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Abstract—This work studies a real-time environment mon-
itoring scenario in the Industrial Internet of Things (IIoT),
where wireless sensors proactively collect environmental data
and transmit it to the controller. We adopt the notion of risk-
sensitivity in financial mathematics as the objective to jointly
minimize the mean, variance, and other higher-order statistics
of the network energy consumption subject to the constraints on
the AoI threshold violation probability and the AoI exceedances
over a pre-defined threshold. We characterize the extreme AoI
staleness using results in extreme value theory and propose a
distributed power allocation approach by weaving in together
principles of Lyapunov optimization and federated learning (FL).
Simulation results demonstrate that the proposed FL-based
distributed solution is on par with the centralized baseline while
consuming 28.50% less system energy and outperforms the other
baselines.

Index Terms—5G and beyond, industrial IoT (IIoT), smart fac-
tory, federated learning (FL), age of information (AoI), extreme
value theory (EVT).

I. INTRODUCTION

Environment monitoring and control in smart factory sce-
narios are instances of mission-critical applications in 5G and
beyond, where sensors, meters, and monitors generate and
upload data to a central controller with real-time ultra-low
latency. In particular, for real-time monitoring and control,
the elapsed time of the generated data by a given sensor
till its successful reception at the controller is key for the
control performance. Such time duration is referred to as
the age of information (AoI). If the AoI of the data grows
unexpectedly, the outcome of the real-time environment mon-
itoring will be poorly degraded [1]. The impact of AoI-
aware resource allocation has been investigated in various
communication systems [1]–[5]. The work [2] considers a
multi-sensor industrial Internet of things (IoT) scenario with
finite blocklength transmission in which the controller instructs
all devices to sample and upload environment data based
on its AoI records. The objective therein is to minimize
the sensors’ power consumption. In [1], a mean-field game
approach was proposed in a dense IoT monitoring system.
Aiming at minimizing the average AoI and average peak AoI
using a Markov decision process, [3] investigates the tradeoff
between AoI and energy cost and proposes an action policy
for the devices. In [4], the authors assumed that the devices
cannot upload data while wirelessly harvesting energy from
the base station. As a result, the AoI exponentially increases

during the energy harvesting period. Finally, the authors in
[5] considered a remote monitoring problem trading off the
expected AoI and the AoI threshold violation probability.

Nevertheless, to reduce the AoI in a centralized manner,
the proposed resource allocation approaches in [1]–[5] incur
tremendous signaling overheads which are not negligible in
ultra-low latency real-time monitoring, e.g., industrial automa-
tion. Under the ultra-low latency constraints, delegating the
transmission decisions to the sensors provides a more realistic
avenue, especially when the data sampling time is uncertain.
Therefore, while accounting for the AoI threshold violation
and the threshold-exceeding events, this work proposes a
distributed and proactive power allocation approach that jointly
minimizes the sensors’ mean and variance energy consump-
tion. We further leverage extreme value theory to characterize
the AoI exceedance over a threshold using the observed
historical data. Since the accuracy of this characterization is
limited by the amount of sensor data. To improve the accuracy
under limited sensor data availability, we resort to federated
learning (FL), a collaborative and distributed model training
framework [6], [7], and propose an FL-based distributed power
allocation algorithm, using Lyapunov optimization. Numerical
results show that the proposed approach is on a par with the
centralized baseline while consuming less system energy for
data transmission and model training.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider an industrial IoT network
consists of a set K of K intelligent sensors that monitor
distinct and independent (but of the same type) environments
and transmit the sampled data to a controller. The sensors can-
not communicate with one another due to their geographical
locations. We assume that the sensors’ sampling operations are
event-triggered, and the triggering time is random without any
available statistical information. After a sensor samples status
data, the data is transmitted immediately to the controller if
the previously sampled one was uploaded. If the uploading
procedure (of the previous data) has not been completed, the
(new) data is queued in the buffer for the next transmission.
Let us index the sequentially sampled data of each sensor by
i ∈ Z+. To send the ith data with size N , sensor k ∈ K
allocates transmit power pk(i) over its dedicated bandwidth
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Figure 2: The AoI instances with data sampling and transmis-
sion. We have ηk(i+1) = 0, ηk(i+2) > 0, and ηk(i+3) > 0.

B in which the transmission time is

tk(i) =
N

B log2

(
1 + hk(i)pk(i)

N0B

) . (1)

Here, hk(i) is the channel gain, including path loss and
channel fading, between sensor k and the controller, and N0

is the power spectral density of the additive white Gaussian
noise. When the ith data is fully received at the controller,
the time duration ak(i) = ηk(i)+ tk(i), including the procras-
tinated/queuing time ηk(i) due to the previous transmission,
has elapsed since the data was generated at time instant τk(i).
Thus, ak(i) represents the AoI of the ith uploaded data at the
reception time instant and is expressed in a recursive manner
as

ak(i) = [τk(i− 1) + ak(i− 1)− τk(i)]+ + tk(i), (2)

where [x]+ = max{x, 0}. Since the information ages in
consecutive transmissions are entangled as per the recursive
form (2), we should proactively account for the impacts of
the allocated power on future AoI. The data sampling and up-
loading instances are schematically illustrated in Fig. 2. Note
that the factory environment varies continuously, in which the
stale information can degrade the control system performance.
As a remedy, we impose a set of constraints on AoI in
terms of the weighted expectation, AoI outage probability,
and AoI exceedance. We firstly introduce a staleness function
from [8] as fk(i) = [ak(i)]

(1−β)

1−β for the AoI staleness with
a predetermined value β ≤ 0 and then consider a long-term

time-averaged constraint for every sensor k, i.e.,

lim
I→∞

1

I

I∑
i=1

E[fk(i)] ≤ f0,∀k ∈ K, (3)

where f0 is a pre-defined threshold. Additionally, we impose
a probabilistic constraint on the AoI for each sensor k as

lim
I→∞

1

I

I∑
i=1

Pr{fk(i) > f0} ≤ ε,∀k ∈ K, (4)

in which ε � 1 is the tolerable threshold violation prob-
ability. Although a very low occurrence probability of the
AoI exceedance is ensured in (4), the uploaded data with
an extremely large age can hinder the control performance.
To mitigate this effect, a constraint on the AoI exceedances
qk(i) = fk(i)− f0 > 0 is imposed as follows:

lim
I→∞

1

I

I∑
i=1

E[qk(i)] ≤ e0,∀k ∈ K. (5)

Here, we define the set of AoI exceedance of sensor k
as Qk , {qk(i)|1{qk(i)>0},∀i}, and e0 is a pre-defined
threshold. Finally, taking into account the sensors’ limited-
energy, we aim at not only minimizing the sensors’ average
energy consumption but also the variance for data uploading
in order to reduce superabundant energy between each sensor.
To this goal, denoting sensor k’s energy consumption for
transmitting its ith data as Ek(i) = pk(i)tk(i), we consider
the entropic risk measure 1

ρ ln(E[eρEk(i)]) as our objective,
which incorporates the mean, variance, and and higher-order
statistics of energy consumption Ek(i) [9]. The optimization
problem is formally written as,

minimize
pk(i)

1

ρ
ln

(
lim
I→∞

1

I

I∑
i=1

E[eρEk(i)]

)
(6a)

subject to 0 ≤ pk(i) ≤ pmax,∀i ∈ Z+, k ∈ K, (6b)
(3), (4), and (5),

where ρ > 0 reflects the weights of the variance and higher-
order statistics in the risk minimization problem, and pmax
is the sensor’s data transmission power budget. Since the
objective (6a) and constraints (3), (4), and (5) are long-term
time-averaged functions, we leverage Lyapunov optimization
framework [10] to solve (6) as discussed next.

III. FL-BASED DISTRIBUTED POWER ALLOCATION

A. Distributed Power Allocation at the Sensor

In order to ensure the time-averaged constraints by Lya-
punov optimization, we first introduce the virtual queues

Γk(i+ 1) = [Γk(i) + fk(i)− f0]+, (7)

Υk(i+ 1) = [Υk(i) + [qk(i)− e0]1{qk(i)>0}]
+, (8)

for constraints (3) and (5), respectively. Additionally, by apply-
ing Pr{fk(i) > f0} = E[1{qk(i)>0}] and scaling both sides of
(4) as lim

I→∞
1
I

∑I
i=1 fk(i)E[1{qk(i)>0}] ≤ lim

I→∞
1
I

∑I
i=1 fk(i)ε,



the virtual queue,

Λk(i+ 1) = [Λk(i) + (1{qk(i)>0} − ε)fk(i)]+, (9)

is considered for the constraint (4). For notational simplicity,
let Φk = [Γk(i),Υk(i),Λk(i),∀k ∈ K] denote the combined
queue vector. Due to the fact that minimizing (6a) is equiv-
alent to minimizing lim

I→∞
1
I

∑I
i=1E[eρEk(i)], the conditional

Lyapunov drift (of the combined queue)-plus-penalty (based
on the objective) is given by [10],

E
[1

2
Φk(i+ 1)Φk(i+ 1)T − 1

2
ΦkΦT

k

+ V
∑
k∈K

exp(ρEk(i))|Φk
]
, (10)

where (·)T denotes the transpose of a vector. Using ([Q +
y]+)2 ≤ Q2 + 2Qy + y2, we can derive

(10) ≤
∑
k∈K

[
∆0 + V exp(ρEk(i)) + Fk(i)

]
. (11)

In (11), we have Fk(i) = θ1k(i)[fk(i)]2 + θ2k(i)fk(i) with
θ1k(i) = 1

2 (1+ε2)+(1−ε)1{qk(i)>0} and θ2k(i) = Γk(i)−f0−
εΛk(i) + [Λk(i) + Υk(i) − f0 − e0]1{qk(i)>0}, Additionally,
∆0 = 1

2 [f20 −Γk(i)+[(f0+e0)2−Λk(i)(f0+e0)]1{qk(i)>0} is
a constant. The solution of (6) can be obtained by minimizing
the derived upper bound on the conditional Lyapunov drift-
plus-penalty function [10], i.e., (11), in each transmission i by
optimizing over the transmit power pk(i). Here, V > 0 is the
tradeoff parameter between the lengths of the virtual queues
and the optimality of the energy consumption in (6). To this
end, each sensor k ∈ K locally solves its own problem

minimize
pk(i)

V exp(ρEk(i)) + Fk(i), subject to (6b), (12)

for each transmission i ∈ Z+. In (12), we can straight-
forwardly prove the convexity of Fk(i), but exp(ρEk(i)) is
non-convex with respect to pk(i). In order to tractably solve
the non-convex problem (12), we adopt the notion of the
convex-concave procedure (CCP) [11] by which we iteratively
convexify exp(ρEk) by the first-order Taylor series expansion
with respect to a reference point p̂k as

eρEk(p̂k)
[
tk(p̂k)

(
1− p̂khktk(p̂k)

N(p̂khk+N0B) ln 2

)
(pk − p̂k) + 1

]
and solve the convexified problem. Specifically, given the
reference point p̂rk in the rth iteration, we solve

minimize
pk

V J(p̂rk)pk + Fk(pk) (13a)

subject to 0 ≤ pk ≤ pmax, (13b)

with J(p̂rk) = eρEk(p̂
r
k)tk(p̂rk)

[
1 − p̂rkhktk(p̂

r
k)

N(p̂rkhk+N0B) ln 2

]
. The

optimal solution to (13) is set as the reference point p̂r+1
k of the

next iteration. After a large number of iterations, the optimal
solution is converged, and we select p̂∞k as the sensor k’s
power in the ith transmission. Afterwards, we update (2) and
all virtual queues (7), (8), and (9). Note that the virtual queue
length (8) varies when the AoI threshold violation occurs.
However, since the tolerable violation probability in (4) is rela-
tively small, we rarely change the value of Υk(i+1), resulting

in the slow convergence to the steady-state performance. To
address this issue, we invoke results from extreme value theory
and the principles of FL.

B. FL-Based Model Training for Excess AoI

Let us rewrite the virtual queue Υk(i) in (8) as

Υk(i+ 1) =

i∑
j=1

[qk(j)− e0]+1{qk(j)>0}

≥

 i∑
j=1

[qk(j)− e0]1{qk(j)>0}

+

(a)
=

[∑i
j=1 qk(j)1{qk(j)>0}∑i

j=1 1{qk(j)>0}
− e0

]+ i∑
j=1

1{qk(j)>0}

in which the first term in (a) represents the empirical average,
which may have large variance due to limited historical data
of the excess AoI. Nevertheless, if the mean of the AoI
exceedance is available, we can estimate the steady-state
average length of the virtual queue (8).

Theorem 1 (Pickands–Balkema–de Haan theorem [12]).
Given a random variable A with the cumulative distribution
function FA(a) and a threshold a0, as a0 → FA(1), the excess
value Q = A−a0 > 0 can be approximately characterized by
a generalized Pareto distribution (GPD) with the scale σ > 0
and shape ξ ∈ R parameters. The mean of the GPD is σ

1−ξ .

Leveraging the results in Theorem 1, we characterize the
statistics of qk(j) as a GPD whose parameters σ and ξ (i.e., the
mean) can be estimated using maximum likelihood estimation.
Given a sufficient amount of historical data, the GPD model
(i.e., scale and shape parameters) of the excess AoI can be
trained. However, owing to the sparsity of the excess AoI
data at the sensor, it is time-consuming for each sensor to
train the GPD model independently. To overcome this hurdle,
we utilize the FL framework in which all sensors periodically
update their locally-trained model to the controller. Then the
controller aggregates the updated local models and feeds back
the aggregated model to the sensors. Our FL-based model
training is detailed as follows.

Assume that the local-model updating time interval is M ,
and each interval is indexed by m ∈ Z+. In every updating
time interval, each sensor trains its model locally. In order
to have sufficient independent data for local training, we set
W observation time windows within which the sensor selects
the largest excess AoI as a training sample. The observation
time windows are indexed by w ∈ Z+, and the window size
is O with M/O = W ∈ Z+, which should be sufficiently
large to minimize the correlation between the selected data
while being sufficiently small to prevent filtering out the data
overmuch. Moreover, the selected extreme data at sensor k
in the wth time window of the mth time interval is denoted
by q̂m,wk = maxτk(i)∈Tm,w{qk(i)|1{qk(i)>0}}, where T m,w ∈
[M(m−1)+O(w−1),M(m−1)+Ow]. The selected data set



within the mth time interval is denoted by Qmk = {q̂m,wk }Ww=1.
After collecting the samples Qmk , we train the sensor k’s GPD
model θmk = {σmk , ξmk } via a tilted empirical risk minimization
(ERM) [13], i.e.,

minimize
θmk

L̃(θmk |t,Qmk )

≡ minimize
θmk

1

t
ln

(
1

|Qmk |
∑
Qmk

G(θmk |Qmk )−t
)
. (14)

Here, G(σ, ξ|q) = 1
σ

(
1 + ξq

σ

)−( 1
ξ+1)

is the GPD’s likelihood
function while t is the tilted factor. In contrast with con-
ventional ERM, in which the average of the loss function is
minimized, tilted ERM considers the entropic risk measure
1
t ln(EX [etX ]) of the loss functions as the objective which
jointly incorporates the mean, variance, and other higher-order
moments [9]. In this regard, by setting t < 0 in (14), we
can account for the outliers and other extreme events. Subse-
quently, based on the global model θm−1 = {σm−1, ξm−1}
received in the (m− 1)th interval, each sensor k updates the
local model parameters as per

θmk = θm−1 − δθ∇θmk L̃(θmk |t,Qmk ), (15)

with the initial value θ0 and sends θmk to the controller. In
(15), δθ is the step size. The gradient of L̃(θmk |t,Qmk ) with
respect to θmk is given by

∇θmk L̃(θmk |t,Qmk ) =

−
∑
Qmk
∇θmk G(θmk |Qmk )×G(θmk |Qmk )−t−1∑

Qmk
G(θmk |Qmk )−t

, (16)

and

∂G(θ|Q)
∂σ =Q−σ

σ3

(
1 + ξQ

σ

)−2− 1
ξ

,

∂G(θ|Q)
∂ξ =

(1+ ξQ
σ )

−1− 1
ξ

σξ

(
−(ξ+1)Q
σ+ξQ +

ln(1+ ξQ
σ )

ξ

)
.

Here, the notations m and k are neglected for simplicity. The
controller then calculates the global model of the mth updating
time interval as

θm =

∑K
k=1 (|Qmk |θmk )∑K
k=1 |Qmk |

. (17)

Finally, after receiving the global feedback model θm, each
sensor k replaces the virtual queue value with

Υk (̂i+ 1) =

[
σm

1− ξm
− e0

]+
EK

 î∑
j=1

1{qk(j)>0}

 , (18)

in which î = arg min
∀i
{τk(i) −Mm ≥ 0}, and proceeds with

the next local-model training θm+1
k . The proposed FL-based

distributed power allocation is outlined in Algorithm 1.

IV. NUMERICAL RESULTS

We simulate a factory environment with K = 50 sensors
with 50 Hz data-sampling frequency in Poisson. The con-
sidered path loss model is 32.45 + 31.9 log 20 + 20 log 3.5

Algorithm 1 FL-Based Distributed Power Allocation Mechanism

Input: transmission parameters in (1), β, θ0, δθ,M,O.
Output: The result of objective (6a)
Initialize: create ik for data indicator, ik = 1, ∀k,
ak(0) = 0, ηk(1) = 0, τk(ik|ik = 0, 1) = 0, ∀k,
{Ak(1),Γk(1),Λk(1),Υk(1)} = 0.

1: for m = 1, 2, ... do // for global model updating interval
2: for k = 1, ..., |K| do
3: w = 1,Qmk = {}, // check each observation window
4: if τk(ik) ≤Mm && w ≤W then
5: while τk(ik) ≤M(m− 1) +Ow do
6: update ηk(ik), θ1k(ik), θ2k(ik), θ3k(ik),
7: form uk(ik) by (11) and solve p∗k(ik) by CCP.
8: count t∗k(ik) by (1), E∗

k(ik), ak(ik), fk(ik), qk(ik),
9: update A(ik),Γk(ik),Λk(ik),Υk(ik),

10: ik = ik + 1,
11: end while
12: Count q̂m,wk , update Qmk = {Qmk , q̂

m,w
k },

13: w = w + 1,
14: elseQmk = {},
15: end if
16: train θmk with (15), (16) by Qmk and update them to Controller,
17: end for
18: Controller updates θm with θmk by (17), and broadcasts to IDs,
19: ∀k,Υk(ik) is replaced with θm by (18).
20: end for

(dB) given 3.5 GHz carrier frequency and a 20-meter sensor-
controller distance [14]. The wireless channel experiences
Rayleigh fading with unit variance. The remaining simulation
parameters are N = 3000 bytes, B = 180 kHz, N0 =
−174 dBm, pmax = 23 dBm, β = −2, f0 = 5 × 10−4,
e0 = 10−4, and ε = 2 × 10−3, M = 30 ms, O = 10 ms,
θ0 = [0.0002, 0.02], δθ = [10−9, 10−3], and t = −10.
For performance comparison, we consider four baselines: i)
Centralized model-training (CENT) scheme which trains
the extreme staleness GPD model at the central controller
with all sensors’ exceedance data. ii) Local model-training
(LOCAL) scheme in which the sensors only train the GPD
model individually without any information exchange. iii)
Non-model-training (NonT) scheme which directly solves
problem (12) without renewing the virtual queue Υk(i) in (8)
via the training result of GPD model. iv) Excess staleness-
agnostic (ESA) scheme which does not take extreme staleness
into consideration, i.e., neglecting constraints (4) and (5) in
problem (6). In addition to the performance of the objec-
tive (6a), we further investigate the expected system energy
consumption E[Esys] = E[Ek] + E[Etraincomp.] + E[Etraintx ],
including the sensor’s monitored data-updating energy Ek,
the computation energy in GPD-model training Etraincomp. =
10−27f2cpuNtrlreq, and the energy consumption in model-
uploading Etraintx = pmaxNtr/

(
B log2

(
1 + hkpmax

N0B

))
. Here,

fcpu = 2 × 1011 cycle/s and fcpu = 109 cycle/s are the
controller’s and sensor’s computation capabilities for model
training [9]. Ntr = 30 bytes is the single-data size in GPD-
model training, and lreq = 87.8 cycle/bit is the required
computation frequency.

The impact of the tradeoff parameter V in the Lyapunov
optimization on energy consumption is shown in Fig. 3. We
first examine the performance of the objective (6a) in Fig. 3a
as a function of V . It can be noted that the objective is
a decreasing function of V since the importance of energy
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Figure 3: Energy consumption versus V with ρ = 2.

reduction increases with increasing V . Although CENT almost
outperforms the other schemes across various V values due to
the GPD model training over the global dataset, the perfor-
mance of our proposed scheme is close to CENT with only
0.48%− 11.26% increments in the objective. Compared with
LOCAL and NonT, the proposed FL scheme decreases the
objective cost up to 5.45% and 5.56%, respectively, showing
the benefit of FL model training. In addition, LOCAL outper-
forms NonT, manifesting the advantage of model training even
without any information exchange. Being agnostic to extreme
staleness, ESA may incur a high instantaneous AoI, which
results in larger energy consumption. In this regard, ESA has
a higher objective cost (up to 44.75% increase) than the cost
of the proposed scheme.

In Fig. 3b, we further verify the advantages of our proposed
approach in terms of the expected system energy consumption.
In CENT, all sensors have to deliver every observed extreme
staleness data to the controller, consuming high energy for
information exchange. Note that as V increases, all schemes
tend to save more power in environmental data transmission
based on the Lyapunov optimization framework but increases
the occurrence chance of extreme staleness. In this situation,
the sensors in CENT have to consume more energy to upload
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Figure 4: Energy consumption versus ρ with V = 10−5.

more model-training data to the controller. Therefore, the
expected system energy of CENT grows gradually with V
in Fig. 3b. In the proposed FL-based approach, since the
sensors train the GPD models locally and only upload the
model parameters to the controller, the energy consumption is
significantly reduced. In this regard, our approach can save up
to 64.11% in system energy compared to CENT. In contrast
with NonT and LOCAL, our approach spends extra energy on
FL model training and information exchange. Nevertheless,
our energy-saving benefit with respect of E[Ek] compensates
this expenditure. Where the proposed scheme can save up
to 5.82% and 6.21% in system energy then LOCAL and
NonT. The objective performance and expected system energy
consumption by varying ρ are shown in Fig. 4. As per (12), all
the schemes put more focus on energy deduction as ρ grows.

The capability of extreme staleness control is manifested in
Fig. 5. Given a specific amount of expected status-updating
energy E[Ek], the proposed approach, CENT and LOCAL
benefited from the GPD-model training showcase the lowest
excess staleness values, whereas ESA, which is agnostic to
the extreme AoI, has much higher excess staleness. However,
if we further take into account the energy consumption in
model training, our proposed approach (compared with CENT
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Figure 6: CCDF of extreme AoI with ρ = 2 and V = 10−5.

and LOCAL) consumes less energy while achieving the same
extreme staleness performance.

Finally, we discuss the performance of GPD-model train-
ing in terms of the complementary cumulative distribution
function (CCDF) of extreme staleness in Fig. 6. As shown,
the predicted extreme staleness mean σ/(1 − ξ) is always
higher than the empirical one. The reason is that the predicted
extreme staleness mean values in both schemes are leveraged
to suppress the extreme staleness further. The more precise the
estimation is, the more accurate the decision. The centralized
approach, i.e., CENT, estimates the GPD model closer to the
empirical one, saving more energy to control the extreme
staleness. In this regard, the proposed FL scheme and CENT,
respectively, posses 2.33× 10−5 and 1.08× 10−5 in terms of
the estimation-statistic mean surplus (ESMS) value between
the trained model and empirical curve. On the other hand,
the localized approach, i.e., LOCAL, has the highest ESMS
8.36 × 10−5 for the sake of lacking global estimation. Such
results reflect on the least objective performance in Fig. 3a
and 4a. However, the mean extreme staleness from the pro-
posed scheme is 3.54% higher than CENT, underscoring that

increasing transmission energy based on inaccurate predictions
cannot effectively suppress extreme values.

V. CONCLUSIONS

In this work, we considered an industrial IoT real-time mon-
itoring scenario with intelligent sensors proactively collecting
changing environmental data and autonomously transmitting
data to the controller. To avoid stale data delivery hindering
the monitoring performance, we have formulated an entropic
risk-minimizing problem subject to data staleness constraints.
To confront extreme staleness regimes, we invoked results in
extreme value theory and trained a GPD model by leveraging
FL. Numerical results have shown that the proposed FL
scheme is on a par with the centralized model-training scheme
and consumes less system energy.
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