII with some future work directions provided.

II. PRELIMINARIES AND RELATED WORK

A scheduler, usually equipped in the BS, is the brain of a cellular network, because it makes

the important decision on how radio resources are allocated among users. Typical scheduling

schemes can be classified into tree types. The simplest ones stemmed from wired networks,

without considering any channel conditions. Round-Robin (RR) is the most famous algorithm

in this category [4]. Radio resources are allocated among UEs with equal probability, no matter

how good or bad the channels are. This type cannot perform adaptive adjustment according to

channel changing, a typical phenomenon in wireless communications. Thanks to the design of

March 23, 2021 DRAFT

4

channel quality indicator (CQI) feedback in cellular networks, the scheduler is aware of the

channel conditions of the UEs. Then, the second type was designed to take use of this channel

quality information. For example, maximum Carrier-to-Interference (Max C/I) scheme aims at

maximizing the overall throughput by allocating the resources to UEs with the best channel

conditions. This strategy sacrifices the fairness among UEs, because those UEs with poor channel

conditions may always be discriminated. The third type takes both channel conditions and QoS

requirements into account. There always exists UEs with different QoS requirements in the

practical systems. QoS parameters that represents the QoS requirements of a UE and the CQI

feedbacks from that UE would be input into the scheduling algorithm in form of data rates and

delays as part of the scheduling metrics. A good survey can be found in [5], where it is pointed

out that an optimal tradeoff between throughput and fairness is usually pursued while designing

scheduling schemes.

Proportional Fair (PF), belonging to the second category aforementioned, is among the most

widely used scheduling algorithms. Compared with Max C/I scheme, PF provides a tradeoff

between system overall throughput and fairness among UEs. F. Kelly provides a general principle

about how to achieve proportional fairness by formulating the scheduling problem into an utility

maximization problem

max
∑

n∈N

Un (xn)

s.t. xn is feasible

(1)

where, xn, n ∈ N is the data rate of the n-th UE. The feasible condition is that xn ≥ 0 and

sum of xn is no larger than the system capacity C. When the utility function Un is a logarithm

function, the solution of problem (1) has the unique vector of rates, named as proportionally

fair [6]. Therefore, the PF scheduling algorithm is optimal in term of maximizing the sum of

logarithmic rate.

Later, [7] adopts it into the scenario of wireless networks with a single carrier. The only

carrier (or say channel) should be allocated to the UE with the largest metric of In/Tn, where

In is the instantaneous throughput estimated from the updated channel condition and Tn is the

average throughput within a past time window for the n-th UE, respectively. This metric indicates

that the UEs with higher instantaneous throughputs (i.e., better channel conditions) should be

given higher priorities to access the channel resource, thereby improving the overall throughput

of the system. Proportionally, the UEs with smaller historic throughputs should be given more

March 23, 2021 DRAFT

5

chance to access the channel, thereby guaranteeing some degree of fairness. To summarize, for

a single-carrier system, to achieve proportional fairness, UE should be chosen according to

i = argmax
n∈N

In
Tn

(2)

where, the average throughput is updated according to

Tn (t) =
W − 1

W
Tn (t− 1) +

1

W
In (t) (3)

with W as the window size for averaging. For multi-carrier systems, [8] provides the method to

achieve proportional fairness, and a greedy way is elaborated in [9].

Starting from the PF scheduling scheme, more and more scheduling schemes are designed with

the considerations of satisfying the QoS requirements. [10] proposed a modified version of largest

weighted delay first (M-LWDF) scheme that tries to ensure a good balance among throughput,

fairness and accumulated delay. A buffer-aware and traffic-dependent scheduling scheme is

proposed in [11], where the original PF metric calculation expression is modified to involve

packet arrival rate, remaining buffer space and head-of-line (HoL) packet size in an intuitive

way. Besides spectral efficiency, energy efficiency is also taken into account while designing

scheduling scheme in [12]. It is pointed out that PF is feasible for stationary channels, however

mobility of UEs and slow-fading of channels bring non-stability. [13] provides scheduling

schemes with prediction capability to fix this issue. [14] considers the scenario where UEs may

newly join the network or resume from the idle state. The average rate calculation, originally

shown as Eq. (3), is replaced for the newly coming UEs.

The above scheduling schemes are all deterministic ones, requiring explicit models or utility

functions and appear as deterministic expressions. However, they suffer from a low flexibility

when adopted in mobile communication systems with high dynamics. An alternative way is to

model the scheduling problem into an MDP, whose scheduling decisions are made based on the

observations of the system states. The state space of the MDP can be designed to reflect the

dynamics of the system. Although MDP can be solved by Dynamic Programming (DP) [15],

it needs the transition probabilities of states as a priori, which is generally hard to acquire in

the scheduling problem. To bypass this issue, DRL can be used as the solver of the scheduling

MDP problem. With the help of DNNs, DRL can handle MDP problem with large state and

action spaces.

DRL has already been used in wireless communication systems, and a comprehensive survey

can be found in [16]. The most relevant work for this paper are those about using DRL to do

March 23, 2021 DRAFT

6

scheduling. In [17], the DRL-based scheduler is introduced to extend the lifetime of the battery-

powered Road-Side Units (RSUs) while promoting a safe environment that meets acceptable QoS

levels in a Vehicle-to-Infrastructure (V2I) scenario. Small-cell BS (SBS) selection and content

caching tasks are done simultaneously by a DRL-based scheduler in [18]. In [19], a DRL-based

scheduler is designed to coordinate packet transmission from different buffers through multiple

channels in a cognitive IoT network. Uplink scheduling is studied in [20], where throughput

maximization is achieved by properly choosing K from N UEs. Two exponential parameters

are introduced to modify the numerator and denominator of Eq. (2), and DRL is used to tune these

parameters to achieve different levels of tradeoff between throughput and fairness in [21]. [22]

proposes to use a DRL-based scheduler to optimize the Internet of Things (IoT) traffic without

impacting conventional real-time applications such as voice-calling and video. Real field data

are gathered to train the agent, which is then evaluated in field tests.

Most existing works focus on coordination between multiple types of data traffic (IoT and

eMBB) or multiple levels of networks (heterogeneous networks). The proposed schemes are

trained and evaluated on a simulation environments with quite loose assumptions. For instance,

data rate is derived directly from Shannon’s equation, without considering adaptive modulation

and coding (AMC) and outer loop link adaption (OLLA). Moreover, existing DRL algorithms

are used directly without much specific design for the DNNs used as agents in these references.

In contrast to them, this paper proposed a smart scheduling scheme for cellular networks with a

specific scalable design of DNNs for the DRL agent. The training and evaluation are done both

on a system simulation platform and through a field test prototype.

III. SYSTEM MODEL

In this paper, we consider the downlink scheduling in a single cell cellular network as shown

in Fig. 1. The BS equipped with a scheduler allocates radio resources among K UEs. The

available radio resources are divided into B resource block groups (RBGs), each of which can

be occupied by only one UE during each transmission time interval (TTI). The BS maintains

one Radio Link Control (RLC) layer buffer for each UE so that the packets for this UE from

upper layers are stored for transmission or retransmission. As the full buffer traffic mode case is

well discussed in our previous paper [2], we mainly consider the more practical non-full buffer

traffic modes in this paper. In the non-full buffer mode, packets follows a Poisson process with

arrival rate λ. The packets may be eliminated due to either buffer overflow or expiration in

March 23, 2021 DRAFT

7

RCL buffers

BS

UE0

UE1

UE2 UE K

Fig. 1. System model.

the queue. UEs feed their channel state informations (CSIs) back to the BS to help the BS to

make scheduling decisions. The scheduling results are sent to the UEs through downlink control

information (DCI). Both the feedback and scheduling are on the TTI basis. A UE becomes

inactive when its RLC buffer is empty. This inactive UE will not participate into the next round

of scheduling until new packets arrive at its RLC buffer, after then it becomes active again.

As mentioned in [5], the optimal tradeoff between throughput and fairness is always the aim

of scheduling scheme design. Meanwhile, for non-full buffer mode, packet loss due to buffer

overflow and expiration is also a key performance metric for practical finite buffer systems.

Hence, in this paper, we consider throughput (THP), fairness (indicated by Jain’s fairness index

[23] (JFI)) and packet drop rate (PDR) as three key performance indicators (KPIs), which can

be expressed as

THP =
∑

t

∑

k∈K

∑

b∈B

dk,b(t)rk,b(t)

JFI =

[∑
t

∑
k∈K

∑
b∈B

dk,b(t)rk,b(t)

]2

K
∑
k∈K

[∑
t

∑
b∈B

dk,b(t)rk,b(t)

]2

PDR =

∑
t

∑
k∈K

(ak(t)− sk(t))

∑
t

∑
k∈K

ak(t)

(4)

March 23, 2021 DRAFT

8

where K and B are the set of UEs and RBGs, respectively. rk,b(t) denotes the achievable rate

of the k-th UE at the b-th RBG at the t-th TTI, dk,b(t) ∈ {0, 1} is the scheduler decision about

whether the b-th RBG is allocated to the k-th UE. ak(t) and sk(t) are the numbers of arrived

packets and transmitted packets for the k-th UE, respectively. All the three KPIs are statistically

computed over a sufficiently long period, e.g., several hundreds of TTIs, so that the scheduler

algorithm should pay more attention to the long-term reward than the short-term one. We define

this long period as a scheduling duration, within which the proposed scheme and the baseline

are compared.

IV. EXPLORATION OF PARETO FRONTIER

Simultaneously considering multiple KPIs turns scheduling into a multi-objective optimization

problem. Theoretically, Pareto optimization can be used to find all the nondominant tradeoffs

among optimization objectives. All the tradeoff solutions consist into a Pareto frontier, each point

of which is an optimal tradeoff subjected to a typical circumstance.

For the full buffer traffic mode, the aim of solving scheduling problem is to find an optimal

tradeoff between throughput and fairness, while packet loss in the RLC buffer is not considered.

Two extreme cases on the Pareto frontier in this case are the Max C/I scheduling and Max-

Min scheduling. Max C/I scheduling guarantees the highest throughput performance without

considering fairness, whereas Max-Min scheduling provides the highest level of fairness with

lowest throughput by trying to maximizing the throughput of the UE with lowest historic

throughput. Between these two solutions, PF scheduling provides a good tradeoff between

throughput and fairness. It has been proved that, for one carrier (or channel, or RBG) systems

with full buffer traffic mode, PF scheduling is also on the Pareto frontier, which justify itself as

an optimal tradeoff [6].

Taking packet loss into consideration with the non-full buffer traffic mode, the Pareto frontier

contains the optimal tradeoffs among throughput, fairness and packet drop rate. These three KPIs

are all long-term statistics as shown in Eq. (4). Although THP is linear and additive across the

scheduling periods (TTIs), it is uneasy to tackle with JFI and PDR since the scheduling decision

for the current TTI may have impacts on the following ones. A greedy scheduling scheme that

chooses the decision with the highest JFI or lowest PDR in the current TTI, may not achieve

the best long-term JFI or PDR performance in the end. In this situation, it is difficult to find out

the complete Pareto frontier for the scheduling problem. For a scheduling duration of N TTIs

March 23, 2021 DRAFT

9

in a system with only one RBG, the scheduling decisions for each TTI constitute a sequence

with the length of N . Suppose that the complete channel conditions and RLC buffer conditions

of the K UEs in these N TTIs be known to the scheduler a priori, the searching space contain

totally KN candidates, i.e., N scheduling decisions, each of which has K options. It is obvious

that to find the optimal solution by an exhaustive search in such a huge space is impossible for

large K and N .

In this section, we propose two heuristic gene-aided algorithms to explore the performance

gain space of scheduling problem with non-full buffer traffic mode, i.e., genetic algorithm (GA)

and Pareto list algorithm (PLA). By the word “gene-aided”, we assume that the channel qualities

and RLC buffer conditions for the N TTIs be known a priori at the beginning of the scheduling

duration. They can help to explore the Pareto frontier in this multi-objective scheduling problem.

The two algorithms are elaborated in following subsections with an assumption that there be

only one RBG. The algorithms can be simply extended to multi-RBG cases by scheduling the

UEs in a RBG-by-RBG way.

A. Genetic Algorithm

The N successive scheduling decisions consist into a scheduling sequence, while the optimal

one can be searched through Genetic algorithm (GA). In GA, for every generation, M scheduling

sequences (population) with the length of N are obtained through selection, crossover and

mutation. The sequences are evaluated since all the channel and RLC buffer conditions are

known a priori. The good ones are selected for the next generation. The main concern during

GA process is to obtain multiple scheduling sequences with good performance and high diversity.

In this paper, we adopt the nondominated sorting genetic algorithm II (NSGA-II) as shown in

Algorithm 1 [24].

According to Algorithm 1, two key operations are adopted. Firstly, the population is sorted into

different nondomination levels through the function Fast Nondominated Sorting Procedure(Rt).

The definition of domination has considered all three objectives. For instance, we say solution x

dominates y if the THP of x is higher than that of y with JFI and PDR of x no worse than those

of y. Solutions with higher nondomination level are chosen with high priority so that the elitism

is preserved. Secondly, the crowing distance for each individual in the same nondomination level

is assigned through the function Crowing Distance Assignment(Fi). Within the same nondom-

incation level, solutions with higher crowing distance are chosen first, which in turn guides the

March 23, 2021 DRAFT

10

Algorithm 1 NSGA-II algorithm

Set the population size M and the number of generations G

Initialize the parent population P1 and offspring population Q1 = ∅

for t = 1 to G do

Rt = Pt ∪ Qt

F = FAST NONDOMINATED SORTING PROCEDURE(Rt)

Pt+1 = ∅

while |Pt+1|+ |Fi| ≤ M do

CROWING DISTANCE ASSIGNMENT(Fi)

Pt+1 = Pt+1 ∪ Fi

i = i+ 1

end while

sort(Fi,≺n)

Pt+1 = Pt+1 ∪ Fi [1 : (M − |Pt+1|)]

Qt+1 = MAKE NEW POP(Pt+1)

t = t+ 1

end for

selection toward a uniformly spread-out on the Pareto frontier. In the considered scheduling

problem, the length of chromosome is N , and the variable of each gene lies in {1, 2, . . . , K}.

The crossover and mutation operations are conducted in the function Make New Pop(Pt+1),

which introduces possibilities of generating new and better scheduling decision sequences. The

details of the functions and crowding-comparison operator (≺n) can be found in [24].

B. Pareto List Algorithm

In contrast to GA that outputs the complete scheduling decision sequence in one shot, Pareto

list algorithm (PLA) solves the scheduling problem in a tree-like searching way as shown in

Algorithm 2.

The Pareto list algorithm executes path expanding, sorting and pruning TTI by TTI, and

constraining the complexity to a fixed level, i.e., the maximum number of the list Lmax. At each

TTI, a path is expanded according to the number of active UEs. Note that different paths may

lead to different active UEs and be expanded in different ways, because paths affect the states,

March 23, 2021 DRAFT

11

Algorithm 2 Pareto list algorithm

Set the maximum list number Lmax

Initialize the initial list size L0 = 1 and path O0
L0

= ∅

for t = 1 to N do

Lt = 0

for l = 1 to Lt−1 do

for k = 1 to K do

if rk(t) > 0 then

Lt = Lt + 1

Ôt
Lt

= [Ot−1

l , k]

end if

end for

end for

Calculate THPt
Lt

, JFItLt
and PDRt

Lt
for all paths in Ôt

Lt
using Eq. (4)

if Lt > Lmax then

Do nondominated and crowing distance sorting in Ôt
Lt

according to NSGA-II

Prune the path with 0 crowing distance

Preserve the first Lmax paths in Ôt
Lt

to form Ot
Lt

Lt = Lmax

end if

end for

Select the best path from ON
LN

such as UE buffers. After several TTIs, the number of survival paths may exceed Lmax, then

path sorting and pruning are done. Unlike the conventional list-based algorithm in which the

path metric is a scalar, the path sorting and pruning in the scheduling issue should consider

multiple objectives. Again, the nondominated and crowing distance sorting method introduced

by NSGA II can be used. Moreover, in the scheduling problem, a large number of paths may

result in a same state, implying the exact same impact on the following TTIs. In this case, only

one path from those resulting in the same state is kept alive before doing the nondominated and

crowing distance sorting. The definition of domination used in PLA is the same to that in GA,

March 23, 2021 DRAFT

12

Reward ActionState

DRL Agent

Environment

Re

Fig. 2. DRL framework for scheduling problem.

i.e., the paths with higher THP and no less JFI/PDR are preferred. After N expansions, a final

scheduling sequence is selected from the set of Lmax survival paths.

V. SMART SCHEDULING BASED ON DEEP REINFORCEMENT LEARNING

In DRL algorithms, the DNN-realized agent is trained through interactions with the environ-

ment. For the scheduling problem in this paper, the framework of DRL based scheme is shown

in Fig. 2, where the environment is a cellular network. The DRL agent observes the state s of the

environment, and makes an action decision a based on its policy π(a|s) accordingly. The action

is issued into the environment, after which the state transits into the next state and a reward r

is obtained. Based on the reward together with the state and action, the DRL agent adjusts its

decision policy in order to get higher reward expectation in future. Although the idea of using

DRL for scheduling comes easily, there are some challenges in the real design:

• When the estimated rate that reflects channel conditions is regarded as continuous value,

the state space increases substantially big. It it quite challenging to train a DRL agent in

such a huge state space.

• When the trade-offs among three long-term KPIs (THO, JFI, and PDF) is considered, it is

not straightforward to design a reward function.

• Stochastic arrivals and departures of the UEs would result into temporal changes in the

state and action space.

March 23, 2021 DRAFT

13

In this section, beginning with MDP modelling, we elaborate the smart scheduling scheme

with a scalable, easy-training and fast-convergence design.

A. Markov Decision Process

A MDP is typically defined by a tuple (S,A, P, r), where S is the set of states, A is the

set of actions, P (s′|s, a) is the transition probability from state s to s′ due to action a, and r

is the immediate reward when transition happens. Although it is hard to obtain the transition

probability in this scheduling problem, fortunately the DRL-based scheme doesn’t need it. The

state, action and reward can be defined as follows.

State: The input state contains observations for each UE. The estimated rate, averaged rate,

the spare space in the RLC buffer and the waiting time of the HoL packet are concatenated to

form the observation of each UE. Per this definition, it is obvious that the scheduling problem

has a continuous state space.

Action: For the single RBG case, the action is a K-length one-hot code, indicating the UE

selected for transmission in each TTI. Note that we reuse the same policy for different RBGs

to avoid an exponential increase of action space, which may incur significant training costs and

probably bad convergency.

Reward: The long-term KPIs, i.e., THP, JFI and PDR as calculated in Eq. (4), are the final

performance concerns and can be calculated only at the end of each scheduling duration. We need

to consider them in each scheduling step by defining a proper reward function. A straightforward

definition is in the form of linear weighted sum, i.e.,

r = α · thp + β · jfi− δ · pdr (5)

where thp, jfi and pdr, which are obtained at each TTI after the scheduling decision action

is executed, can be viewed as a single-step version of THP, JFI and PDR. thp is the total

throughput of the current TTI. jfi is the Jain’s fairness index calculated from the beginning of

the scheduling duration to the current TTI. pdr is the total number of dropped packets in the

current TTI, and the value is normalized with K. α, β and δ are the weighting factors. Although

this linear scalarization of a multi-objective problem may lead to non-convex Pareto frontier, we

find it still feasible to obtain satisfactory results at least in this paper.

March 23, 2021 DRAFT

14

B. Scheduling Scheme

As the scheduling problem has a continuous state space as defined above, value-based DRL

methods, such as Deep Q-Network (DQN), are inefficient. To handle this issue, we employ the

advantage actor-critic (A2C) framework which is essentially a policy-based DRL algorithm. The

policy πθ(a|s) is directly optimized by adjusting the parameters θ. Similar to the actor-critic

algorithm, the A2C algorithm employs two NNs, i.e., one policy network to make the decision

and one value network for judging the decision.

At the t-th TTI of the scheduling duration, the DRL agent observes state st from the envi-

ronment, and makes scheduling decision at. After the system executes the decision, the DRL

agent receives the reward rt and observes the next state st+1. The goal of DRL training is to

find a policy π (a|s) through interactions with the environment to maximize the accumulated

(discounted) reward R

R =
∞∑

t=0

γtrt (6)

where γ is the discount factor to determine the importance of the future reward.

The parameters θ can be updated by gradient ascent on the expected return R

g = ∇θE [R] = ∇θE

[
∞∑

t=0

γtrt

]
(7)

The gradient in (7) can be further represented as [25]:

g = E

[
∞∑

t=0

Aπ (st, at)∇θ log πθ (at|st)

]
(8)

where, Aπ (st, at) is the advantage function. Instead of using one-step temporal difference (TD)

as [25], we introduce the n-step TD for the advantage function

Aπ (st, at) = Est+1···st+n
[rt + γrt+1 + γ2rt+2 + · · ·

+ γnV π (st+n)− V π (st)]
(9)

where more than one steps are considered to get n rewards along the trajectory. In the scheduling

problem with long-term KPIs, the n-step TD calculation helps to improve the advantage estima-

tion by averaging out the variance during gradient updates and leads to a more stable training.

Through simulation, it is found that setting n = 20 is good enough.

In order to avoid the agent from trapping in a deterministic local optima, the entropy regu-

larization in (10) is employed to enhance the exploring ability

H = −
∑

a

πθ(a|s) log πθ(a|s) (10)

March 23, 2021 DRAFT

15

To improve the generalization capability, the DRL agent is trained on several environments

with different deployments simultaneously.

For multi-RBG cases, the policy network can be reused iteratively for each RBG to deal with

the dimension curse. The only thing needs to be considered is that the states for scheduling

different RBGs in the same TTIs should be updated according to the scheduling decisions made

for the previous RBGs.

To sum up, the full algorithm is described in Algorithm 3. A batch of training data is

comprised of n consecutive interactions with the environment. The advantage function of each

experience is then obtained using (9). θ and φ are the parameters of the policy network and the

value network. Finally, parameters are updated through the gradient decent (GD) method.

C. Neural Network Design

The most straightforward NN design for the DRL agent is using fully connected networks with

states of all UEs together serving as the input. We call it one-pass design to distinguish from

the scalable design elaborated later. For the one-pass NN design, rectified linear unit (ReLU)

function is used as the activation function for all hidden layers in both the policy and the value

network. For the activation function of the output layer, softmax is used for the policy network

and linear function is used for the value network.

As introduced in Section III, for non-full buffer traffic mode cases, a UE may be inactive

when its RLC buffer is empty and become active again when new packets arrive. To handle

this situation, we introduce a mask processing in the one-pass NN design as shown in Fig. 3.

A mask is generated by the states, and prohibits policy from choosing the inactive UE(s), e.g.,

by subtracting a large value from the corresponding logits.

In the one-pass NN design, states of all UEs are input together into the NNs, which makes

the scale of NNs dependent on the number of UEs. For instance, the input layer dimensions

of both the policy and the value network are 4K with K UEs and 4 state parameters for each

UE. When adopted in different deployments, the number of UEs may be different and changing

now and then. Setting a maximum possible number of UEs Kmax may be a solution, but it may

result in unnecessary high computational complexity when K < Kmax and failure to work when

K > Kmax.

We propose a scalable NN design, where the same policy network is repeated for K times

with handling states of one UE each time, and a value network is used only once to handle the

March 23, 2021 DRAFT

16

Algorithm 3 A2C algorithm

Initialize all environments

Initialize policy network πθ and value network Vφ

Initialize experience buffer E

Set maximum number of training episode W = 10000, entropy weight λe = 0.03, value

weight λv = 0.5

for iteration = 1 to W do

SAMPLE BATCH(n, πθ)

Update advantage Ai for ith experience in E

Policy objective Jθ =
∑

iAi log πθ(ai|si)

Entropy term Hθ = −
∑

i πθ(ai|si) log πθ(ai|si)

Loss of value Lφ =
∑

i A
2
i

GD with G = − (∇θJθ + λe∇θHθ) + λv∇φLφ

end for

function SAMPLE BATCH(n, πθ)

Clear E

for t = 1 to n do

Observe st

Choose action at ∼ πθ(st)

Take action at, observe st+1 and rt

Store (st, at, rt, st+1) into E

end for

end function

average states of all UEs. The same policy network is shared among multiple UEs. The details

of the scalable NN design is shown in Fig. 4, where both the policy and the value network are

fully connected ones and the activation functions are the same to the one-pass design. Obviously,

the input layer dimensions of both the policy and the value network are 4, independent of the

number of UEs. Similarly, the output layer dimensions of both networks are 1. When the number

of UEs varies, the only impact is the number of usage of the policy network. The theoretical

explanation behind the scalable NN design is the so called permutation invarianace property of

March 23, 2021 DRAFT

17

State Value

Logits Policy

Mask

Fig. 3. One-pass NN design.

Inter-UE

Normalization .

.

.

Policy Net

Policy Net

Policy Net

Policy Net

Softmax

Value Net

.

.

.

Total_UE_State

UE0_State

UE1_State

UE2_State

UEK_State

Averaging
Value

Action

Averaged_State

Fig. 4. Scalable NN design.

the scheduling task. According to [26], if any permutation of the inputs of a function leads to

the same permutation of its outputs, the function is said to be invariant to permutation. For the

considered scheduling task, if the states of multiple UEs are permuted, the scheduling metrics

will also be permuted accordingly. To exploit this permutation invariance property, the same NN

can be shared among all the UEs just as the proposed scalable NN design does.

D. Virtual Environment Training

Different from the application scenarios like Atari Games, the performance and robustness

requirements of communication systems are far more higher. The training of DRL agents usually

costs a long time, during which the performance and robustness may be degraded due to the

exploration of new actions. Directly adopting a randomly initialized agent to the practical system

and training it from scratch on line are quite inefficient. Instead, we propose to train the agent in

a virtual environment first and set the trained NN parameters as the initial version of the agent

adopted in the practical system.

March 23, 2021 DRAFT

18

Channel Condition

No. of arrivals

Buffer Condition

SNR/MCS

RLC/MAC

Channel

estimation

PHY

Packet buffer

State

SNR

estimation

MCS decision

Demodulation/

decoding

Time stamp

Estimated THP

BLER

Estimated THP

Average THP

Buffer Spare Space

HoL Packet Delay

Reward

Throughput

Fairness

Packet Loss

Neural Network

State

Reward

Action

Data BasePrototype Virtual Environment DRL Agent

Fig. 5. Virtual environment training framework.

The virtual environment training framework is shown in Fig. 5. The data, including channel

and buffer conditions, are collected from the practical systems and stored in a data base. The

virtual environment is then established based on these collected data, and provides the necessary

informations to the DRL agent for training. The virtual environment can generate training samples

much faster than the practical system, helping with the fast convergence of the DRL agent.

VI. EVALUATIONS AND DISCUSSIONS

The proposed DRL scheduling scheme is evaluated through both simulation and field test.

A. Simulations

As shown in Fig. 6, the simulation platform contains a DRL agent and several system

simulators working in parallel as the environment. The system simulator is calibrated according

to the physical layer (PHY) and medium access control layer (MAC) standard of LTE, where

AMC and OLLA are all implemented. Each system simulator provides a training environment

with a specific UE deployment. Two threads are initialized for each simulator: one interacts with

the DRL agent, and the other executes PF scheduling algorithm as baseline for performance

comparison. A moving window is used to restrict the time scope of training and evaluation.

The DNNs are updated at the end of every scheduling duration, and performance comparison is

carried out every 50 updates. The simulation settings are listed in Table I.

The fully connected NNs used for the DRL agent contains two hidden layers, each of which

has 128V neurons with V = K for the one-pass NN design and V = 1 for the scalable NN

March 23, 2021 DRAFT

19

DRL agent

Sys. Simulator

Sys. Simulator

Sys. Simulator

...

seed0

seed1

seedn
Continuously running processes (sync or async)

Moving window for training or evaluation

training

DRL thread

PF thread

Fig. 6. Simulation framework.

TABLE I

SIMULATION SETTINGS

Parameters Values

Carrier Frequency 2GHz

Channel Model SCM-3D-UMA

TTI duration 1ms

Scheduling Duration 500TTIs

Bandwidth 1.4MHz(single RBG), 20MHz(multiple RBGs)

Number of RB 6(single RBG), 100(multiple RBGs)

Number of RBG 1, 10

Number of UE 80% indoor, 20% outdoor

UE speed 3km/h(indoor), 30km/h(outdoor)

Antenna Setting 4T2R with 1 stream

OLLA type fixed-step OLLA (0.1dB step)

Packet Arrival Rate 200 per second for all UEs

Buffer Size 1e6 bits

Buffer type FIFO

Packet Size 8e3 bits

Maximum Delay 2s

design. The learning rate is set to 0.001 at the beginning and decays by the rate 0.1 after 5000

updates. The discount factor in Eq. 6 is set to 0.9. The weights used in the reward function, i.e.,

Eq. 5, are α = 0.07, β = 0.71, δ = 0.22.

1) Simulation evaluation on the one-pass NN design: We first evaluate the performance of

one-pass NN design. Since it can only handle scenario with fixed-number of UEs, we consider

5 UEs in the simulation. 56 simulators for a same DRL agent are launched simultaneously for

March 23, 2021 DRAFT

20

THP JFI PDR

P
e

rf
o

rm
a

n
c
e

 o
v
e

r
b

a
s
e

lin
e

 %

80

85

90

95

100

105

110

115

120
DRL

THP gain: 10.54%

JFI gain: 0.3%

PDR gain: 7.64%

THP JFI PDR
80

85

90

95

100

105

110

115

120
GA

THP gain: 10.37%

JFI gain: 0.03%

PDR gain: 5.93%

THP JFI PDR
80

85

90

95

100

105

110

115

120
PLA

THP gain: 10.43%

JFI gain: 0.03%

PDR gain: 6.17%

Fig. 7. Performance of DRL with one-pass NN design and genie-aided methods for single RBG.

Seed

0 10 20 30 40 50

P
e
rf

o
rm

a
n
c
e
 o

v
e
r

b
a
s
e
lin

e
 %

60

80

100

120

140

160
THP

JFI

PDR

Fig. 8. Performance metrics for DRL with one-pass NN design of each seed.

a quickly and adequately exploring in state and action space. The deployment of the UEs and

random seeds for the simulators are deliberately differentiated to undermine the data correlation

that would harm the DRL. In addition, averaging among different random seeded simulators

also increases the generalization of the DRL agent and are more reasonable in the sense of

performance comparison.

After ∼5000 updates, we fix the parameters of the NN model and run a performance evaluation.

The average performances over baseline in 20000 TTIs of 56 UE deployments are shown in

Fig. 7 and Fig. 9, where the PF algorithm is used as the baseline. It is worth noting that values

above 100% for THP and JFI, and below 100% for PDR mean better performance, i.e., higher

throughput, better fairness and lower packet loss.

March 23, 2021 DRAFT

21

THP JFI PDR

P
e
rf

o
rm

a
n
c
e
 o

v
e
r

b
a
s
e
lin

e
 %

80

85

90

95

100

105

110

115

120
10-RBG w/o training

THP gain: 5.59%

JFI gain: 0.87%

PDR gain: 5.9%

THP JFI PDR
80

85

90

95

100

105

110

115

120
10-RBG w/ training

THP gain: 9.28%

JFI gain: 0.32%

PDR gain: 7.52%

Fig. 9. Performance of DRL with one-pass NN design for multiple RBGs.

For single RBG case, we also provide the results of GA and PLA, in which the states from the

simulators are recorded in advance and fed into the algorithms. For GA, we use simulated binary

crossover operator and polynomial mutation with the crossover probability of pc = 0.95 and a

mutation probability of pm = 0.05. The distribution indexed for crossover and mutation operators

are ηc = 5 and ηm = 20, respectively. We set the population size as M = 3000 and G = 10000

generations to conduct the GA. For PLA, the maximum list number of PLA is Lmax = 2000.

From Fig. 7, we can see that the performances of GA and PLA are similar. The DRL scheme

obtains nearly the same throughput, and slightly better JFI and PDR performance compared to

the two gene-aided algorithms. It is worth noting again that the two genie-aided methods are

included herein to show the possible gain space over the baseline. They are impractical due to the

assumption about knowing future channel conditions and buffer states. It is quite encouraging to

see that the proposed DRL scheme learns only one policy for all UE deployments and achieves

similar gain over baseline without knowing future information.

Fig. 8 plots the performance of DRL in all 56 UE deployments, where we can see that the

THP and PDR gain are obvious among all deployments while JFI keeps almost the same to

the baseline. We argue that some THP vales, e.g., seed 11 and seed 45, are not failed because

they have larger JFI, meaning that they are still somewhere near the Pareto frontier. We believe

that in real world, some deployment-specific KPI weightings will help with fast converge to the

required performance.

For multiple RBG scheduling, two methods have been tried: a) transfer learning, i.e., the

March 23, 2021 DRAFT

22

0 500 1000 1500 2000 2500 3000

Training iteration

1

1.1

1.2

1.3

1.4

R
e
w

a
rd

one-pass NN design

scalable NN design

Fig. 10. Convergence of scalable NN design.

NNs trained for single RBG case is directly reused. b) retraining the model that fits for multi-

RBG case. From Fig. 9, it is found that the first method still works. This justifies that the good

generalization capability of the trained model. The retraining method further exploits the learning

ability of the agent and achieves a better performance similar to the single RBG case.

2) Simulation evaluation on the scalable NN design: We then evaluate the performance of

the scalable NN design. Again, deployments with 5 UEs are used for the agent training. Fig.

10 shows the converging speed comparison between the one-pass NN design and scalable NN

design. Although the two designs achieve similar rewards in the end, the convergence for the

scalable design is much faster. It is because that the policy network is used for K times in each

TTI, which is equivalent to have K training samples, while only one training sample is produced

for the one-pass design in the same time interval.

The performance of the scalable NN design is shown in Fig. 11. It is shown that its performance

is similar to the one-pass design in the 5-UE scenario. Then, the DRL agent with the scalable

NN design trained in the 5-UE scenario is directly adopted in a 50-UE single cell scenario

and 3-cell scenario with 10 UEs per cell. The performance gains over the baseline can also be

obtained in the latter two scenarios. The simulation results verified that the scalable design could

be adopted in scenarios with different UE numbers and deployments.

March 23, 2021 DRAFT

23

THP JFI PDR
80

85

90

95

100

105

110

115

120

P
e

rf
o

rm
a

n
c
e

 o
v
e

r
b

a
s
e

lin
e

 %

1 cell, 5 UEs

THP gain: 8.04%

JFI gain: -0.16%

PDR gain: -6.19%

THP JFI PDR
80

85

90

95

100

105

110

115

120
1 cell, 50 UEs

THP gain: 12.05%

JFI gain: -0.7%

PDR gain: -6.52%

THP JFI PDR
80

85

90

95

100

105

110

115

120
3 cells, 10 UEs each

THP gain: 9.14%

JFI gain: -0.89%

PDR gain: -2.31%

Fig. 11. Performance of DRL with scalable NN design.

BBU (x86 server)

RRU Antenna

BBU (x86 server)

RRU Antenna

BS UE

BBU (x86 server)

Antenna

RF Unit

Mobility Unit

Fig. 12. Field test prototype.

B. Field Tests

The ultimate goal of design the smart scheduling scheme is to use it in the practical system.

Hence, in this section, we implement the scheme into a field test prototype system and conduct

field trials. Due to its benefits over the one-pass NN design verified by the simulations, we only

test the scalable NN design in the field trials.

The prototype system includes one BS and 8 UEs. The baseband processing functions of

the BS and UEs are implemented in x86 servers, as shown in Fig. 12, for the sake of easy

configuration. The UEs’ positions are fixed, and the average signal-to-noise ratios (SNRs) for

the UEs are shown in Table II.

March 23, 2021 DRAFT

24

TABLE II

AVERAGE SNRS FOR THE UES

UE ID 0 1 2 3 4 5 6 7

SNR (dB) 17.6 18.2 17.9 -0.7 9.8 9.7 8.7 -2.3

Other field test settings are listed in Table III, where only 80 RBs are used for data transmission

with other RBs on the upper and lower sideband are left empty. The scalable OLLA adjusts the

modulation and coding scheme (MCS) directly according to the ACK/NACK feedback.

TABLE III

FIELD TEST SETTINGS

Parameters Values

Carrier Frequency 3.59GHz

Scheduling period 1 frame (10ms)

Bandwidth 20MHz

Number of RB 80

Number of RBG 1, 5

Subcarrier Spacing 15kHz

Number of UE 8

Antenna Setting 1T1R

OLLA type Scalable OLLA

Packet Arrival Rate 200 per second for all UEs

Buffer Size 2e3 packets

Buffer type FIFO

Packet Size 3e4 bits

Maximum Delay 2s

To do a fair comparison between the proposed smart scheduling and PF scheduling, we should

ensure that the two schemes experience exactly the same channel and RLC buffer conditions.

For the channel conditions, we implement a novel frame structure as shown in Fig. 13, where the

two schemes are carried out alternatively. With channel changing slowly, the channel conditions

experienced by the two schemes can be viewed as the same. For the RLC buffer conditions, we

maintain two set of RLC buffers, each for one scheme. The packet arrivals for the two sets of

RLC buffers are exactly the same. In the frames with smart scheduling scheme, the corresponding

March 23, 2021 DRAFT

25

PF scheduling DRL scheduling PF scheduling DRP scheduling

Frame i Frame i+1 Frame i+2 Frame i+3

Fig. 13. Frame structure used in field tests.

set of RLC buffers provides buffer related states, whereas when it comes to the frames with PF

scheduling, the other set of RLC buffers is adopted.

We consider two test scenarios, one with the number of UEs fixed to 8, and the other with a

variable number of UEs. In each test scenarios, both single-RBG and multiple-RBG cases are

designed. Each test lasts for about 15 minutes. For the scenario with variable number of UEs,

8 UEs participate in the scheduling at the beginning. After about 5 minutes, UE 1, 2, 3 and

6 are turned off, then after another 5 minutes, they are turned on again. The test cases can be

summarized as Table IV.

TABLE IV

TEST CASE DESIGN

Case ID UE number RBG number

Case 1 8 1

Case 2 8 5

Case 3 variable 1

Case 4 variable 5

First of all, we try to train the DRL agent online from scratch with 8 UEs. Since the agent in the

field trial is facing only one deployment, and the timing must obey the operations of the practical

system, the gathering of training samples is quite low-efficiency. We draw the throughput and

fairness performance during training in Fig. 14, where each point of the x-axis represents an

averaging result over 10 seconds, i.e., 500 frames for the smart scheduling and 500 frames for

PF scheduling. From the result, it can be observed that although the throughput performance

of the smart scheduling scheme quickly outperforms the baseline, 35000 seconds, i.e., about 10

hours, are needed for the agent to find a policy with comparable fairness performance compared

with the baseline. It is obviously unacceptable and unrealistic to spend such a long time to do

the training. Hence, we rely on the virtual environment training framework for the following

March 23, 2021 DRAFT

26

Throughput

T
h

ro
u

g
h
p

u
t

Per 500 frames

DRL

PF

0 1000 2000 3000 4000 5000

70

75

80

85

90

95

Fairness

F
ai

rn
es

s

Per 500 frames

DRL

PF

0 1000 2000 3000 4000 5000

0.66

0.68

0.70

0.72

Fig. 14. Performance during training DRL agent from scratch.

field tests. The DRL agent is trained offline in the virtual environment first, and then used in

the practical testing prototype.

Then, we conduct the field trials and the test results are shown in Table V, where the number of

dropped packets are recorded instead of the PDR and the minus gain means dropping less packets

from the RLC buffer. Generally, with similar JFI performance, the proposed smart scheduling has

higher throughput and less dropped packets in all test cases. In one RBG cases, the throughput

gain of the smart scheduling scheme is more than 20%, while for the cases with 5 RBGs, the

gains shrink to about 9%. It is because with more RBG divided, the channel measurement is

more precise for each RBG, which helps both PF and smart scheduling scheme with achieving

high throughput, hence, the gain space left becomes less. We do not see much difference for

the smart scheduling scheme between fixed UE number cases and variable UE number cases,

March 23, 2021 DRAFT

27

which verified the feasibility of the scalable NN design.

TABLE V

FIELD TEST RESULTS

Case ID KPI Scheme Gain

PF DRL

THP(Mbps) 75.67 93.61 23.7%

Case 1 JFI 0.719 0.730 1.5%

Dropped packet number 657.87 571.62 -13.1%

THP(Mbps) 96.42 105.51 9.4%

Case 2 JFI 0.746 0.755 1.2%

Dropped packet number 594.32 552.81 -7.0%

THP(Mbps) 74.67 91.89 23.1%

Case 3 JFI 0.714 0.730 2.3%

Dropped packet number 578.32 466.74 -19.3%

THP(Mbps) 92.99 101.99 9.7%

Case 4 JFI 0.758 0.747 -1.5%

Dropped packet number 508.98 415.75 -18.3%

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a smart scheduling scheme based on DRL is proposed for cellular networks.

Multiple long term optimization objectives, i.e., THP, JFI and PDR, are considered in the

problem. Through both the simulation and the field test evaluation, we have the following

observations

1) The smart scheduling scheme using A2C algorithm can achieve higher throughput and

lower packet loss with nearly no degradation of fairness compared with the PF scheduling in

the non-full buffer traffic mode. Its performance is similar to the two gene-aided algorithms,

while no future state information is needed.

2) With the help of the scalable NN design, the DRL agent has both fast convergence and

good generalization capability. It can track the dynamics of the cellular networks and be

adopted in practical scenarios with different system scales.

3) Instead of training the DRL agent from scratch directly in the practical system, it is

preferred to do the training in a virtual environment first. The pre-trained agent can be used

as the initial version for the practical system, and prevent the performance and robustness

degradation.

March 23, 2021 DRAFT

28

Multi-cell scenarios are tried in our simulation, however inter-cell interference coordination

cannot be performed through the proposed single agent design. In the future, multi-agent rein-

forcement (MARL) can be tried and even more performance gain may be expected.

REFERENCES

[1] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited,, 2016.

[2] J. Wang, C. Xu, Y. Huangfu, R. Li, Y. Ge, and J. Wang, “Deep reinforcement learning for scheduling in cellular networks,”

in 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2019, pp.

1–6.

[3] C. Xu, J. Wang, T. Yu, C. Kong, Y. Huangfu, R. Li, Y. Ge, and J. Wang, “Buffer-aware wireless scheduling based on deep

reinforcement learning,” in 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2020, pp.

1–6.

[4] R. V. Rasmussen and M. A. Trick, “Round robin scheduling–a survey,” European Journal of Operational Research, vol.

188, no. 3, pp. 617–636, 2008.

[5] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Downlink packet scheduling in LTE cellular networks:

Key design issues and a survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp. 678–700, 2013.

[6] F. Kelly, “Charging and rate control for elastic traffic,” European transactions on Telecommunications, vol. 8, no. 1, pp.

33–37, 1997.

[7] D. Tse, “Multiuser diversity in wireless networks,” in Wireless Communications Seminar, Standford University, 2001.

[8] H. Kim and Y. Han, “A proportional fair scheduling for multicarrier transmission systems,” IEEE Communications letters,

vol. 9, no. 3, pp. 210–212, 2005.

[9] Z. Sun, C. Yin, and G. Yue, “Reduced-complexity proportional fair scheduling for OFDMA systems,” in 2006 International

Conference on Communications, Circuits and Systems, vol. 2. IEEE, 2006, pp. 1221–1225.

[10] H. A. M. Ramli, R. Basukala, K. Sandrasegaran, and R. Patachaianand, “Performance of well known packet scheduling

algorithms in the downlink 3gpp lte system,” in 2009 IEEE 9th Malaysia international conference on communications

(MICC). IEEE, 2009, pp. 815–820.

[11] J. Huang and Z. Niu, “Buffer-aware and traffic-dependent packet scheduling in wireless ofdm networks,” in 2007 IEEE

Wireless Communications and Networking Conference. IEEE, 2007, pp. 1554–1558.

[12] T. Yang, F. Heliot, and C. H. Foh, “A survey of green scheduling schemes for homogeneous and heterogeneous cellular

networks,” IEEE Communications Magazine, vol. 53, no. 11, pp. 175–181, 2015.

[13] R. Margolies, A. Sridharan, V. Aggarwal, R. Jana, N. Shankaranarayanan, V. A. Vaishampayan, and G. Zussman, “Exploiting

mobility in proportional fair cellular scheduling: Measurements and algorithms,” IEEE/ACM Transactions on Networking,

vol. 24, no. 1, pp. 355–367, 2014.

[14] J.-T. Tsai, “State-dependent proportional fair scheduling algorithms for wireless forward link data services,” in IEEE

INFOCOM 2008-The 27th Conference on Computer Communications. IEEE, 2008, pp. 2414–2422.

[15] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas, Dynamic programming and optimal control. Athena

scientific Belmont, MA, 1995, vol. 1, no. 2.

[16] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim, “Applications of deep reinforcement

learning in communications and networking: A survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp.

3133–3174, 2019.

March 23, 2021 DRAFT

29

[17] R. Atallah, C. Assi, and M. Khabbaz, “Deep reinforcement learning-based scheduling for roadside communication

networks,” in 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks

(WiOpt). IEEE, 2017, pp. 1–8.

[18] Y. Wei, Z. Zhang, F. R. Yu, and Z. Han, “Joint user scheduling and content caching strategy for mobile edge networks using

deep reinforcement learning,” in 2018 IEEE International Conference on Communications Workshops (ICC Workshops).

IEEE, 2018, pp. 1–6.

[19] J. Zhu, Y. Song, D. Jiang, and H. Song, “A new deep-Q-learning-based transmission scheduling mechanism for the cognitive

internet of things,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2375–2385, 2018.

[20] M. Chu, H. Li, X. Liao, and S. Cui, “Reinforcement learning based multi-access control and battery prediction with energy

harvesting in iot systems,” IEEE Internet of Things Journal, 2018.

[21] I. S. Comşa, S. Zhang, M. Aydin, J. Chen, P. Kuonen, and J.-F. Wagen, “Adaptive proportional fair parameterization based

lte scheduling using continuous actor-critic reinforcement learning,” in 2014 IEEE global communications conference.

IEEE, 2014, pp. 4387–4393.

[22] S. Chinchali, P. Hu, T. Chu, M. Sharma, M. Bansal, R. Misra, M. Pavone, and S. Katti, “Cellular network traffic scheduling

with deep reinforcement learning,” in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[23] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure of fairness and discrimination,” Eastern Research

Laboratory, Digital Equipment Corporation, Hudson, MA, 1984.

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,” IEEE

transactions on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[25] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous control using generalized

advantage estimation,” arXiv preprint arXiv:1506.02438, 2015.

[26] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep sets,” in Advances in

Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017, pp. 3391–3401.

March 23, 2021 DRAFT

	I Introduction
	II Preliminaries and Related Work
	III System Model
	IV Exploration of Pareto Frontier
	IV-A Genetic Algorithm
	IV-B Pareto List Algorithm

	V Smart Scheduling based on Deep Reinforcement Learning
	V-A Markov Decision Process
	V-B Scheduling Scheme
	V-C Neural Network Design
	V-D Virtual Environment Training

	VI Evaluations and Discussions
	VI-A Simulations
	VI-A1 Simulation evaluation on the one-pass NN design
	VI-A2 Simulation evaluation on the scalable NN design

	VI-B Field Tests

	VII Conclusions and Future Work
	References

