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Abstract—In this paper, we introduce a fully distributed
localization algorithm based on self-synchronization mechanism.
The proposed algorithm reaches consensus for the posterior
distribution of the transmitter position at each base station. To
reduce the communication overhead at each iteration, we propose
to represent the state variable matrices of the self-synchronization
mechanism with only four parameters (radial and angular
means and variances). The performance of the algorithms
is numerically assessed by the mean distance error and
mean Kullback–Leibler divergence. Finally, we show through
Monte-Carlo simulations that our approach gets very close to the
direct-centralized-localization performance after a few iterations.

Index Terms—Distributed localization, decentralized
localization, self-synchronization, average consensus, iterative
positioning.

I. INTRODUCTION

Cellular networks have evolved towards increasingly
accurate geo-location services. Positioning reference
signals (PRS) are included in the protocols to support
device localization based on the estimation of the signal
time-of-arrival (ToA) [1]. The direct position estimation
(DPE) algorithm estimates the transmitter position using
grid search, i.e., it compares the signals received by each
base station (BS) to the signals that would theoretically be
received if the transmitter was at a particular position [2],
[3]. Therefore, all the baseband signals are communicated to
a processing node known as fusion centre (FC). To reduce
the amount of communicated data a two-step approach can
be used. It consists in a range estimation step at the BSs
followed by a multi-lateration step at the FC [4]. Nonetheless,
some information is lost in the first step, since only local
information is available at the BS. Moreover, it has been
analytically demonstrated in [5] that the DPE algorithm
always outperforms any two-step approach.

Different approaches have been studied to achieve
distributed localization [6]–[9]. On the one hand, a
semi-distributed version of DPE algorithm is proposed
in [9]. Nonetheless, such approach is still centralized in the

local neighborhood, i.e., the received baseband signals are
shared between direct neighbors and the information among
non-direct neighbors is approximated using interpolation.
On the other hand, in [6], [7] and [8] the distributed
localization is approached as an optimization problem, which
is solved by different methods such as: alternating direction
method of multipliers (ADMM), primal-dual method of
multipliers (PDMM) or second-order cone programming
(SOCP) combined with standard solvers. Nevertheless, in these
studies the non-convex optimization problem is solved after
the range estimation step; hence its performance is bounded
by the two-step localization approach. For such a reason,
several algorithms were proposed to improve the performance
after the multi-lateration step [10]–[12]. The iterative position
estimation (IPE) algorithm proposed in [10] iterates over the
two steps with the goal of refining the range estimation in the
first step. Nevertheless, IPE is still a centralized algorithm.

Average consensus can be seen as a particular case of
the self-synchronization mechanism introduced in [13], which
computes the average of a parameter in a distributed fashion.
It has already been used, in the context of distributed
localization, to improve the accuracy in a network [11],
[12]. For instance, in [11] the final estimations are averaged
among all BSs using the average consensus. In [12] the
localization is done by means of an iterative process such as
the Gauss-Newton algorithm, where the self-synchronization
mechanism is used to average the intermediate estimates at
each iteration.

Self-synchronization can be used to compute an optimal
decision in a distributed manner [13]. The convergence is
guaranteed for very relaxed conditions. In fact, the only
requirement for convergence is to have a strongly connected
network. The convergence is guaranteed even for noisy and/or
unreliable links, requiring a strongly connected network only
on average over time [14], [15]. The self-synchronization
mechanism relies on the exchange of state variables among
the sensor nodes. Such state variables need to be compressed
so that the number of communicated parameters is reduced.



Coupling noise is introduced to the system, when such
a compression involves approximation errors; thus, having
an impact on the speed and convergence values, i.e., the
self-synchronization mechanism becomes biased. On the one
hand, zero order consensus converges directly on the state
variables. On the other hand, first order consensus converges
on the first order derivative of the state variables. The main
advantage of the first order over the zero order consensus is
that it has a better rejection to coupling noise [14].

The contributions presented in this work are threefold. First,
we introduce a fully distributed localization algorithm based
on self-synchronization mechanism. Our approach works at
the received signal level, i.e., we average the received signal
log-likelihoods. Such an approach reaches consensus for the
posterior distribution of the transmitter position rather than
directly on the final position estimates. It also means that we
are able to achieve the performance of the DPE algorithm in a
distributed fashion. Second, we propose to compress the state
variables that will be exchanged among BSs, with the first two
radial and angular moments. Therefore, only four parameters
are exchanged between neighboring BSs. Such a compression
leads to a degradation of performance that is reduced through
out extra iterations. Lastly, we assess the performance of the
proposed algorithm by means of a Monte-Carlo simulation.
We assess the performance in terms of mean distance error
(MDE) and the average of Kullback–Leibler (KL) divergence.

The paper is organized as follows. Section II introduces
the signal model. Section III describes the centralized DPE
algorithm and the proposed distributed self-synchronization
position estimation (SSPE) algorithm. Afterwards, it describes
the proposed compression and reconstruction for the state
variable matrices and its effects. Section IV assesses
numerically the performance of our algorithm. Finally,
Section V concludes the paper.

II. SYSTEM MODEL

We consider a cellular network operating with the
orthogonal frequency-division multiplexing (OFDM)
modulation. We assume a static transmitter that is
simultaneously connected to N time-synchronized BSs
in its neighbourhood. The OFDM modulation splits the
communication bandwidth into orthogonal sub-carriers that
are allocated to data or pilot symbols. A cyclic prefix (CP) is
added to each block of transmitted symbols to maintain the
orthogonality between the sub-carriers even in the presence
of channel time dispersion.

We consider that P equispaced pilot sub-carriers
are allocated over the communication bandwidth, i.e.,
the frequency difference between two consecutive pilot
sub-carriers is constant and referred to as ∆f . For simplicity,
the channel is considered to be a single propagation delay τi
between the transmitter position (x, y) and BS-i. The
propagation delay is related to the distance δi between
transmitter and BS-i by the expression: τi = δi/c, where c
is the propagation velocity. If τi is shorter than the CP

duration (which is a reasonable assumption for typical system
parameters), the signal received on pilot-p at BS-i is

ri,p = spe
−j 2πp∆f

c δi + wi,p, (1)

where ri,p and wi,p are the received signal and corrupting
noise respectively, for pilot sub-carrier-p at BS-i, and sp
is the symbol at pilot sub-carrier-p. The noise is assumed
to be independent zero mean circularly symmetric complex
Gaussian of variance σ2

wi , which at the same time, is assumed
to be known at BS-i. Finally, similarly to the system model
adopted in [10], a vector model is constructed at each BS-i
by stacking all the received pilot symbols as

ri = s(δi) + wi, (2)

with

ri = [ri,1, ..., ri,P ]T ; wi = [wi,1, ..., wi,P ]T , (3)

s(δi) = [s1e
−j1ζδi , ..., sP e

−jPζδi ]T , (4)

where the constant ζ is used to simplify the notation and it is
defined as ζ = 2π∆f

c .

III. SELF-SYNCHRONIZATION BASED LOCALIZATION

A. Centralized Direct Position Estimation

The DPE algorithm estimates the transmitter position
based on all the received signals. Hence, each BS-i should
communicate its received baseband signal ri to a central
node denoted as FC. We assume that the transmitter is
located inside a scene S delimited for x ∈ [xmin, xmax] and
y ∈ [ymin, ymax]. The posterior distribution of the transmitter
position is given by (5), where Cp is a normalization factor
ensuring that the integral of the posterior distribution in the
scene S is 1. Lastly, p(x, y) is the prior probabilistic density
function (PDF) of the transmitter position.

p(x, y|r1, ...rN ) = Cp

N∏
i=1

pi(ri|x, y)p(x, y). (5)

We assume that x and y are two mutually independent
uniformly distributed random variables. Therefore, the prior
PDF is expressed as p(x, y)=p(x)p(y), where p(x) and p(y)
are uniformly distributed in the scene S and 0 elsewhere.
Finally, based on (2), the likelihood of the received signal
at BS-i can be modeled as a Gaussian PDF as in (6), where
Cr is a normalization factor and (.)H represents the Hermitian
transpose. Notice that the right hand side of (6) is dependent
on the transmitter position (x, y) through the range δi, i.e.
δi = δi(x, y). Finally, we can compute the estimates of the
transmitter position (x̂, ŷ as expected values with respect to
the PDF defined in (6).

pi(ri|x, y) = Cre
− 1
σ2
wi

(ri−s(δi))H(ri−s(δi))
(6)



B. SSPE Algorithm

Taking the logarithm of (5) yields the log-posterior
distribution written as

log(p(x, y|r1, ...rN )) =

N∑
i=1

Li(ri|x, y) + b, (7)

where b=log(p(x, y))−log(Cp) is a constant that considers
the normalization factor and the uniformly distributed prior.
Li(ri|x, y) is the log-likelihood of the received signal ri at
BS-i, which can be computed by taking the logarithm of (6).
Equation (7) was derived from a centralized localization case,
where all the signals are collected in one node. Hence, if (7)
is approximated in a distributed manner, the performance of
the approximation will get close to the centralized approach.
We propose to use the self-synchronization to perform such
an approximation described as follows.

We can express (7) in terms of the average of the received
signal log-likelihoods as

log(p(x, y|r1, ...rN )) = N
( 1

N

N∑
i=1

Li(ri|x, y)
)

+ b. (8)

By analyzing the right hand side of (8), two main remarks
can be done. First, the constant term b can be omitted if
the posterior distribution is normalized again after taking
the exponential to compute the corresponding PDF. Second,
the average of the received signal log-likelihoods can be
computed in a fully distributed fashion with the help of the
self-synchronization mechanism introduced in [13]. Following
the notation used in [13], we consider that at BS-i, the
measured parameter is equivalent to the received signal ri
and that the measurement function is the log-likelihood of the
received signal Li(ri|x, y). Therefore, each BS-i have state
variables vi that will evolve as

∆vi[k] = Li(ri|x, y) + β

N∑
j=1

ai,j(vj [k]− vi[k]), (9)

where:
• ai,j is 1 if node-i and node-j are connected and 0

otherwise.
• vj [k] is the state variable of node-j communicated to

node-i at iteration-k. Notice that at iteration k = 0 the
initial value is vi[0] = 0 for all nodes.

• β is a constant defined as the control loop gain.
It has been well studied in [13]–[16] that the dynamical
system shown in (9) surely converges when the network is
strongly connected, i.e., there exist at least one path that
connects any node-i to any other node-j. Furthermore, it can
be mathematically proven that the dynamical system given
in (9) will asymptotically converge to the average of the
log-likelihoods as in (10), if and only if, the network is
strongly connected and balanced, i.e., ai,j = aj,i.

∆vi[k →∞] =
1

N

N∑
j=1

Lj(rj |x, y). (10)

Algorithm 1 SSPE Algorithm

1: Each BS-i constructs Li(ri|x, y) for each point in the
search grid based on the received signal ri.

2: Each BS-i initializes vi = 0
3: for iteration k = 1, 2, . . . do
4: for BS-i = 1, 2, . . . in parallel do
5: Compute ∆vi[k] using (9)
6: Estimate transmitter position using (12) and (13)
7: Update vi[k + 1] = vi[k] + ∆vi[k]
8: Communicate vi[k + 1] to neighboring BSs
9: Receive vj [k + 1] from neighboring BSs

10: end for
11: end for

Finally, based on (8) and (10), we can approximate the
posterior distribution at each iteration-k for BS-i as

p̂i(x, y|r1, ...rN )[k] = C∆vi e
N∆vi[k], (11)

where the constant C∆vi is a normalization factor ensuring
that the integral of p̂i(x, y|r1, ...rN ) in the scene S is 1.
Notice that the argument of the exponential, i.e., N∆vi will
asymptotically converge to the sum of the received signal
log-likelihoods as shown in (10). Hence, the expression in (11)
asymptotically converges to the posterior distribution defined
in (5). In addition, based on (11), it is possible to numerically
compute the transmitter position estimate (x̂, ŷ) following the
minimum mean squared error (MMSE) estimator (as it was
done in [10]):

x̂[k] = E[x|r1, ...rN ] =

∫∫
S
x p̂i(x, y|r1, ...rN )[k]dxdy

(12)

ŷ[k] = E[y|r1, ...rN ] =

∫∫
S
y p̂i(x, y|r1, ...rN )[k] dxdy

(13)

Finally, the SSPE algorithm can be summarized in the
pseudo-code Algorithm 1.

C. Compression of State Variables

In order for the dynamical system defined in (9) to evolve,
each BS-i should communicate its state variable vi to the
neighboring BSs at each iteration. First, the state variable vi
is a matrix of the same dimensions as the search grid, since
all terms in (9) are defined for each single point. Therefore,
the matrix vi needs to be compressed since it is impractical to
send all the elements of the state variable matrix. Second, the
exponential of the state variable vi can be seen as a probability
distribution defined inside the scene, as

pvi [k] = Cvi e
vi[k], (14)

where Cvi is a normalization factor. It was observed in
simulations that pvi can be modeled as independent normal
distributions in the radial and angular domain. Therefore, we
propose to communicate only the first two radial and angular
order moments of pvi . Such radial and angle means and



variances can be computed using the law of the unconscious
statistician (LOTUS) rule as

Epvi
[
f(x, y)

]
=

∫∫
S
f(x, y) pvi [k] dxdy, (15)

where f(x, y) is a function defined in the xy-domain, i.e.,
defined in the scene S. We denote the radial parameter δi in
terms of x and y as:

δi(x, y) =
√

(x− xi)2 + (y − yi)2, (16)

where, xi and yi are the coordinates of the BS-i. Therefore,
the radial mean δ̂i and variance σ2

δ̂i
can be computed as:

δ̂i[k] = Epvi
[
δi
]

; σ2
δ̂i

[k] = Epvi
[(
δi − δ̂i[k]

)2]
. (17)

Similarly, we denote the angular parameter θi in terms of
x and y and compute its mean θ̂i and variance σ2

θ̂i
as:

θi(x, y) = arctan (
y − yi
x− xi

), (18)

θ̂i[k] = Epvi
[
θi
]

; σ2
θ̂i

[k] = Epvi
[(
θi − θ̂i[k]

)2]
. (19)

The selection of such parameters is linked to the nature of
the position information carried out by the baseband signal and
it is further discussed in Section IV-B. Lastly, we communicate
four parameters (δ̂i, σ

2
δ̂i
, θ̂i, σ

2
θ̂i

) instead of communicating all
the elements of the state variable matrix vi at each iteration.

D. Reconstruction of State Variables

Based on the communicated parameters, the reconstruction
of the state variable matrix v̂i is done easily as:

v̂i[k] =− 1

2σ2
δ̂i

[k]

(
δ − δ̂i[k]

)2 − 1

2σ2
θ̂i

[k]

(
θ − θ̂i[k]

)2
. (20)

An additional term is introduced in (9) by using (20) to
reconstruct the state variable matrix as

∆vi[k] = Li(ri|x, y)+β

N∑
j=1

ai,j(v̂j [k]+ηj [k]−vi[k]) (21)

The additional term ηj [k] is known as coupling noise
and has been well studied in the self-synchronization
literature [13]–[15]. The effects on the consensus convergence
are mainly twofold. First, it slows down the speed of
convergence meaning that more iterations are necessary
to achieve consensus. Second, it introduces bias to the
convergence value. Such bias can be reduced by reducing the
value of the control loop gain β, leading again to the use of
more iterations.

Finally, taking into account compression of state variables
matrices vi, the SSPE algorithm can be summarized in the
pseudo-code given in Algorithm 2.

Algorithm 2 SSPE - Compression of vi
1: Each BS-i constructs Li(ri|x, y) for each point in the

search grid based on the received signal ri.
2: Each BS-i initializes vi = 0
3: for iteration k = 1, 2, . . . do
4: for BS-i = 1, 2, . . . in parallel do
5: Compute ∆vi[k] using (9)
6: Estimate transmitter position using (12) and (13)
7: Update vi[k + 1] = vi[k] + ∆vi[k]
8: Compute (δ̂i, σ

2
δ̂i
, θ̂i, σ

2
θ̂i

) based on vi[k+1] using
(17) - (19) and send them to neighboring BSs

9: Receive (δ̂i, σ
2
δ̂i
, θ̂i, σ

2
θ̂i

) sent by neighboring BSs
and reconstruct v̂j [k + 1] using (20)

10: end for
11: end for

IV. SIMULATION RESULTS

We consider a scene consisting of N=4 BSs located
on the corners of a 100m-sided square. We study a fully
connected network only for convenience and without loss of
generality. In fact, the self-synchronization mechanism ensures
convergence for any network configuration as long as the
network is strongly connected and balanced. The transmitter
lies at arbitrary positions inside the rectangular scene and
communicates with the BSs over a bandwidth of 20 MHz. At
each BS, the processing is done using a single OFDM symbol
containing P=64 equispaced pilots with ∆f=312.5kHz. The
signal-to-noise-ratio (SNR) is assumed to be equal at the four
base stations and it is defined as

SNR =
1

Pσ2
w

∑
p

|sp|2 (22)

The performance of the proposed algorithm is investigated
by assessing the MDE denoted as ed, which is defined for
a particular SNR and iteration values as:

ed =
1

Nsim

Nsim∑
n=1

√
(x̂n − xn)2 + (ŷn − yn)2 (23)

where Nsim is the total number of realizations. The
coordinates (x̂n, ŷn) and (xn, yn) are the estimated and true
transmitter position respectively for realization n.

In addition, we also assess the mean value of the
KL divergence for every SNR and iteration values as shown
in (24). The KL divergence is adopted as a measure
of difference between the centralized posterior distribution
p (defined in (5)) and the distributed approximation
of the posterior p̂ (defined in (11)). Notice that the
argument (x, y|r1, ...rN ) of the distributions are omitted to
simplify the notation.

D̄KL(p̂||p) =
1

Nsim

Nsim∑
n=1

(∑
S
p̂n log (

p̂n
pn

)
)

(24)
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Fig. 1: Evolution of pvi , as defined in (14), for the BS located at the origin when all the values of vi are communicated
(No vi compression). Four BS are located at the corners of a 100m squared scene and the transmitter is located
at x=41m, y=76m.

Finally, the MDE and KL divergence are averaged
over Nsim=10000 transmitter positions, channel and noise
realizations for each single SNR value.

A. No Compression of State Variables

In this section, we discuss the performance of the proposed
algorithm summarized in Algorithm 1, i.e., the state variable
matrix vi is communicated entirely; hence there is no coupling
noise introduced to the self-synchronization mechanism. In
addition, the value of the control loop gain β=0.25 is chosen
for the fastest convergence. Such a value has been obtained
based on the eigenvalues of the Laplacian matrix that depends
on the logical configuration of the network as explained
in [16].

Figure 2 illustrates the MDE and the KL divergence only
for BS one, since all the BSs have similar curves when using
the proposed algorithm. Figure 2(a) shows the MDE of the
proposed algorithm and the centralized DPE algorithm used
as a reference (as in [10]).

At iteration k=1, only the local information is available at
the BS; hence the MDE is large for all the SNR values. The
same effect can be seen for the KL divergence in Figure 2(b).
At iteration k=2, the MDE of the proposed algorithm
converges to the one of the centralized DPE algorithm. Such
fast convergence is mainly due to the fact that the network is
fully connected. Therefore, all information is available at each
BS at the second iteration, since there is no compression of
the state variable matrix vi. Moreover, the same effect can be
seen in Figure 2(b) where the KL divergence is zero for all
SNR values from iteration k=2 onwards.

B. Compression of State Variables

In this section, we discuss the choice of parameters for
representing the state variable matrix vi and the performance
of the proposed algorithm summarized in Algorithm 2, i.e.,
when the state variable matrix vi is compressed.
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Fig. 2: MDE and mean KL divergence for the case of complete
communication of state variable matrix vi

Figure 1 shows the probability distribution pvi for different
iterations, for the case where the complete state variables
matrix vi is communicated. The choice of the radial and
angular first two order moments is explained as follows:
at iteration k=1, the state variable vi is equal to the
log-likelihood of the received signal Li(ri|x, y); hence, it



only contains radial information, since the received signal is
delayed due to the distance between transmitter and receiver,
as can be seen in Figure 1(a). For iterations k ≥ 2,
the state variable vi[k ≥ 2] contains radial and angular
information. The angular information is obtained from the
information communicated by the other BSs, as observed in
Figures 1(b) and 1(c).

Due to compression of state variables, there is coupling
noise introduced to the self-synchronization mechanism as
explained in Section III-D. As observed in Figure 3(a),
we need more iterations to reduce such bias. Furthermore,
Figure 3(b) shows clearly that the KL divergence is no longer
zero for low SNR values. In addition, it can be seen that the KL
divergence decreases with more iterations, meaning that the
distributed approximated posterior distribution p̂ gets closer
and closer to the original centralized posterior distribution p.
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Fig. 3: MDE and mean KL divergence for the case of
compression of state variable matrix vi

V. CONCLUSION

In this work, we introduced a fully distributed localization
algorithm based on the self-synchronization mechanism. We
also proposed a compression approach for the state variables
to reduce the amount of communication overhead between
the nodes. Therefore, the localization is done by means

of an iterative process, in which each BS shares just a
few parameters between all other BSs, hence the transmitter
position is available at each BS at the end of each iteration.
Numerical results show that the performance of the final
algorithm gets close to the performance of a direct localization.
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