
HAL Id: hal-03312481
https://hal.science/hal-03312481

Submitted on 4 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedding ML algorithms onto LPWAN sensors for
compressed communications

Antoine Bernard, Aicha Dridi, Michel Marot, Hossam Afifi, Sandoche
Balakrichenan

To cite this version:
Antoine Bernard, Aicha Dridi, Michel Marot, Hossam Afifi, Sandoche Balakrichenan. Embedding ML
algorithms onto LPWAN sensors for compressed communications. PIMRC 2021: 32nd International
Symposium on Personal, Indoor and Mobile Radio Communications, Sep 2021, Helsinki (virtual),
Finland. pp.1539-1545, �10.1109/PIMRC50174.2021.9569714�. �hal-03312481�

https://hal.science/hal-03312481
https://hal.archives-ouvertes.fr

Embedding ML Algorithms onto LPWAN Sensors
for Compressed Communications

Antoine Bernard1,2, Aicha Dridi2, Michel Marot2, Hossam Afifi2, and Sandoche Balakrichenan1

1Afnic
firstname.surname@afnic.fr

2Samovar, Télécom SudParis, Institut Polytechnique de Paris
firstname.surname@telecom-sudparis.eu

Abstract—LPWANs are networks characterized by the scarcity
of their radio resources and their limited payload size. To extend
the efficiency of the data transmission by decreasing the traffic
sent from sensors, this paper proposes a lossy compression
method using known ML techniques. We embedded a pre-trained
neural network directly on constrained LoRaWAN devices and
we tested the trade-off between compression ratio and accuracy
of the compression algorithm. This paper studies multiple aspects
of the system - energy consumption, error rate due to the
lossy compression, compression ratio and the impact of LSTM
parameter quantization - to measure the possible strengths and
weaknesses of using a dual prediction system in order to reduce
transmission costs. Surprisingly, machine learning used in this
context does not consume a lot of energy and it even leads
to energy saving in the very constrained devices which are the
sensors.

Keywords - Internet of Things; LPWAN; Compression;
Neural Networks

I. INTRODUCTION

Internet of Things (IoT) includes a wide range of tech-
nologies relying on a variety of standards and protocols.
Most IoT devices, as well as the network, have constrained
capabilities. Low-Power Wide-Area Networks (LPWANs cf.
[1]) is one such IoT technology that aims to provide network
connectivity to IoT devices distributed over a wide area.
Their distinct characteristics, such as their coverage capacity
ranging from ten to fifteen kilometers, long battery life with
a lifespan of more than ten years, satisfy the requirements
of a considerable IoT market [2]. Their cost is low because
their unique architecture permits their user to built cheaper
infrastructure and because on-air communications use license-
free bands or re-use already owned licensed bands.

LPWANs are, by design, highly constrained networks that
allow payload size up to a few tens of bytes with a long
transmission time. Thus, compressing data traffic is of ut-
most importance. In IoT data traffic, the header size is large
compared to the total transmitted data, especially when using
IPv6. Static Context Header Compression (cf. [3]) is a possible
way to compress headers, but the payload data themselves
remain to be compressed. Long Range Wide Area Network
or LoRaWAN [4] is an LPWAN technology. This paper aims
to study LoRaWAN traffic compression, precisely its data
payload, using a machine learning-based compression scheme.

Many IoT applications consist in monitoring: power grid
or water distribution network metering, electric vehicle bat-
tery level monitoring, meteorological, temperature, humidity
monitoring, etc. In most of these cases, the observed time
series are highly correlated and can be forecast easily unless
unexpected events occur. Thus, it is not necessary to transmit
the data in most cases, but only in case of unexpected events.
With a good time-series predictor both on the sensor and on
the network backend, the data can be deduced at the backend
without any transmission from the sensor. However, if the
sensor, using the same predictor, observes that the measured
data is different from the predictor’s forecast, if it notes it
is an unexpected event, then the sensor must send the data.
With such a mechanism, we can avoid many transmissions
and produce highly compressed traffic.

This paper’s goal is precisely to test to what extent such an
approach is well suited for IoT and particularly in the case
of LoRaWAN. We want to observe the efficiency in terms
of network performance (e.g. compression ratio) and power
consumption since it is essential to save the batteries of sensors
that are expected to have a long life. We also want to test
whether our solution is feasible practically by setting up an
experiment with actual sensors.

Different kinds of predictors may be envisioned, but ma-
chine learning, particularly neural networks, is well suited to
model any repeated pattern. Here, we use a Long Short-Term
Memory neural model (LSTM, cf. [5]) for two scenarii: power
production and consumption metering and cellular base station
load monitoring. We trained the neural network model on a
powerful computer, and then we injected the trained model
into the sensors. We measured the compression ratio and the
sensor’s electric consumption, taking into account the trans-
mission and the computation cost. We run our experiments
with real measured data and LoRaWAN equipment.

This work also presents our thoughts on LSTMs’ accuracy
and how the device’s compression capabilities are impacted
by LSTM accuracy.

In part II, the related works are reviewed. Then, in part III
we present our experiment setup, tools and software, imple-
mentation choices and the walls we encountered. Lastly, in part
IV, we present our results and discuss possible improvements
to the system. V sums up our experiments and conclusions.

II. RELATED WORKS

The easiest way to reduce data transmission is to delete re-
dundancies or to round them to near values. Sensors often gen-
erate time-correlated data. For example, the temperature may
vary slowly. Run-Length Encoding (RLE) takes advantage of
the adjacent clustering of symbols that occur in succession.
It replaces a "run" of symbols with a tuple that contains the
symbol and the number of times it is repeated. The authors of
[6] apply Delta Encoding followed by RLE at the end node.
In [7] delta compression allows sending only the difference
between two consecutive temperature measurements. Data are
also usually quantized to round the measures to significant
approximations requiring fewer bits for coding. They are often
aggregated ([8] or [9]).

Approximating the measurements reduces their size also
[10]. One can compress signals by approximating them with
auxiliary, more simple functions. Lightweight Temporal Com-
pression (LTC) [11] is an energy-efficient lossy compression
algorithm that maintains a memory usage and per-sample
computational cost in O(1). LTC estimates data points using a
piece-wise linear function that guarantees an upper bound on
the maximum absolute error between the reconstructed signal
and the original one while maintaining a memory usage and
per-sample latency in O(1).

Classical compression approaches based on dictionaries or
entropy coding have been adapted to IoT, like [12] where
a specific dictionary is created for different kinds of data
depending on their change frequency. Transform methods
are classical tools for compressing data but may be CPU
resource consuming. [13] evaluates several lossy compres-
sion algorithms for efficiently storing weather sensor data
based on the encoding of temporal changes and three signal
transformation algorithms on spatial data. Specifically, they
evaluate reconstructed weather sensor data fidelity using Dis-
crete Cosine Transform, Fast Walsh-Hadamard Transform and
Discrete Wavelet Transform (and also Lossy Delta Encoding).
The objective is to provide useful information for minimizing
data reconstruction errors, and more importantly, make sure
they are within a tolerable range. Chebyshev compression is
considered in [14] and [15].

Compressed sensing is a new technique. As stated in [16],
in a series of pioneering works by Candes ([17], [18], [19])
and their co-authors, it was shown that when a signal has a
sparse representation in a known basis, one can vastly reduce
the number of samples that are required—below the Nyquist
rate and still be able to recover the signal (under appropriate
conditions) perfectly. This framework suggests compressing
the data while sensing it; hence the name compressed sensing.
Nevertheless, on the one hand, compressed sensing reduces
the number of measurements and the sampling rate. However,
on the other hand, it increases the computational complexity
of the signal recovery ([20]). The signal is recovered ap-
proximately by solving a convex relaxation of a non-convex
optimization problem. [21] proposes a unified approach for
compression and authentication of smart-meter reading in

advanced metering infrastructure. In [22] an algorithm is
designed which combines the accuracy of standard lossless
compression with the efficiency of a compressive sensing
framework. It balances each technique’s trade-off and op-
timally selects the best compression mode by minimizing
reconstruction errors, given the sensor node battery state.

Recently, Neural network-based techniques entered the
landscape of IoT data compression techniques. In [23], data are
compressed by their regression curve obtained from a neural
network. In [24], biomedical signals are compressed using
autoencoders. These neural networks are three-stage networks
whose input and output dimensions are the same, while the
hidden stage has a smaller dimension. Thus, the first stage’s
output has a reduced dimension compared to the input and
constitutes the compressed data.

Another part of transmission compression is header com-
pression, recent work from IETF develops possible ways to
improve payload efficiency by compressing packet headers
such as ROHC [25], or SCHC [3].

Prediction methods are also used. Neural networks are
known as universal function approximators with the capability
to learn arbitrarily complex mappings, and in practice, show
excellent performance in prediction tasks. Thus, the authors
of [26] train a Recurrent Neural Network predictor followed
by encoding with a traditional arithmetic coder block using
the probabilities generated by the trained neural network. The
decompression is performed symmetrically and requires the
trained model for arithmetic decoding. In [27] a prediction
scheme is implemented on cluster nodes and cluster heads to
reduce data transmission. If the measured data corresponds to
the predicted one, it has not to be transmitted. Neural networks
(NNs) and Long Short-Term Memory networks (LSTMs) are
proposed to perform predictions. We decided to push the
subject further by implementing the algorithm directly on
the sensors instead of relying on simulation. Our Proof-Of-
Concept experiment aims to back these simulations or disprove
them should the system prove unreliable.

On the subject of traffic data prediction, some papers
propose to use a similar approach using large LSTMs such
as [28]. Their multi-feature approach allows them to correlate
data and obtain interesting results regarding traffic prediction.
We hope to obtain similar results with our curves as we work
with network traffic. However, our approach differs in our
decision to focus on the effect of predictions on transmission:
improvements to LSTM capabilities are out of our paper’s
scope.

This approach was also tested with energy production
forecasting. LSTMs are presented as a possible candidate
for energy production forecasting in [29]; the solution seems
adaptative enough for our approach to be reliable enough when
using LSTM as a forecasting tool.

Thus, there are many compression techniques appeared for
many years. Nevertheless, if the "classical" methods may
present efficient compression ratios, they do not avoid trans-
mitting data. Actually, periodically a sensor senses data, may
compress it and then send the compressed payload. Neverthe-

Figure 1: Experimental testbed

less, compressed data payload (plus header) are still sent. New
neural network-based techniques appeared, and they avoid
sending data at all in some situations where the prediction
is good, but to our knowledge, they have not been tested with
actual data and on real equipment. The goal of our test is
precisely to propose a validation in real conditions.

For this paper, the prediction algorithms used rely on
[30]. We aim to have a reliable data prediction based on
an LTSM neural network and run the predictor on both the
sensor and the network infrastructure. As we can expect
prediction performance reliable within a 10% Mean Absolute
Percentage Error (MAPE), we might expect a complementary
compression coefficient up to 90% for our experiment. Such
a compression ratio would allow us to build sensor networks
where each device consumes less bandwidth, thus improving
the scalability of LPWANs solutions further.

With our experiment, we test various neural network size
and transmission threshold to measure how these parameters
might influence the compression ratio of our device’s trans-
missions.

III. EXPERIMENT

We embarked an LSTM algorithm similar to the ones
studied in [27] and [30] onto an electronic device as a way
to test the experimental feasibility of these solutions. These
articles propose to use LSTMs that are sufficiently simple to
be implemented and embarked onto devices.

The devices used for this experiment are STM32L476
[31] as measurement and calculation device which generates
prediction data and compares it to measurements, Semtech’s
SX1276MB1MAS [32] as LoRa transmission board, and
STM32 Nucleo Expansion Board [33] to measure the energy
consumption of LoRaWAN transmissions. The data sets we
used are occupancy data of cellular base stations for the 1st
data set and power consumption of a smart building for the
2nd one, in function of the time. We used the 1st data set for
all experiments except for those presented Figure 4.

A. Hand coding the neural network

Initially, we thought of basing our experiment on EdgeIm-
pulse [34]. EdgeImpulse is an easy-to-use and well-
documented framework to generate machine learning models
from actual sensor data and automatically embed them onto
the device. EdgeImpulse was a strong candidate to support our
experiments on sensors. Unfortunately, the framework offered
from EdgeImpulse did not support LSTM functionalities, thus
was not adapted to our use case.

By studying the source code of the program generated
by EdgeImpulse, we constated that the basic library used to
execute Machine Learning algorithm was the TensorFlow Lite
[35] library. So, we built an MBED OS firmware that embarks
the TensorFlow Lite exported neural network and transmits
data based on the predictions but could not exploit the strength
of the TensorFlow Lite for microcontrollers library as the
LSTM operations are not supported yet.1

So, we trained our LSTM network with TensorFlow [36]
and exported the LSTM weights and parameters necessary to
our implementations (weights, bias and hidden layers’ state).
We ported the Deep LSTM code successfully onto basic
STM32 boards. We injected the parameters into our own
implementation of the LSTM network, developed in C, and
embarked the LSTM network directly on the sensor. Our im-
plementation is available following [37]. This implementation
was built thanks to the paper from Christopher Olah [38], and
the following tutorial on weights and parameters extraction
[39].

B. Dual prediction with LSTM

The usual approach with LSTM is to use measured values
as input to the system and obtain a predicted value based on
these measurements, as proposed in [40]. A modified LSTM
architecture is proposed hereafter as this approach does not
fit with dual prediction since the backend (i.e. the network
side receiving the traffic) does not have access to the sensor’s
measurements. Our experiment relies on a dual prediction of
data to reduce transmission. It relies on two types of data:
On the one hand, we have measured values from sensors, and
on the other, we have calculated (i.e. predicted) values. Our
LSTM needs to keep calculating based on calculated values on
both the backend and the sensor as long as transmissions are
unnecessary. Actually, as long as no data is transmitted, the
backend has only the calculated values, not the measured ones.
Thus, the backend must run the LSTM by re-injecting these
calculated data into the LSTM, and, consequently, the device
must do the same to check to which extent the data predicted
by the backend is far or near the data just measured. When
transmissions occur, we can recalibrate the LSTM and use the
new transmitted value as a new baseline for calculations.

The firmware we developed is then flashed onto an
STM32L476 card to exploit the capability of LSTM combined

1We discussed this issue with contributors from both EdgeImpulse and
TensorFlow Lite for microcontrollers and will do our best to carry on with
this work and use it to contribute to the support of LSTM capabilities on
TensorFlow Lite.

with LoRaWAN transmissions. This algorithm, built on MBED
OS, uses an LSTM Neural Network to predict a theoretical
value at a given time. It compares these theoretical values
to experimental measurements at the corresponding time. We
define a threshold that determines a transmission policy: if
the experimental measurements differ from the predicted value
within a given margin, the transmission is not realised. How-
ever, if the experimental measurements are too far from the
predictions, the data is sent over the air from our LoRaWAN
device to our LoRaWAN backend. This threshold might be
fixed as in Figure 5, or we might study the effect of changing
the value of the threshold through simulations such as with
Figure 3 which studies the compression ratio one can expect
with this system when picking various threshold values. Such
data transmission policy may allow us to reduce the band
usage for our device.

We plug our transmission card (SX1276MB1MAS) into
an STM 32 Nucleo Expansion Board to monitor its energy
consumption using STM32CubeMonitor [41]. We do the same
with our STM32L476 card in order to study the overcost of
running the LSTM.

On the backend side, we monitor data reception and ag-
gregate the data predicted from the neural network on the
infrastructure side with the data received from the sensors,
allowing us to plot on a graph the combination of the actual
measured data, for which we consider that the information is
100% reliable, and the predicted data which was inferred by
the neural network and not disproved by sensor transmission
(which is reliable up to a certain threshold). The effect of
this threshold will also be studied. In this experiment, our
LoRaWAN gateway is accessible through SF7 communica-
tions and is a part of TheThingsNetwork [42] community
LoRaWAN Network. Figure 1 sums up our experimental setup
and illustrates the various hardware components we use.

Alongside this real experimental setup, we studied the effect
of changing the system’s variables through extensive simu-
lations allowing us to shorten the experimental exploration,
find interesting parameters for our embedded experiment and
confront simulation results to experiments.

We also studied the system’s reliability. We defined the
system’s reliability as the MAPE of the data perceived by
the backend compared to the real values. This reliability
study aims to study the consequences of a bounded lossy
compression on the values obtained at the system’s output.
Our compression is lossy because the data recorded by the
back-end is not the measured one but the predicted one as long
as the predicted one is within the tolerated threshold interval,
and thus defining a threshold means we study the trade-off
between accepting a given error on our data and improving
the compression ratio. Our compression is bounded because
we set it back to the actual data if the loss exceeds the given
threshold.

With this experiment, we aim to evaluate:

• the energy cost added by the ML-based compression
scheme at the device side;

• the energy saved on the transmission card thanks to data
prediction;

• the compression ratio expected with regards to a given
neural network size and data prediction threshold;

• the bounded loss introduced by the solution compared to
transmitting all values;

• the impact of the quantization of the weights of the neural
network predictor, by running these experiments with
quantized parameters instead of floating-point numbers
to improve neural network complexity, memory size and
finally energy efficiency.

IV. DISCUSSION

A. Energy

Table I: Comparison of the mean energy consumption of the
calculation card and its variance, with and without

LSTM-based compression (in Watts)

With Machine Learning Without Machine Learning
Mean value (W) Variance Mean value (W) Variance
6.31 ∗ 10−4 7.57 ∗ 10−5 7.76 ∗ 10−4 7.61 ∗ 10−5

Table II: Comparison of the mean energy consumption of the
transmission card and its variance, with and without

LSTM-based compression (in Watts)

With Machine Learning Without Machine Learning
Mean value (W) Variance Mean value (W) Variance
5.48 ∗ 10−4 4.10 ∗ 10−5 9.87 ∗ 10−4 7.12 ∗ 10−5

The comparison of the consumption of our cards (Table I &
II) shows a save of around 40% on transmission cards. Con-
sidering IoT systems similar to our own with measurements
stating that calculation and transmission consume about the
same, this would represent a save of around 20% on both
transmission and battery life. Considering the card we are
using, an LR6 battery with a 1200mAh charge would power
our device for around ten months without embedded machine
learning and about a year with machine learning.

Figure 2 presents the energy passing through both
our network card and calculation card, measured using
STM32CubeMonitor which permits us to measure and log
instantaneous consumption for our device, in function of the
time. The device life-cycle follows a two-step routine. Most of
the device’s life is spent in a sleeping state with low energy
consumption. Here in our illustration, the device’s sleeping
state is around 9s long to respect LoRaWAN duty cycle. The
device will, exceptionally or regularly, transmit data based
on its measurements. Transmitting is the other step in the
routine. Transmissions translate in power consumption as three
transmission spikes corresponding to data emission and the
opening of two LoRaWAN listening windows. A residual
energy consumption about 4.10−4W can be noticed for the
calculation card, while it is about 5.10−5W for the transmis-
sion card. The calculation card embarks a dedicated OS which
requires more permanent consumption. Irregular energy spikes

Figure 2: Energy (in W) passing through the calculation card
and the transmission card (Sample)

can be observed for the calculation card, which are due to OS
eventing. Our Machine Learning algorithm directly results into
transmission spikes. Except for the operations realised by the
OS on the calculation card, no transmission means no power
spike, which leads to less power consumption as a whole, a
result that can be observed on the transmission card’s power
consumption. With regular transmissions we would observe
regular power spikes but with our method these spikes are
completely cut off.

B. Compression and Mean Absolute Percentage Error

Figure 3 presents the MAPE and the compression ratio we
can expect with regards to the size of the neural network
and the decision threshold. We observe that, as expected, the
compression ratio improves with the threshold but that the
MAPE worsens. The consequences of the number of hidden
layers is not significant.

Experimenting with different data-sets (Figure 4) show how
the performances of the neural network in its prediction greatly
influence the quality of the compression scheme. With a better
overall MAPE, one might achieve around 60% compression
accepting as little as 1% error in its transmissions.

The questions that come with these curves need to be
addressed directly by the user. A user with concern with
precision will prefer a lower MAPE, thus obtaining a lower
compression ratio. If a user accepts a 1% error on its global
data, setting its transmission threshold around 8%, He would
end up with a 30% compression ratio for our first data-set
and 85% compression ratio for the second one. Accepting
more errors would permit compression ratios up to 90%. We
note that the compression ratio is low with a strict threshold,
but remember that contrary to classical compression methods
where at least a header is sent, no packet is sent at all with
our method when we compress. Thus, for a strict threshold of
10%, we decrease the overall traffic by 1 packet over 5 (20%)
while keeping a global error on our overall data around 2%.

Figure 3: Compression ratio and mean absolute percentage
error with regards to neural network size and precision

threshold

Figure 4: Compression ratio and mean absolute percentage
error with regards to neural network size and precision

threshold

C. Backend considerations

Figure 5 presents a comparison between the measured time-
series as transmitted without ML and the calculated time-
series improved with transmissions. The Calculated Data curve

Figure 5: Comparison sample between calculated data,
reference data and data perceived by the backend

Figure 6: Float32, Float16 and Int-8 Quantized LSTM
forecasting

consists solely of data calculated by the LSTM neural network.
The Measurements Data curve corresponds to our LSTM target
data, and its value end up transmitted should the calculated
data end up being too far from the measurements. Finally, the
combined data is the data curve as seen on our backend-side:
the calculated data improved by the measured transmission
should the two curves differ above a given threshold.

D. Quantization

Figure 6 presents our backend-side time-series as a function
of the time index, combining calculated data and received
measurements. The three curves on this figure differ by the
number of bits necessary to code the LSTM weights, hidden
layer parameters, cell state and input data. The dotted blue
curve is obtained by running the dual prediction algorithm in
a Python simulated environment and operating with 32-bits-

encoded floats. The plain orange curve is obtained by running
the dual prediction algorithm directly on the device with an
LSTM operating with 16-bits-encoded floats. And the dash-
dot green curve is obtained by running the dual prediction
algorithm directly on the device with an LSTM operating with
quantized parameters encoded on 8-bits integers.

Measurements of the compression ratio for the three above
curves show no significant degradation between the three
systems (the compression ratio almost does not change and re-
mains around 70% for the three curves). 8-bit quantization is a
well-documented solution to reduce the operations’ complexity
while working with neural networks on constrained devices.
This also proves to be confirmed with our implementation of
LSTM. Efficient quantization is essential when working with
Neural Networks; it reduces the complexity of the operations,
which might, in turn, allow for savings in processing power
and battery life. Further works would be necessary on the
efficiency of quantization once the LSTM operation will be
ported to the TensorFlow Lite for microcontrollers library.

V. CONCLUSION

We built an experimental testbed to check the capabilities
of on-boarding LSTM algorithm on-sensor to forecast data,
achieve dual prediction, and eventually compress data traffic
and save energy. A deep LSTM algorithm was developed
and integrated into a small, constrained hardware to obtain
these results, its source code is accessible following [37].
Our findings show that it can efficiently minimize the traffic
while preventing non-relevant transmissions to occur with a
significant impact on energy consumption. We observed the
impact of the neural network size and the decision threshold
on the compression ratio and the MAPE. Our system allows
efficient compression while keeping the user within a reason-
able error margin. It can be customized depending on precision
and compression trade-off requirements. We also check the
impact of the quantization of the LSTM parameters because
of device constraints and also to decrease the complexity of
the algorithm. We observed no significant degradation in the
system when using 8-bit quantization.

Compressing data with this kind of Bounded Lossy Com-
pression allows to expend battery lifetime depending on the
accepted margin of error. Our results show an excellent
compression ratio compared to the state of the art. Note
that our scheme avoids sending any data while classical
compression mechanism at least send a frame header each time
a compressed data is sent. Moreover, an extensive energy con-
sumption study proves that our algorithm saves an important
energy ratio that can be used in further communication.

Further approach would consist of selecting multiple fea-
tures on multiple values to attain more precision in the calcu-
lation with a more complex recalibration. Works are carried
by contributing to the actual TensorFlow Lite community in
order to propose a more complete port of the LSTM libraries
from the global TensorFlow project to the TensorFlow Lite for
microcontrollers community.

VI. ACKNOWLEDGEMENT

This work benefited from the support of the Energy4Climate
Interdisciplinary Center (E4C) of IP Paris and Ecole des
Ponts ParisTech. It was supported by 3rd Programme
d’Investissements d’Avenir [ANR-18-EUR-0006-02]. This
work was partly financed by the French National Research
Agency through the CIFRE program [2018/0668]. Our thanks
to our colleagues Dr. Ghalid Abib and Florian Grante from
Telecom SudParis and to Alexandre Abadie from INRIA for
their advice regarding a few of the tools and hardware used in
this paper. Our thanks to our colleagues Pr. Monique Becker
from Telecom SudParis and Benoît Ampeau from Afnic for
their reviews and advices.

REFERENCES

[1] Farrell, S., Ed. "Low-Power Wide Area Network (LPWAN) Overview",
RFC 8376. IETF lpwan working group, May 2018. https://www.
rfc-editor.org/info/rfc8376.

[2] LPWAN market to reach $65 billion by 2025, 2019. https:
//www.smart-energy.com/industry-sectors/business-finance-regulation/
lpwan-market-to-reach-65-billion-by-2025/.

[3] Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC. Zúñiga.
"SCHC: Generic Framework for Static Context Header Compression
and Fragmentation", RFC 8724. IETF lpwan working group, April 2020.
https://www.rfc-editor.org/info/rfc8724.

[4] LoRa Alliance, Inc. LoRaWAN Specifications, Accessed Oct 2019.
https://lora-alliance.org/about-lorawan.

[5] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9:1735–80, 12 1997.

[6] A. K. M. Al-Qurabat, C. Abou Jaoude, and A. K. Idrees. Two tier data
reduction technique for reducing data transmission in iot sensors. In
2019 15th International Wireless Communications Mobile Computing
Conference (IWCMC), pages 168–173, June 2019.

[7] B. R. Stojkoska and Z. Nikolovski. Data compression for energy efficient
iot solutions. In 2017 25th Telecommunication Forum (TELFOR), pages
1–4, Nov 2017.

[8] T. Boshita, H. Suzuki, and Y. Matsumoto. Compression method of
position information for iot-based bus location system using lorawan.
In 2018 Eleventh International Conference on Mobile Computing and
Ubiquitous Network (ICMU), pages 1–2, Oct 2018.

[9] X. Zhao, V. Sadhu, and D. Pompili. Analog signal compression and
multiplexing techniques for healthcare internet of things. In 2017 IEEE
14th International Conference on Mobile Ad Hoc and Sensor Systems
(MASS), pages 398–406, Oct 2017.

[10] V. Alieksieiev. One approach of approximation for incoming data stream
in iot based monitoring system. In 2018 IEEE Second International
Conference on Data Stream Mining Processing (DSMP), pages 94–97,
Aug 2018.

[11] T. Schoellhammer, B. Greenstein, E. Osterweil, M. Wimbrow, and
D. Estrin. Lightweight temporal compression of microclimate datasets
[wireless sensor networks]. In 29th Annual IEEE International Confer-
ence on Local Computer Networks, pages 516–524, Nov 2004.

[12] K. MATSUDA and M. KUBOTA. Compound compression method for
gathering traffic of iot/cps data. In 2019 IEEE 5th World Forum on
Internet of Things (WF-IoT), pages 761–766, April 2019.

[13] A. Moon, J. Kim, J. Zhang, and S. W. Son. Lossy compression on iot
big data by exploiting spatiotemporal correlation. In 2017 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–7, Sep.
2017.

[14] A. Ukil, S. Bandyopadhyay, A. Sinha, and A. Pal. Adaptive sensor data
compression in iot systems: Sensor data analytics based approach. In
2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5515–5519, April 2015.

[15] A. Ukil, S. Bandyopadhyay, and A. Pal. Iot data compression: Sensor-
agnostic approach. In 2015 Data Compression Conference, pages 303–
312, April 2015.

[16] E. Zisselman, Amir Adler, and M. Elad. Compressed Learning for Image
Classification: A Deep Neural Network Approach, volume 19, pages 3
– 17. Elsevier, 10/2018 2018.

[17] E. J. Candès. Compressive sampling. In International Congress of
Mathematicians, ICM 2006, volume 3, pages 1433–1452, 2006. Cited
By :2334.

[18] E. J. Candes and M. B. Wakin. An introduction to compressive sampling.
IEEE Signal Processing Magazine, 25(2):21–30, March 2008.

[19] D. L. Donoho. Compressed sensing. IEEE Transactions on Information
Theory, 52(4):1289–1306, April 2006.

[20] T. Vlašić, J. Ivanković, A. Tafro, and D. Seršić. Spline-like chebyshev
polynomial representation for compressed sensing. In 2019 11th In-
ternational Symposium on Image and Signal Processing and Analysis
(ISPA), pages 135–140, Sep. 2019.

[21] Y. Lee, E. Hwang, and J. Choi. A unified approach for compression and
authentication of smart meter reading in ami. IEEE Access, 7:34383–
34394, 2019.

[22] S. Kartakis, M. M. Jevric, G. Tzagkarakis, and J. A. Mccann. Energy-
based adaptive compression in water network control systems. In 2016
International Workshop on Cyber-physical Systems for Smart Water
Networks (CySWater), pages 43–48, April 2016.

[23] J. Park, H. Park, and Y. Choi. Data compression and prediction using
machine learning for industrial iot. In 2018 International Conference
on Information Networking (ICOIN), pages 818–820, Jan 2018.

[24] D. Del Testa and M. Rossi. Lightweight lossy compression of biometric
patterns via denoising autoencoders. IEEE Signal Processing Letters,
22(12):2304–2308, Dec 2015.

[25] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H., Hannu, H.,
Jonsson, L-E., Hakenberg, R., Koren, T., Le, K., Liu, Z., Martensson, A.,
Miyazaki, A., Svanbro, K., Wiebke, T., Yoshimura, T., and H. Zheng.
"RObust Header Compression (ROHC): Framework and four profiles:
RTP, UDP, ESP, and uncompressed", RFC 3095. IETF lpwan working
group, July 2001. https://www.rfc-editor.org/info/rfc3095.

[26] M. Goyal, K. Tatwawadi, S. Chandak, and I. Ochoa. Deepzip: Lossless
data compression using recurrent neural networks. In 2019 Data
Compression Conference (DCC), pages 575–575, March 2019.

[27] A. Jarwan, A. Sabbah, and M. Ibnkahla. Data Transmission Reduction
Schemes in WSNs for Efficient IoT Systems. IEEE Journal on Selected
Areas in Communications, 37(6):1307–1324, June 2019.

[28] Zheng Zhao, Weihai Chen, Xingming Wu, Peter CY Chen, and Jingmeng
Liu. LSTM network: a deep learning approach for short-term traffic
forecast. IET Intelligent Transport Systems, 11(2):68–75, 2017.

[29] A. Gensler, J. Henze, B. Sick, and N. Raabe. Deep Learning for solar
power forecasting — An approach using AutoEncoder and LSTM Neural
Networks. In 2016 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pages 002858–002865, 2016.

[30] Aicha Dridi, Hatem Khedher, Hassine Moungla, and Hossam Afifi.
An Artificial Intelligence Approach for Time Series Next Generation
Applications. pages 1–6, 06 2020.

[31] STM32L476, 2021. https://www.st.com/en/
microcontrollers-microprocessors/stm32l476rg.html.

[32] Semtech’s SX1276MB1MAS, 2021. https://www.semtech.com/
products/wireless-rf/lora-transceivers/sx1276mb1mas.

[33] STM32 Nucleo Expansion Board, 2021. https://www.st.com/
content/st_com/en/products/evaluation-tools/product-evaluation-tools/
stm32-nucleo-expansion-boards/x-nucleo-lpm01a.html.

[34] EdgeImpulse, 2020. https://edgeimpulse.com/.
[35] TensorFlow Lite, 2020. https://www.tensorflow.org/lite/.
[36] TensorFlow, 2020. https://www.tensorflow.org/.
[37] C Implementation of Simple LSTM network, 2021. https://github.com/

Bernard-A/LSTM-by-Hand-FairyOnIce/blob/main/CPP/main.cpp.
[38] Understanding LSTM Netwoks, August 2, 2015. https://colah.github.io/

posts/2015-08-Understanding-LSTMs/.
[39] Extract weights from Keras’s LSTM and cal-

cualte hidden and cell states, February 19, 2018.
https://fairyonice.github.io/Extract-weights-from-Keras’
s-LSTM-and-calcualte-hidden-and-cell-states.html.

[40] Hasim Sak, Andrew W Senior, and Françoise Beaufays. Long short-term
memory recurrent neural network architectures for large scale acoustic
modeling. 2014.

[41] STM32 Cube Monitor Desktop Application, 2021. https://www.st.com/
en/development-tools/stm32cubemonitor.html.

[42] The Things Network, 2021. https://www.thethingsnetwork.org/.

