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Abstract—Recent advances in Federated Learning (FL) have
paved the way towards the design of novel strategies for solving
multiple learning tasks simultaneously, by leveraging cooperation
among networked devices. Multi-Task Learning (MTL) exploits
relevant commonalities across tasks to improve efficiency com-
pared with traditional transfer learning approaches. By learning
multiple tasks jointly, significant reduction in terms of energy
footprints can be obtained. This article provides a first look into
the energy costs of MTL processes driven by the Model-Agnostic
Meta-Learning (MAML) paradigm and implemented in dis-
tributed wireless networks. The paper targets a clustered multi-
task network setup where autonomous agents learn different but
related tasks. The MTL process is carried out in two stages:
the optimization of a meta-model that can be quickly adapted to
learn new tasks, and a task-specific model adaptation stage where
the learned meta-model is transferred to agents and tailored
for a specific task. This work analyzes the main factors that
influence the MTL energy balance by considering a multi-task
Reinforcement Learning (RL) setup in a robotized environment.
Results show that the MAML method can reduce the energy bill
by at least 2× compared with traditional approaches without
inductive transfer. Moreover, it is shown that the optimal energy
balance in wireless networks depends on uplink/downlink and
sidelink communication efficiencies.

I. INTRODUCTION

The underlying premise of Federated Learning (FL) is to
train a distributed and privacy-preserving Machine Learn-
ing (ML) model for resource-constrained devices [1], [2],
[3], [4]. Typically, FL requires frequent and intensive use
of communication resources to exchange model parameters
with the parameter server [5]. However, it is not optimized
for incremental model (re)training and tracking changes in
data distributions, or for learning new tasks, i.e., Multi-Task
Learning (MTL). In particular, jointly learning new tasks using
prior experience, and quickly adapting as more training data
becomes available is a challenging problem in distributed ML
and mission critical applications [6], a topic that still remains
in its infancy [7].

To obviate this problem, meta-learning is a promising en-
abler in multi-task settings as it exploits commonalities across
tasks. In addition, meta-learning relies on the optimization of a
ML meta-model that can be quickly adapted to learn new tasks
from a small training dataset by utilizing few communication
and computing resources (few shot learning) [8]. As depicted
in Fig. 1, the meta-learning process requires an initial training
stage (t0 rounds) where a meta-model Wτ is trained on a data

Fig. 1. Clustered multi-task wireless network example. From left to right:
Model-agnostic Meta-Learning (MAML) on the data center, and decentralized
Federated Learning (FL) for task-specific model adaptation .

center, using observations from different tasks, and fed back to
devices (inductive transfer) for task-specific adaptations. The
meta-model Wτ could be quickly re-trained on the devices in
a second stage (t > t0), to learn a task-specific model Wτi ,
optimized to solve the (new) task τi. Task-specific training of
Wτi can be implemented via FL using few communication
resources and a small amount of data from the new task(s)
[9]. Considering the popular Model-Agnostic Meta-Learning
(MAML) algorithm [8], the meta-model Wτ is optimized
inside a data center using training data from a subset of
devices (e.g., data producers such as sensors, machines and
personal devices) and tasks. The meta-optimizer is typically
gradient-based, and alternates task-specific model adaptations
and meta-optimization stages on different data batches [10].
Although the optimization of the meta-model could be energy-
hungry requiring more learning rounds than conventional ML
on single tasks, the meta-learning process incurs lower energy
consumption of subsequent task-specific model updates. Char-
acterizing the tension between meta-model optimization and
task-specific adaptation is currently overlooked and constitutes
the focus of this work.

Contributions: this work provides a first look into the
energy and communication footprints of meta-learning tech-
niques implemented in distributed multi-task wireless net-
works. In particular, we consider a framework that quan-
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tifies the end-to-end energy cost of MAML optimization
inside a data center, as well as the cost of subsequent task-
specific model adaptations, implemented using FL [11], [12].
The work also includes, for the first time, comparisons and
trade-off considerations about MAML-based optimization, and
conventional transfer learning tools over resource-constrained
devices. The framework is validated by targeting a multi-task
Reinforcement Learning (RL) setup using real world data.

The paper is organized as follows. Sects. II and III describe
the meta-learning approach, as well as its energy footprint
evaluation, with a particular focus on communication and
computing costs. In Sect. IV, we consider a case study in a
real-world industrial workplace consisting of small networked
robots collaboratively learning an optimized sequence of mo-
tions, to follow an assigned task/trajectory. Finally, Sect. V
draws some conclusions.

II. MULTI-TASK LEARNING AND NETWORK MODEL

The learning system under consideration consists of a
clustered multi-task network of K devices and one data
center (k = 0) co-located with a core network access point
i.e, gateway, or Base Station (BS). The wireless network
leverages UpLink (UL) and DownLink (DL) communication
links with the data center (BS), or direct, i.e. sidelink (SL),
communications. As depicted in Fig. 1, the devices, or agents,
are allowed to cooperate with each other to learn M ≪ K
distinct tasks τ1, ..., τM and form M clusters Ci (i = 1, ...,M ).
The objective of the agents in the cluster Ci (k ∈ Ci) is to learn
a task τi by estimating the model parameters Wτi through the
minimization of a finite-sum objective function Li(W) of the
general form

Wτi = argmin
W

Li(W) = argmin
W

∑
k∈Ci

Lk(W|Ei,k)︸ ︷︷ ︸,
Li(W)

(1)

where Lk(W|Ei,k) is the loss function, or cost, associated
with the k-th device Lk(W|Ei,k) =

∑
xh,i∈Ei,k

ℓ(W|xh,i),
while ℓ(W|xh,i) is the loss function of the predicted model
with data/examples xh,i ∈ Ei,k drawn from the task τi. Notice
that the costs of the individual devices belonging to the same
cluster are minimized at the same location Wτi as solving
the same task τi. However, considering two tasks τi, τj with
i ̸= j, it is Wτi ̸= Wτj . As clarified in the next section,
the devices operate in a streaming data setting targeting a RL
problem: each agent k observes the environment at each time
instant t and obtains samples about the state, actions and task-
dependent rewards.

The minimization of (1) is implemented incrementally via
gradient optimization. In particular, we adopt an inductive
transfer learning approach [13]. First, we learn a meta-model
Wτ on the data center using examples drawn from a subset
Qτ of Q ≤M tasks τi ∈ Qτ . After t0 MAML rounds [8], the
meta-model Wτ is transferred from the data center to all the
individual devices and adapted to the specific task via FL [6].
Notice that FL is implemented separately by devices in each

cluster: in other words, only the agents within the same cluster
are allowed to share their local models to learn a task-specific
global model Wτi . Both the optimization of the meta-model
and the subsequent task-specific adaptation stages contribute
to the energy cost that are addressed in Sect. III.

A. Model-Agnostic Meta-Learning (MAML)

Meta-learning operates at a higher level of abstraction
[10] compared with conventional supervised learning. It uses
randomly sampled observations from different tasks to identify
a single model Wτ such that, once deployed, few training
steps are needed to adapt the meta-model to the new task(s)
of interest. As seen in Fig. 1, MAML is implemented at the
server upon the collection of random data Ei,k from Q training
tasks τi ∈ Qτ over the uplink. The meta-model is optimized
as

Wτ = argmin
W

∑
τi∈Qτ

Li(W), (2)

and solved iteratively via gradient-based optimization over
multiple meta-learning rounds (i.e., MAML rounds).

Each MAML round is divided into two phases, namely
the task-specific training stage, followed by the meta-model
update stage. During task-specific training stage, Q model
adaptations φt,τi are obtained for each training task τi ∈ Qτ

using a sub-set E(a)i,k of the training data E(a)i,k ⊂ Ei,k and the
Stochastic Gradient Descent (SGD) algorithm. For iteration
t > 0 with random initialization at t = 0 and training task τi
it is

φt,τi = Wt,τ − µ×
∑
k∈Ci

∇Wt,τ
Lk(Wt,τ |E(a)i,k ), (3)

where µ is the SGD step size while ∇Wt,τLk is the gradient
of the loss function in (1) w.r.t. the meta-model Wt,τ . The
subsequent meta-model update stage obtains an improved
meta-model Wt+1,τ for the next iteration t+1 that is trained
over the remaining samples E(b)i,k := Ei,k \ E(a)i,k (validation
samples),

Wt+1,τ = Wt,τ − η ×
Q∑
i=1

∑
k∈Ci

∇Wt,τLk

[
φt,τi |E

(b)
i,k

]
. (4)

Notice that the vector∇Wt,τLk

[
φt,τi |E

(b)
i,k

]
requires gradient-

through-gradient operation thus increasing the computational
costs [9]. In particular, it is

∇Wt,τ
Lk

[
φt,τi |E

(b)
i,k

]
= JWt,τ

[
φt,τi

]
×∇φt,τi

Lk

[
φt,τi |E

(b)
i,k

]
(5)

where JWt,τ

[
φt,τi

]
is the Jacobian operator while φt,τi =

φt,τi(Wt,τ ) is defined in (3). First-order approximation of
JWt,τ

[
φt,τi

]
≈ I is often used [8]; in this case, (5) simplifies

as ∇Wt,τ
Lk

[
φt,τi |E

(b)
i,k

]
≈ ∇φt,τi

Lk

[
φt,τi |E

(b)
i,k

]
.

In what follows, the meta-optimization (4) is implemented
for t0 MAML rounds Wτ

∼= Wt0,τ . As analyzed in the fol-
lowing, the energy footprint of meta-optimization is primarily
ruled by the number of rounds t0 as well as the number of
training tasks Q chosen by the meta-optimizer.
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B. Task-specific adaptation via FL network

Model adaptation uses a decentralized FL implementation
[6]. Each device k hosts a model initialized at time t = 0 using
the meta-model Wt0,τ , therefore W

(k)
0,τi

= Wt0,τ . The local
model W

(k)
t,τi is then updated on consecutive rounds t > 0

using new data/examples Ei,k drawn from possible new tasks
τi and then shared with neighbor devices to implement average
consensus [21]. Defining Nk,i ⊆ Ci as the set that contains N
neighbors of node k ∈ Ci, at every new round (t > 0) each
k-th device updates the local model as

W
(k)
t+1,τi

←W
(k)
t,τi +

∑
h∈Nk,i

σk,h · (W(h)
t,τi −W

(k)
t,τi), (6)

where the weights σk,h = |Ei,h| /
∑

j∈Nk,i
|Ei,j |, computed us-

ing the size of the data distributions |Ei,h| and
∣∣∣{Ei,j}j∈Nk,i

∣∣∣,
are defined as in [5]. The local model update and the consensus
steps are repeated until Wτi = lim

t→∞
W

(k)
t,τi , ∀k ∈ Ci, or a

desired training accuracy is obtained.

C. Reinforcement learning problem

In the following, we consider, as an experimental case
study, a Deep Reinforcement Learning (DRL) problem and
off-policy training1: for task τi, the training dataset Ei,k :=
(xh,i, yh,i, rh,i,xh+1,i, yh+1,i, rh+1,i, ...) contains state (xh,i),
action (yh,i), and reward (rh,i) time-domain sequences, that
generally depend on the chosen problem τi to be solved. A
specific example2 is given in Sect. IV. In RL jargon, for each
task τi, the problem we tackle is to learn a policy ŷh+1,i =
πi(xh,i) that chooses the best action ŷh+1,i to be taken at time
h+1 given the observation xh,i at time h. We implemented a
Deep Q-Learning (DQL) method: therefore, the policy is made
greedy with respect to an optimal action-value function [14]
q∗πi

(xh,i, yh,i), such that πi(xh,i)
.
= argmaxy q

∗
πi
(xh,i, y).

The function q∗πi
(Q-function) predicts the expected future

rewards for each possible action using the observations xh,i

as inputs. The Q-function q∗πi
is parameterized by a Deep

Neural Network (DNN) model qπi
(xh,i, yh,i|Wτi) and learned

to minimize the loss function

ℓ(xh,i|Wτi) =

[
rh,i + νmax

y
(q̃πi

)− qπi
(xh,i, y|Wτi)

]2
,

(7)
according to the Bellman equation, with ν = 0.99 being the
discount factor and q̃πi

a target Q-function network according
to the double learning implementation [15].

The meta-learning process obtains a meta-model Wτ , so-
lution to (2), that best represents the optimal Q-function set{
q∗πi

,∀i s.t. τi ∈ Qτ

}
. Next, the parameters Wτ could be

quickly adapted during the task-specific adaptation (t > t0)
to approximate a specific Q-function q∗πi

solving a (new or

1A random ε-greedy policy is used for gathering experience in the envi-
ronment which is independent from the policy πi being learned to solve the
selected task. Other setups are also possible.

2In the considered case study, only the rewards values rh,i are task-
dependent, observations while actions follow the same ε-greedy policy.

unvisited) task τi, i.e.,τi /∈ Qτ . Notice that, during the meta-
optimization stages, the training data Ei,k for Q selected
tasks are moved to the data center at each round using
UL communication. Instead, during task-specific adaptation,
devices from the same cluster Ci implement decentralized
FL and exchange the parameters Wτi of their estimated Q-
function, rather than the training sequences: the data-center is
thus not involved since devices communicate via sidelinks. In
what follows, the average running reward R =

∑
h ν

hrh,i is
chosen as the accuracy indicator for each task.

III. ENERGY AND COMMUNICATION FOOTPRINT MODEL

The total amount of energy consumed by the MTL process
is broken down into computing and communication [5]. Both
the data center (k = 0) and the devices (k > 0) contribute
to the energy costs, although data center is used for meta-
model optimization and inductive transfer only. The energy
cost is modelled as a function of the energy E

(C)
k required

for SGD computation, and the energy E
(T)
k,h per correctly

received/transmitted bit over the wireless link (k, h). The cost
also includes the power dissipated in the RF front-end, in
the conversion, baseband processing and other transceiver
stages [5]. In what follows, we compute the energy cost
required for the optimization of the meta-model (ML) and
the task-specific model adaptation (FL), considering M tasks.
Numerical examples are given in Sect. IV.

A. Meta-learning and task-specific adaptation

Training of the meta-model Wτ runs for t0 rounds inside
the data center k = 0. For each round, the data center: i)
collects new examples Ei,k from Q training tasks; ii) obtains
Q model adaptations (3) using data batches E(a)i,k ⊂ Ei,k, and
iii) updates the meta-model for a new round by computing Q

gradients (4) using batches E(b)i,k ⊂ Ei,k. In particular, the cost
of a single gradient computation E

(C)
0 = P0 · T0 on the data

center depends on the GPU/CPU power consumption P0 and
the time span T0 required for processing an individual batch
of data. Defining B

(a)
i and B

(b)
i as the number of data batches

from the training sets E(a)i,k and E(b)i,k , respectively, the total,
end-to-end, energy (in Joule [J]) spent by the MAML process
is broken down into learning (L) and communication (C) costs

EML(t0, Q) = E
(L)
ML(t0, Q) + E

(C)
ML(Q). (8)

For t0 rounds and Q task examples, it is

E
(L)
ML(t0, Q) = γ · t0 ·

∑Q
i=1

∑
k∈Ci

[
B

(a)
i + βB

(b)
i

]
E

(C)
0

E
(C)
ML(Q)= t0

∑Q
i=1

∑
k∈Ci

b(Ei,k)E(T)
k,0 +

∑K
k=1 b(W)E

(T)
0,k
(9)

where the sum
∑Q

k=1

∑
k∈Ci

B
(a)
i E

(C)
0 quantifies the en-

ergy bill for Q task-specific adaptations in (3), β ·∑Q
i=1

∑
k∈Ci

B
(b)
i E

(C)
0 accounts for the meta-model update,

and β ≥ 1 includes the cost of the Jacobian computation
(β = 1 is assumed under first-order approximation). γ is
the Power Usage Effectiveness (PUE) of the considered data
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center [18]. UL communication of training data Ei,k has cost∑Q
i=1

∑
k∈Ci

b(Ei,k)E(T)
k,0 that scales with the data size b(Ei,k).

DL communication
∑K

k=1 b(W)E
(T)
0,k is required to propagate

the meta-model Wt0,τ to all devices: b(W) quantifies the size
(in Byte) of the meta-model trainable layers.

Task-specific model adaptations (t > t0) are implemented
independently by the devices in each cluster Ci using the same
meta-model Wt0,τ as initialization and the FL network. The
energy footprint for adaptation over the task τi (i = 1, ...,M )
could be similarly broken down into learning and communi-
cation costs [5] as

EFL(ti) = E
(L)
FL (ti) + E

(C)
FL (ti) (10)

with

E
(L)
FL (ti) = ti ·

∑
k∈Ci

BiE
(C)
k

E
(C)
FL (ti) = b(W)

[
ti ·

∑
k∈Ci

∑
h∈Nk,i

E
(T)
k,h

]
.

(11)

ti is the required number of FL rounds to achieve the assigned
average running reward R for the corresponding task, and
Bi is the number of data batches from the training set Ei,k
(now collected for task-specific model adaptation). Notice that
E

(T)
k,h represent the energy spent for sidelink communication

between device k and device h ∈ Nk,i in the corresponding
neighborhood. When sidelink communication is not available,
direct communication can be replaced by UL and DL com-
munications, namely E

(T)
k,h = E

(T)
k,0 + γ ·E(T)

0,h , where γ is the
PUE of the BS or router hardware (if any).

B. Tradeoff analysis in energy-constrained networks

In what follows, we analyze the tradeoffs between meta-
optimization at the server and task-specific adaptation on the
devices targeting sustainable designs. As previously intro-
duced, MAML requires high energy costs EML (8) for moving
data over UL. On the other hand, it simplifies subsequent task-
specific model adaptations, reducing the energy bill EFL on
the devices. Communication and computing costs constitute
the key indicators for such optimal equilibrium: to simplify the
analysis of (8)-(9) and (10)-(11), energy costs are expressed ∀k
as efficiencies (bit/Joule) for uplink EUL = 1/E

(T)
k,0 , downlink

EDL = 1/E
(T)
0,k , and sidelink ESL = 1/E

(T)
k,h communications

[5], as well as for computing (gradient per Joule or grad/J
for short) on the data center E0 = 1/E

(C)
0 and for each

k-th devices EC = 1/E
(C)
k . The problem we tackle is the

minimization of the total energy cost E required for the joint
learning of M tasks,

E = EML(t0, Q) +
M∑
i=1

EFL(ti). (12)

Besides communication and computing efficiencies, the energy
budget (12) depends the required number of MAML rounds t0
and the training tasks Q chosen for meta-optimization, as well
as on the final accuracy, namely the number ti of FL rounds
implemented by the devices for task-specific refinements.

TABLE I
MAIN SYSTEM PARAMETERS FOR ENERGY FOOTPRINT EVALUATION ON

THE DATA CENTER (MAML) AND ON-DEVICES (FL).

Parameters Data center (k = 0) Devices (k ≥ 1)

Comp. Pk: 590W (350W GPU) 5.1W (CPU)

Batch timeTk: 20 ms 400 ms

Batches B: B
(a)
i ,B

(b)
i = 10 Bi = 20

Raw data size: Q · b(Ei,k) MB b(Ei,k) ≃ 24.6 MB

Model size: b(W) = 5.6 MB b(W) = 5.6 MB

PUE γ: 1.67 1

Comp. EC: 0.03 grad/J 0.16 grad/J

IV. APPLICATION: DEEP REINFORCEMENT LEARNING

The considered multitask DRL setting is depicted in Fig.
2(a). Here, the agents are low-payload crawling robots orga-
nized into clusters: the robots in each cluster can cooperate (via
sidelink communications) to learn a specific task. In particular,
each cluster Ci is made up of 2 robots that collaborate to learn
an optimized sequence of motions (i.e., actions) to follow an
assigned trajectory τi, namely, the task. A robot in cluster Ci
that follows the trajectory τi correctly has fulfilled the assigned
task. To simplify the setup, the trajectories followed by robots
in each cluster are chosen from M = 6 pre-assigned ones, as
shown in Fig. 2(b). All trajectories have visible commonalities,
i.e. a common entry point, but with different exits (or paths to
follow) and are all implemented inside the same environment.

The robots can independently explore the environment to
collect training data, namely state-action-reward sequences
Ei,k. However, the motion control problem is simplified by
forcing all robots to move in a 2D regular grid space consisting
of 40 landmark points. The action space (yh,i) thus consists
of 4 motions: Forward (F), Backward (B), Left (L), and Right
(R). While moving in the grid space, each robot collects
state observations (xh,i) obtained from two on-board cameras,
namely a standard RGB camera and a short-range Time
Of Flight (TOF) one [22]. Table I summarizes the relevant
parameters for energy consumption evaluation. The datasets
used for the DRL process and the meta-learning system are
found in [16]. Notice that the computing energy of the data
center and the devices, namely Pk and EC, are measured
from the available hardware. On the other hand, we quantify
the estimated energy costs of meta-learning and FL stages
by varying the communication efficiencies EUL,EDL,ESL.
Since real consumptions may depend on the specific protocol
implementation and be larger than the estimated ones, we will
highlight the relative comparisons.

A. Multi-task learning and networking setup

Each task τi is described by a position-reward lookup table
that assigns a reward value for each position in the 2D grid
space, according to the assigned trajectory. Maximum reward
trajectories for each of the M = 6 tasks are detailed in
Fig. 2(b). Note that robots get a larger reward whenever they
approach the desired trajectory characterizing each task.
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Fig. 2. MTL case study. From left to right: (a) crawling robot deployment for data collection; (b) max-reward trajectories corresponding to the M = 6 tasks;
(c) trajectories/tasks used for MAML-based meta-model training.

The DeepMind model [14] is here used to represent the pa-
rameterized Q-function qπ(x, y|W) for DQL implementation:
it consists of 5 trainable layers, and 1.3 M parameters with size
b(W) = 5.6 MB. The data center is remotely located w.r.t.
the area where the robots are deployed so that communication
is possible via cellular connectivity (UL/DL). The data center
is equipped with a CPU (Intel i7 8700K, 3.7 GHz) and a GPU
(Nvidia Geforce RTX 3090, 24GB RAM). The robots mount a
low-power ARM Cortex-A72 SoC and thus experience a larger
batch time Tk, but a lower power Pk as reported in Table I.
In the following, we assume that the robots can exchange the
model parameters via SL communication implemented by the
WiFi IEEE 802.11ac protocol [23].

In each MAML round (described in Sect. II), the data
center collects observations Ei,k for Q = 3 training tasks
(τ1, τ2, τ6), as depicted in Fig. 2(c). The training observations
Ei,k := (x1,i, y1,i, r1,i, ...,x20,i, y20,i, r20,i) are obtained from
3 robots and have size b(Ei,k) ≃ 24.6 MB as corresponding
to 20 consecutive robot motions (using an ε-greedy policy
with ε = 0.1). The training data are published to the data
center via UL with efficiency EUL by using the MQTT
transport protocol. The MQTT broker is co-located with the
robots, while the data center retrieves the training sequences
by subscribing to the broker. Task-specific adaptation via FL
requires the robots in each cluster to mutually exchange the
model parameters on each round using SL with efficiency
ESL. The MQTT payload is defined in [17] and includes: i)
the local model parameters W

(k)
t,τi that are binary encoded;

ii) the corresponding task τi description; iii) the FL round ti
or learning epoch; iv) the average running reward R. For all
tasks, the number of FL rounds ti is selected to achieve the
same average running reward of R = 50 that corresponds to
learned trajectories with Root Mean Squared Errors (RMSE)
between 0.5 m and 1 m from the desired ones.

Fig. 3. Energy footprints and communication/learning rounds. From top
to bottom: (a) Energy footprint for MAML EML(t0), and subsequent task
adaptations EFL(ti), i = 1, ..., 6 (orange bars), compared with FL without
MAML (blue bars). (b) Communication and learning rounds required for
MAML optimization (t0 = 210 rounds on the data center) and for specific
tasks ti, i = 1, ..., 6 (orange bars), compared with FL without MAML (blue
bars). Note that the MAML energy cost per round in the data center (first bar
from left to right) is higher than the one on the devices.

B. FL vs. MAML: energy, communication and learning rounds

Considering M = 6 selected tasks, Fig. 3(a) shows the en-
ergy costs required for MAML optimization on the data center,
and for the subsequent task-specific adaptations τ1, ..., τ6. Fig.
3(b) depicts the corresponding number of rounds (ti) required
to achieve the running reward of R = 50. Other learning
parameters are defined in Table I. In particular, we consider
a communication system characterized by EUL = 200 kb/J
and ESL = 500 kb/J, in line with typical WiFi IEEE 802.11ac
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Fig. 4. Impact of MAML rounds t0 on MTL for varying communication
efficiencies. From top to bottom: (a) impact of MAML rounds t0 on the meta-
learning energy EML (diamond markers), task adaptations

∑M
i=1 EFL(ti)

(squared markers), and total energy budget E in (12) in dashed lines. Black
lines assumes D2D/mesh communications ESL = 500 kb/J more efficient
than UL, EUL = 200 kb/J, while red lines assume the opposite. (b) impact
of t0 on the number of FL rounds ti required for task τ1, ..., τ6 adaptations.

implementations [23], [24]. All results are considered by aver-
aging over 15 different Monte Carlo simulations using random
model initializations (for both MAML meta-optimization and
subsequent FL). For the considered MAML scenario (orange
bars), the meta-model Wt0,τ optimization runs on the data
center for t0 = 210 rounds. Wt0,τ is then transferred to
the robots for task adaptation using decentralized FL (6) over
SL communications. In the same figure, the energy footprints
and the learning rounds are compared to those obtained with
a conventional approach (blue bars) where neither inductive
transfer nor MAML are implemented, while tasks are learned
independently by robots using decentralized FL [5] with local
models randomly initialized (blue bars).

MAML optimization is energy-hungry (with energy cost
quantified as EML = 74 kJ) as it requires a significant use of
UL resources for data collection over many learning rounds

FL rounds ti per tasks τi, i = 1, .., 6
t1 t2 t3 t4 t5 t6

M
A

M
L

ro
un

ds

t0 = 0
380.1 129.6 93.7 211.5 24.2 82.4(no MAML)

t0 = 42 29.7 56.4 70.9 87 70.4 57.1
t0 = 66 178.8 9.9 14.3 104.6 9.8 12.4
t0 = 90 84.9 8.9 15.6 166.2 11.3 19.6
t0 = 132 11.6 25.5 25.1 44.6 23.1 23.8
t0 = 210 6.7 29.1 16.5 27.7 32 17.2
t0 = 240 2.7 10.8 9.1 40 21.8 19.6

TABLE II
AVERAGE NUMBER OF FL ROUNDS ti FOR TASKS τ1, ..., τ6 , AND VARYING
t0 AS SHOWN IN FIG. 4(B). AVERAGE VALUES W.R.T. 15 MONTE CARLO

RUNS.

(t0 = 210 in the example) to produce the meta-model. On
the other hand, as reported in Fig. 3(b), task adaptations use
few learning rounds/shots ti for model refinements, namely
ranging from t1 = 7 to t5 = 32, reducing the robot energy
footprints up to 10 times for all tasks, i.e., EFL(t1) = 1.6 kJ,
and EFL(t5) = 7.9 kJ. Decentralized FL without inductive
transfer unloads the data center and requires marginal use
of UL communication resources. However, considering the
same tasks, it requires much more FL rounds (from t5 = 24
to t1 = 380) to converge compared with MAML approach.
Interestingly, using MAML inductive transfer for learning
of task/trajectory τ5 provides marginal benefits: this might
be due to the fact that learning of the specific task τ5
marginally benefits from the knowledge of the meta-model.
Overall, the total energy bill required to learn all the 6 tasks
through MAML and FL for subsequent task adaptation is
quantified as E = EML +

∑6
i=1 EFL(ti) = 106 kJ. This

is approx. two times lower than the energy cost of learning
each task separately using only FL with no inductive transfer
E =

∑6
i=1 EFL(ti) = 227 kJ.

C. MAML optimization and task adaptation tradeoffs

Balancing MAML optimization on the data center, with
task-specific adaptations on the devices, is critical to improve
efficiency. As analyzed previously, MAML requires an initial
high energy cost for moving data on the UL over t0 rounds;
on the other hand, it simplifies subsequent task-specific model
adaptations, reducing the energy bill for all tasks. Considering
the same setting previously analyzed, Fig. 4 provides an
in-depth analysis of MAML and FL tradeoffs, for varying
communication efficiencies. In particular, in Fig. 4(a), we
analyze the impact of MAML rounds t0, namely the split point
between the meta-model and task-specific adaptation, on the
meta-learning energy cost EML (diamond markers), on the
subsequent task adaptations

∑M
i=1 EFL(ti) (squared markers),

and on the total energy budget E (12) indicated in dashed
lines. In Fig. 4(b) and Tab. II, we quantify the corresponding
number of rounds ti required for task τ1, ..., τ6 adaptations and
varying t0. We consider varying number of MAML rounds,
namely t0 := {42, 66, 90, 132, 210, 240}, each mapping onto
a different number of SGD rounds for task-specific training (3)
and meta-model update (4) stages implemented on the server.
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In line with the results in Fig. 3, for the considered settings,
the use of meta-learning (t0 > 0) generally cuts the energy
bill by least 2× in all setups. Increasing the number of rounds
t0 on the data center improves the meta-model generalization
capabilities and, as a result, reduces the energy cost (Fig. 4(a))
required for task adaptations

∑M
i=1 EFL(ti) and the number

of FL rounds ti (Fig. 4(b)). On the other hand, moving data
on the cloud for many rounds increases the cost of MAML
optimization EML.

A judicious system design taking into account both MAML
and task adaptation energy costs could bring significant energy
savings. In Fig. 4(a) we thus highlight the optimal number
of rounds t0 required to minimize the total energy budget
(12). Optimal MAML rounds depend on the uplink/sidelink
communication costs: for example, when ESL = 500 kb/J
and EUL = 200 kb/J (black lines), the number of MAML
rounds should be limited to t0 = 42, with mint0E = 56 kJ.
On the opposite, more efficient UL than SL communications,
namely EUL = 500 kb/J and ESL = 200 kb/J (red lines),
call for a larger number of MAML rounds (t0 = 132) to
reduce the FL costs with mint0E = 52 kJ. Besides energy
costs, Table II analyzes in more detail the impact of t0 on
the number of FL rounds/shots ti required for tasks τ1, ..., τ6
adaptations. The required rounds for task learning without
inductive transfer (t0 = 0) sum to

∑L
i=1 ti = 910 (Fig. 4(b))

and scale down up to 9 times (
∑L

i=1 ti = 103) using t0
MAML rounds on the data center. Notice that adaptations to
new tasks {τ3, τ4, τ5} /∈ Qτ not considered during meta-model
training require (on average) more rounds

∑
i=3,4,5 ti = 70.9

compared with previously trained tasks {τ1, τ2, τ6} ∈ Qτ ,∑
i=1,2,6 ti = 33.1.

V. CONCLUSIONS

This work developed a novel framework for the energy
footprint analysis of Model-Agnostic Meta-Learning (MAML)
geared towards Multi-Task Learning (MTL) in wireless net-
works. The framework quantifies separately the end-to-end
energy costs when using a data center for the MAML opti-
mization, and the cost of subsequent task-specific model adap-
tations, implemented using decentralized Federated Learning
(FL). We examined novel trade-offs about MAML optimiza-
tion and few-shot learning over resource-constrained devices.
The analysis was validated in a multi-task RL setup where
robots collaborate to train an optimized sequence of motions
to follow different trajectories, or tasks. For the considered
MTL setup, MAML trains multiple tasks jointly and exploits
task relationships to reduce the energy bill by at least two
times compared with FL without inductive transfer. However,
meta-learning requires moving data to the cloud for many
rounds as well as larger computing costs. In many cases,
the energy benefits of MAML also vary from task to task,
suggesting the need of optimized MAML stages taking into
account the specific commonalities among the tasks, including
possible unseen ones. Finally, depending on communication
efficiencies, a judicious design of the number of MAML
rounds is critical to minimize the amount of data moved to

the cloud. Communication and learning co-design principles
are expected to further scale down the energy footprints.
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