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Abstract—Multilevel coding (MLC) is a coded modulation
technique which can achieve excellent performance over a range
of communication channels. Polar codes have been shown to be
quite compatible with communication systems using MLC, as the
rate allocation of the component polar codes follows the natural
polarization inherent in polar codes. MLC based techniques have
not yet been studied in systems that use spatial modulation
(SM). SM makes the polar code design difficult as the spatial
bits actually select a channel index for transmission. To solve
this problem, we propose a Monte Carlo based evaluation of
the ergodic capacities for the individual bit levels under the
capacity rule for a space-shift keying (SSK) system, where we
also make use of a single antenna activation to approximate the
transmission channel for the design of the multilevel polar code.
Our simulation results show that the multilevel polar coded 16×1

SSK system outperforms the corresponding system that uses bit-
interleaved polar coded modulation by 2.9 dB at a bit-error rate
(BER) of 10

−4.
Index Terms—Multilevel modulation, space-shift keying, polar

code.

I. INTRODUCTION

Multilevel coded (MLC) modulation was first introduced

independently by Imai and Hirakawa [1], and Ungerboeck

[2],[3]. MLC exhibits a performance gain over bit-interleaved

coded modulation (BICM) by considering interdependency of

the bits that map to a constellation symbol. On the other hand,

in BICM [4], the interleaver removes any dependency among

the adjacent bits, and thus helps in simplifying the receiver

design, however at a cost of decreased performance compared

to MLC.

Polar codes have been shown to have excellent performance

when used with the MLC design paradigm. The polarization

effect in a larger polar code has been proved to be equivalent

to that of concatenating smaller polar codes that constitute

the larger polar code. In other words, rate allocation of the

component polar codes using the capacity rule [5] is the same

as designing a larger polar code and then dividing it into

polar codes having different rates, as proved in [6]. In [6],

the authors have described that the rate allocation in polar

codes follows the capacity rule when multi-stage decoding

is performed, which is equivalent to successive cancellation.

However, the problem of multilevel polar code design has been

studied only for standard constellations such as amplitude-

shift keying (ASK), phase-shift keying (PSK) and quadrature

amplitude modulation (QAM). Multilevel coded modulation

and polar code design has yet to be applied to multiple-antenna

index modulation schemes such as space-shift keying (SSK)

and spatial modulation (SM).

SM was developed as an alternative to space-time and

spatial-multiplexing techniques for the multi-input multi-

output (MIMO) channel [7]. SM maps one part of the informa-

tion bits to select a particular antenna for transmission and the

others to choose a constellation symbol for transmission from

that antenna. Due to the single antenna transmission in SM,

the receiver design becomes simple as there is no inter-symbol

or inter-channel interference [8]. Space-shift keying (SSK)

modulation is a special case of SM where the information

is transmitted by using only the antenna index [9]. As there is

no need to detect the constellation symbol in SSK, the receiver

complexity is further reduced.

In this paper, we have designed the rates of multilevel polar

codes using the capacity rule for multilevel SSK modulation.

This is achieved by using the Monte-Carlo method to evaluate

the ergodic capacities of the different bit levels of SSK

modulation. The different bit levels of SSK are shown to have

quite different bit-level capacities, which further motivates our

approach. For the sake of simplicity of the system design, we

have designed the polar code for an average-case scenario of

the Rayleigh fading channel using the method given in [10].

Our simulation results show that at a bit error rate (BER) of

10−4, the designed MLC polar coded 16 × 1 SSK system

exhibits a gain of 2.9 dB over the corresponding system using

BICM.

The rest of the paper is structured as follows. We first

present the system model in Section II. In Section III, we

show how to compute the ergodic capacities of the different

bit levels in SSK modulation using the capacity rule, and we

present the respective polar code design. In Section IV, we

present numerical results and we conclude our paper in Section

V.

II. SYSTEM MODEL

A. Multilevel Polar Code

The proposed multilevel polar coded SSK system is illus-

trated in Fig. 1. A message block of K =
∑ma

i=1 Ki bits

is divided into ma modulation streams, where the ith polar

encoder encodes Ki bits using a polar code of rate Ri = Ki/N
and length N = 2n, n > 0. At the ith encoding level of the

transmitter, information bits uAi
and frozen bits uAc

i
, where

|Ai| = Ki and |Ac

i
| = N −Ki, are combined in an uncoded

vector uiN
(i−1)N+1 =

[

u(i−1)N+1u(i−1)N+2 . . . uiN

]

and polar

coded to form a codeword ciN(i−1)N+1 which is sent to the SSK

modulator. The total code rate of the polar coded system is

R = K/(maN).

http://arxiv.org/abs/2104.09875v1


Fig. 1: Proposed multilevel polar coded SSK system, with two-stage polar transform at the transmitter and corresponding

multi-stage receiver.

B. SSK Modulation and Channel Transmission

As the SSK modulated symbol selects a particular antenna

k ∈ {1, 2, . . . , NT } for transmission, the received signal for

the MIMO system with NT = 2ma transmit and NR receive

antennas can be written as

y = hk + n, (1)

where hk is the kth column of the NR×NT complex Rayleigh

fading channel matrix H with independent and identically

distributed (i.i.d.) coefficients hpq ∼ CN (0, 1), where p ∈
{1, . . . , NR} , q ∈ {1, . . . , NT }, n ∼ CN (0, N0I) is a NR×1
vector containing independent zero-mean circularly-symmetric

complex Gaussian entries, each with variance N0, where N0

is the noise power spectral density and I is the NR × NR

identity matrix, and y is the NR × 1 complex received signal

vector. The number of bits required to represent a SSK symbol

is ma = log2(NT ).

C. Multi-Stage Decoder

At the receiver, successive detection of the bits at the

different SSK modulation levels is performed by using a series

of multi-stage soft demappers and successive cancellation (SC)

polar decoders, as shown in Fig. 1. At the ith decoding

level, the SSK soft demapper takes the output from all of the

previous decoding stages and provides log-likelihood ratios

(LLRs) to the SC polar decoder which in turn produces the

estimated uncoded bits ûiN
(i−1)N+1 for that particular stage.

In the next step, these bits are polar encoded to form the

codeword estimate ĉiN(i−1)N+1, and this is fed to the SSK

demapper of the next stage for assistance in forming the soft

bit estimates. This process is repeated until the the final (math)

stage, where the decoding results from all previous stages are

used to inform the decoding of the current stage.

III. MULTILEVEL POLAR CODE DESIGN FOR SSK

In order to design the rates of the multi-level polar code,

the bit-level capacities of MLC SSK modulation need to be

computed. The bit-level capacities can be evaluated using

a method similar to that given in [5] with the difference

that here the modulated symbols actually represent different

selected channels instead of different constellation symbols.

Another difference is that the bit-level capacities need to be

averaged over the fading channel statistics in order to provide

an accurate representation of the average-case rates; this is

elucidated in the Subsections III-A and III-C. As an illustration

we evaluate the 4 multi-level ergodic capacities for 16-SSK in

Subsection III-B. Finally, Subsection III-C describes the rate

allocation method for the multi-level polar code.

A. SSK Multi-Level Coding Capacity

Fig. 2: Binary representation of the SSK symbols for NT

transmit antennas.

Let the symbols to represent NT transmit antennas be

equiprobable in the set X = {1, 2, . . . , NT} with the cor-

responding total SSK capacity C(X ) given as

C(X ) =
1

NT

ˆ

y

NT
∑

k=1

p(y|k) log2















p(y|k)

1

NT

NT
∑

k′=1

p(y|k′)















dy,

(2)

where the conditional probability density function of y given

the antenna index k is

p(y|k) =
1

(πN0)NR
e−‖y−hk‖

2/N0 . (3)

We define the binary-to-decimal mapping M by M (bma)=
k ∈ X , where bma =

[

bma−1 . . . b1b0
]

and bi ∈ {0, 1} for

each i, as depicted in the Fig.2. The inverse of M is denoted

by M−1 (k)=bma . The capacity of the symbol subset Xbi =
{

k = M
([

qma−1 . . . qibi−1 . . . b1b0
])}

, where i ≤ ma, qi ∈
{0, 1} and bi =

[

bi−1 . . . b1b0
]

, can be written as



C0
i =

1

2i

1
∑

b0=0

. . .
1
∑

bi−1=0

ˆ

y

p(y|bi) log2

(

p(y|bi)

p(y)

)

dy, (4)

where

p(y|bi) =
2i

NT

∑

k∈X
b
i

p(y|k). (5)

Using the method given in [5], we can obtain the capacity

of the ith bit level as

Ci =











C0
i , i = 1,

C0
i − C0

i−1, 2 ≤ i ≤ ma − 1,

C (X )− C0
i−1, i = ma.

(6)

Note that the spatial bits choose a particular transmit an-

tenna and therefore a particular random channel. Therefore,

we need to take expectation over the channel statistics in order

to obtain ergodic bit-level capacities, as explained in the next

subsection.

B. Illustrative Example: Bit-Level Ergodic Capacities for

16-SSK

In order to illustrate our approach, in the following we

provide an example which shows how to calculate the bit-level

ergodic capacities for the case of 16-SSK modulation.

1) Bit-Level-1 Ergodic Capacity: Using (4) and (6), we

define the capacity of bit-level i = 1, where bi = b0, as

C0
1 =

1

21

1
∑

b0=0

ˆ

y

p(y|bi) log2

(

p(y|bi)

p(y)

)

dy,

=
1

2

21−1
∑

j=0

C1,j ,

(7)

where

C1,j =

ˆ

y

p(y|bi=M−1 (j)) log2

(

p
(

y|bi=M−1 (j)
)

p(y)

)

dy.

(8)

Next we define the symbol subset Xbi=M−1(j), which is the

set of all values M(bi) where the initial i bits of the length

ma vector are equal to M−1 (j). With this, we then expand

(7) and (8) for j = 0 as

C1,0 =

ˆ

y

p(y|bi=M−1 (0)) log2

(

p
(

y|bi=M−1 (0)
)

p(y)

)

dy,

=

ˆ

y

2

NT

∑

k∈X
bi=M−1(0)

p(y|k) log2


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





2
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1
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2
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log2
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

2
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NT
∑
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
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
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



























,

(9)

where, E(·) is the expectation operator and bi = M−1 (0)
implies b0 = 0. Similarly for j = 1 we have

C1,1 =

ˆ

y

p(y|bi=M−1 (1)) log2

(

p
(

y|bi=M−1 (1)
)

p(y)

)

dy,

= E
y|X

bi=M−1(1)
















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log2
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2
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(10)

Using (6) and (7) we can find the bit-level-1 capacity as

C1 = C0
1 .

2) Bit-Level-2 Ergodic Capacity: Using (4) and (6), we

define the capacity of bit-level i = 2 , where bi = b1b0,

as

C0
2 =

1

22

1
∑

b1=0

1
∑

b0=0

ˆ

y

p(y|bi) log2

(

p
(

y|bi
)

p(y)

)

dy,

=
1

4

22−1
∑

j=0

C2,j ,

(11)

where

C2,j = E
y|k∈X

bi=M−1(j)




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
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





log2
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









4
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k∈X
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



.

(12)

Finally we can obtain the bit-level-2 capacity using (6) and

(11) as C2 = C0
2 − C0

1 .



Fig. 3: Different bit-level capacities for 16×1 and 16×4 SSK

modulation.

3) Bit-Level-3 Ergodic Capacity: Using (4) and (6), we

define the capacity of bit-level i = 3, where bi = b2b1b0,

as

C0
3 =

1

23

1
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1
∑

b1=0

1
∑

b0=0

ˆ

y

p(y|bi) log2
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(

y|bi
)

p(y)

)

dy,
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1

8

23−1
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(13)

where

C3,j = E
y|k∈X

bi=M−1(j)
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.

(14)

We can obtain the bit-level-3 capacity by using (6) and (13)

as C3 = C0
3 − C0

2 .
4) Bit-Level-4 Capacity: The bit-level-4 capacity can be

obtained using (2) and (13) as C4 = C (X )− C0
3 .

C. Polar Code Rate Allocation

To design the rates for the different levels of the multilevel

polar code, we need to evaluate the overall SSK capacity

and the corresponding ma bit-level capacities as given in

Section III-A. We have computed the bit-level capacities by

evaluating the expectation using Monte-Carlo simulation for

a large number of frames for the received signal y. The

expectation averages the effect of the fast fading channels,

resulting in the bit-level ergodic capacities. As an example,

Fig. 3 shows the different bit-level ergodic capacities of 16×1
and 16× 4 SSK modulations that are found using the Monte-

Carlo simulation.

The bit-level MLC capacities are chosen for a particular

information rate in bits per channel use (bpcu) of the overall

SSK system using the capacity rule, which states that the rate

of the ith component channel code should be Ri ≤ Ci for

1 ≤ i ≤ ma. This design targets the overall rate for the length

TABLE I: Rates and information bits size of multilevel polar

codes

C (A) (bpcu)
2 1.65

SSK mode (NT ×NR) 16× 1 16× 4 16 × 1 16× 4
Es/N0 (dB) 3.29 −5.61 1.5 −6.87

R1 0.2738 0.3055 0.2037 0.2262
R2 0.4143 0.4290 0.3232 0.3346
R3 0.5856 0.5671 0.4809 0.4758
R4 0.7323 0.6990 0.6456 0.6160
K1 70 78 52 58
K2 105 110 83 85
K3 150 145 123 122
K4 187 179 165 158

maN polar code and the corresponding design signal-to-noise

ratio (DSNR).

In the next step, we design the polar code of length maN
for a SISO Rayleigh fading channel using Tal-Vardy’s degrade

transform and degrade merge methods for the DSNR [11],

[10]. In the case of SSK, the effective channel is SIMO rather

than SISO, and therefore this design is not capacity achieving,

i.e., its capacity is less than that of MIMO-SSK channel;

however, it provides a simple way to design the multilevel

polar code for the SSK modulated system.

In the final step, we segregate the maN length polar code

into ma cascaded component polar codes according to the

rates found using the MLC bit-level ergodic capacities as

described in Section III-A.

IV. RESULTS AND DISCUSSION

We have designed polar codes of length maN = 1024 for

different SSK overall capacities. The rates and corresponding

information bit sizes of the component polar codes are shown

in Table I. Bit error rate (BER) simulations were run for a

maximum of 5 × 106 frames with a frame error limit of 100
for all the BER curves.

To the best of the authors’ knowledge, multilevel polar

codes have not previously been designed for use with SSK

modulation. Therefore, the closest benchmark for performance

comparison is with the bit-interleaved polar coded modulation.

Fig. 4 shows the BER vs Es/N0 curves of BICM and MLC

based SSK systems, where Es/N0 is the ratio of the trans-

mitted energy per symbol to the noise power spectral density.

For the 16 × 1 SSK system shown in Fig. 4(a), the effective

channel is single-input single output (SISO). For C (X ) = 2
bpcu, the MLC based design outperforms BICM by 2.3 dB

at a BER of 10−4 which diminishes at high SNR (∼ 11) dB

and the two curves eventually intersect. On the other hand, the

MLC system with C (X ) = 1.65 bpcu outperforms BICM by

2.9 dB at a BER= 10−4 and does not intersect until a BER

of 10−6.

Fig. 4(b) shows the BER performance curve for a 16 × 4
SSK system. The MLC based system outperforms BICM by

a coding gain of 1 dB and 1.5 dB at a BER of 10−4 for

C (X ) = 2 and 1.65 bpcu, respectively. Here, we again see the

same trend that for high overall SSK capacity, the MLC BER



(a) 16× 1 SSK system (b) 16 × 4 SSK system

Fig. 4: Bit-error rate curves of BICM and MLC based SSK systems.

curve approaches the BICM curve at high SNR. However, the

coding gain is lower, as expected, as compared to the 16× 1
SSK system because at the receiver we have four separate

received streams, i.e., the effective channel is SIMO.

V. CONCLUSION

In this paper, we have designed multilevel polar codes for

an SSK-modulated MIMO system. We used the capacity rule

to evaluate the bit-level ergodic capacities of SSK modulation.

As the spatial bits choose different transmitting channels, it is

necessary to use Monte Carlo simulation to find the average

bit-level capacities. As the effective channels are either SISO

or SIMO, we base our polar code design on that for a SISO

Rayleigh fading channel. This assumption is not capacity

achieving but provides an easy way to design the multilevel

polar coded system for a MIMO channel. BER simulation

results show that the multilevel polar coded system with

multilevel SSK modulation still provides considerable coding

gain compared to the corresponding BICM system with SSK

modulation.

This work can also be extended to design of multilevel

polar codes for SM and generalized spatial modulation (GSM),

which are suitable for attaining high spectral as well as energy

efficiency.
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