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ABSTRACT

Industrial Internet-of-Things (IIoT) involve multiple groups of sensors, each group sending its
observations on a particular phenomenon to a central computing platform over a multiple access
channel (MAC). The central platform incorporates a decision fusion center (DFC) that arrives at
global decisions regarding each set of phenomena by combining the received local sensor decisions.
Owing to the diverse nature of the sensors and heterogeneous nature of the information they report,
it becomes extremely challenging for the DFC to denoise the signals and arrive at multiple reliable
global decisions regarding multiple phenomena. The industrial environment represents a specific
indoor scenario devoid of windows and filled with different noisy electrical and measuring units. In
that case, the MAC is modelled as a large-scale shadowed and slowly-faded channel corrupted with a
combination of Gaussian and impulsive noise. The primary contribution of this paper is to propose
a flexible, robust and highly noise-resilient multi-signal transmission framework based on Wavelet
packet division multiplexing (WPDM). The local sensor observations from each group of sensors are
waveform coded onto wavelet packet basis functions before reporting them over the MAC. We assume
a multi-antenna DFC where the waveform-coded sensor observations can be separated by a bank of
linear filters or a correlator receiver, owing to the orthogonality of the received waveforms. At the
DFC we formulate and compare fusion rules for fusing received multiple sensor decisions, to arrive
at reliable conclusions regarding multiple phenomena. Simulation results show that WPDM-aided
wireless sensor network (WSN) for IIoT environments offer higher immunity to noise by more than
10 times over performance without WPDM in terms of probability of false detection.

1 Introduction

Industrial Internet-of-Things (IoT)/Industry 4.0 conceptually will interconnect everything within an industry, including
employees, machines and products. They will interact with each other to ensure seamless production without any
human intervention. The idea is to deploy different kinds of sensors and related devices that will collect information
regarding customer requirements, conditions of the operating machines, and the surrounding conditions in which they
operate. Through groups of heterogeneous sensors, machines will communicate among themselves through a virtual
social network and will communicate with human beings (managers, owners, customers) through an actual digital
network [1–3].

Deploying a large-scale wireless sensor network (WSN) that can enable the deployment of industrial IoT is extremely
challenging owing to different factors. All sensors have to transmit their decisions simultaneously over a multiple
access channel (MAC) to a decision fusion center (DFC) owing to limited bandwidth and as a result, the DFC receives a
superposition of heterogeneous sensor decisions [4]. Such superposition results in interfering sensor signals corrupted
with noise. Besides, the wireless MAC suffers from random time-varying fading and shadowing [5]. Additionally,
industrial environment is different from traditional indoor environments like homes, offices and buildings. Owing to the
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large dimensions and presence of noisy instruments and machines, industrial environments suffer from impulsive noise
in addition to background and electronic Gaussian noise [6].

In order to combat the above-mentioned challenges concomitant with large-scale industrial sensing networks, we
propose a robust wireless sensor communication system that combines wavelet packet division multiplexing (WPDM)
on the transmit side with distributed multi-antenna based decision fusion (DF) on the receive side. Implementing
WPDM has been recommended in [7, 8] for providing substantial immunity to both impulsive and Gaussian noise.
Furthermore, deploying multiple antennas at the DFC can improve fusion performance over deep faded and shadowed
MAC [9, 10]. Therefore, combining WPDM and multi-antenna DF can provide considerable reduction in vulnerability
to noise, fading and shadowing in a large-scale industrial sensing network.

The primary contribution of this paper is to propose i) waveform coding of local sensor observations from each group
of sensors onto wavelet packet basis functions before transmitting them over wireless MAC and ii) fusing the decisions
at multi-antenna DFC using linear filter-bank or correlator receiver for separating the received waveform-coded sensor
observations, with the aim of incorporating resilience to noise, fading and shadowing. Another major contribution of
the paper is to evaluate the performance of our proposed system against a realistic industrial environment, which suffers
from a combination of Gaussian distributed additive background noise and impulsive noise. We formulate impulsive
noise as either Middleton Class A distributed or Bernoulli-Gaussian distributed [11, 12]. Local sensor decisions from
each sensor group within an industrial sensing environment are coded with wavelet packet basis functions, and each
group is waveform-coded at each level of binary tree structure thereby formulating a WPDM system. The WPDM
multiplexed signals are transmitted over the MAC to a DFC equipped with multiple antennas. At the DFC, we formulate
linear multi-rate filter-based optimum and sub-optimum fusion rules generalized to the WPDM set-up. Performance of
our formulated system is simulated and compared for three different wavelet scaling functions [13], Haar, Shannon and
Piecewise linear spline, in presence of varying degrees of impulse noise.

The rest of the paper is organized as follows. Section II introduces the system design, Section III formulates the filters
and the fusion rules, Section IV analyzes performance of our proposed system, while concluding remarks are provided
in Section V.

2 System Design

The infographic representation for a large-scale industrial sensing network consisting of heterogeneous sensor groups is
provided in Fig. 1. We assume that there are different groups of sensors; z ≜ {1, . . . , Z}. For example, one group of
sensors could be mobility sensors reporting if there is a moving target or not, another group could sense if a certain
harmful chemical is present or not, another group could sense if carcinogenic material like asbestos is present or not etc.
Each of the Z sensor groups transmit their observations to a DFC equipped with N antennas. The observations are
waveform coded onto wavelet packet basis functions, thereby implementing a wavelet packet division multiplexing
(WPDM) structure.

2.1 System Model

We design a binary tree structure with L number of levels such that Z = 2L or L = log2 Z. If Z is odd, then
L = ⌈log2 Z⌉, where ⌈⌉ denotes the ceiling function. Let us also assume that the zth sensor group consists of M
transmit sensors (m ≜ {1, . . . ,M}). Each of the M sensors in each group transmits its independent observation
over a Tl symbol duration using a time division multiplexed system, where l is the level of the binary tree structure
of the WPDM system, l ≥ 0; l ≜ {1, . . . , L}. Here Tl = 2lT0 where T0 is the time interval between symbols. It is
worth-mentioning here that the tree can be pruned and developed depending on the total number of sensor groups
present.

An example scenario with Z = 4 sensor groups is presented in the inset of Fig. 1. In Fig. 1, ϕlz,m is the family of
scaling functions derived from the family of wavelets such that these functions form the terminals (leaves) of the tree.
These functions can also be referred to as the wavelet packet basis function or simply a wavelet packet. For a given tree
structure, the scaling function, ϕlz,m can be constituted using,

Φz
l = [ϕlz,1, ϕlz,2, . . . , ϕlz,M ] =

Q∑
q=1

fzl [q] ϕ00(qT0) (1)

where fzl [q] = [fzl1[q], f
z
l2[q], . . . , f

z
lM [q]] is the equivalent sequence filter built from the combination of the up-sampling

and down-sampling finite impulse response (FIR) filters [14] and ϕ00 is the root of the tree structure. It is worth-
mentioning here that Φz

l functions are self and mutually orthogonal at integral multiples of Tl and have a finite
duration.

2



fl1[Q]
z

fl1[1]
z

Ʃ

flM[Q]
z

BPSK

Sensor 1 (PD,l1,PF,l1)
xz

l1 sz
l1

BPSK

flM[1]
z

Sensor M (PD,lM,PF,lM)
H0/H1

wavelet
packet
recons-
truction

Decision Fusion Center

^Yz
l

λz
l

Decision fusion with 
linear filter bank

z z

z z

xz
lM

sz
lM

Yz
l

Ʃ

fl[-q]
z

Sensor 1 
processing

Sensor M 
processing

Ʃ

rz
l1

rz
lM

Φ1
1

ϕ00 Level 0

Level 1

Level 2

Φ2
1

Φ3
2 Φ4

2

An example binary tree with Z = 4

Figure 1: Representation of WPDM-aided large-scale industrial sensing network with sensors belonging to the zth
group sending their observations to a multi-antenna aided DFC.

Each of the M sensors in the zth sensor group sends its local observation based on a binary hypothesis test, i.e.
Hz

l1, if the intended target is present, and Hz
l0 if it is absent or at a level below the recommended threshold. The

individual sensor observations are mapped onto a binary phase shift keying (BPSK)-modulated symbol, such that,
xzlm ≜ {+1,−1}. Here the mth sensor observation to a zth group is mapped onto the lth level of the binary tree such
that,

szlm = xzlm

Q∑
q=1

K∑
k=1

fzlm[k] ϕ00((Zq + k)T0) (2)

where 1 ≤ K ≤ Q/2; Q is the (even) total number of filter coefficients, and K is the total number of zeros of
the FIR filter, F z

lm(ζ) at ζ = −1 where F z
lm(·) is the Z-transform of fzlm[·]. Therefore, szlm = xzlmσ

z
lm[k, q] where

σz
lm[k, q] =

∑Q
q=1

∑K
k=1 f

z
lm[k] ϕ00((Zq + k)T0) which makes up the encoded set of sensor decisions on the lth level

as,

szl ≜ [szl1, s
z
l2, . . . s

z
lM ]t = [xzl1σ

z
l1[k, q], . . . , x

z
lMσ

z
lM [k, q]]t. (3)

Owing to the orthogonality between the wavelet packet basis functions Φz
l , different groups of sensors (z ≜ {1, . . . , Z})

can be time division multiplexed, while arrays can be implemented at the DFC for fusing sensor observations and
obtaining a final decision (refer to Fig. 1). At the (l, z)th terminal (the zth group of sensors at the lth level), szl is
time-multiplexed with other (Z − 1) group of sensors to be communicated over the wireless channel. The bandwidth of
the channel is however assumed to be sufficiently large as not to cause any significant distortion of the waveform of the
transmitted sensor observations.

2.2 Signal and Channel Models

The signal received at the DFC can be written in the discrete-time matrix form over the lth level as,

Yz
l =

√
ρlG

z
l s

z
l + ezl ≜ [yzl1, y

z
l2, . . . y

z
lM ]t (4)

where Yz
l is the received signal vector from the zth group of sensors that has been mapped on the lth level, Gz

l

is the channel matrix between the zth group of sensors and the DFC, ezl ∼ NC
(
0N×Tl

, Σ2
eIN×Tl

)
is the noise

vector and NC(µ, φ) denotes complex normal distribution with mean µ and co-variance φ. Here ezl accounts for
heterogeneous noise encountered in industrial environment including both impulsive and Gaussian noise. Therefore,
Σ2

e = Σ2
w +

∑5
γ=1 Σ

2
I/γA for Middleton Class A noise and Σ2

e = Σ2
w +MΣ2

I/ϱ for Bernoulli-Gaussian distributed
noise, where Σ2

w is the variance of the Gaussian noise and Σ2
I is the variance of the impulsive noise, A = ητ/τ0,
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if the impulsive noise follows the Middleton Class A distribution, η is the average number of impulses per second,
τ0 is the interval between two impulses, and τ is the average duration of each impulse. If the impulsive noise is
Bernoulli-Gaussian distributed, it will follow that distribution with a probability of ϱ. Each element of the channel
matrix Gz

l is given by gzn,lm =
√
λlmh

z
n,lm with the geometric attenuation and the shadow fading λm and fast fading

coefficients hzn,lm. Consequently, Gz
l = Hz

l

√
Dl ∈ CN×M denotes the matrix of the generic channel coefficients,

Hz
l ∈ CN×M denotes the matrix of the fast fading coefficients, and Dl is a diagonal matrix with dlm,lm = λlm.

At the DFC, by applying a multirate filter bank with filters having impulse responses fzl [−q], a process called wavelet
packet reconstruction, we can arrive at the linearized equivalent received signal model as,

Ŷz
l =

√
ρlĜ

z
l r

z
l Θ̂

z
l [k, q] + ezl (5)

where Ĝz
l is the estimated channel matrix. The DFC estimates the channel state information (CSI), where half of

the coherence interval of the channel is used for training to estimate the channel and establish the frequency and
timing synchronization. A recommended channel estimator is the minimum mean-squared error (MMSE) estimator.
In this paper, we do not separately estimate the channel and calculate the channel estimation error. We just assume
that the channel estimation error is included within Σ2

w, the variance of the Gaussian distributed noise. In (5),
rzl = [rzl1, r

z
l2, . . . , r

z
lM ]t are the recovered sensor observations in order to obtain the equivalent sequence at the root

level l, as, rzl0[k] = xzlm
∑

q f
z
lm[k − Zq]. It is possible to recover the original transmitted mth sensor observation as,

xzlm =
∑

k f
z
lm[k−Zq]rzl0[k]. In (5), Θ̂z

l is the vector of the auto-correlation functions of the wavelet packets at the lth
level, expressed as, Θ̂z

l ≜ [Rϕ(T0 − qT0), Rϕ(2T0 − qT0), . . . , Rϕ(KT0 − qT0)], where Rϕ(·) is the auto-correlation
function of ϕ00((Zq + k)T0).

3 Filters and Fusion

At the DFC, we employ linear filter-based optimum and sub-optimum decision fusion rules, by recovering decision
from each sensor from each group and then fusing them to obtain the final decision for each group of sensors. For
example, the received set of vectors at the DFC, Ŷ 1

1 , Ŷ
2
1 , . . . , Ŷ

Z−1
⌈log2 Z⌉, Ŷ

Z
⌈log2 Z⌉ can be analyzed at the DFC to obtain

a reliable set of decisions; H1
i , H2

i , . . . , HZ
i where i = 1 or 0 depending on the tested scenario.

3.1 Design of Fusion Rules

We start by deriving the optimum fusion rule based on the linear multi-rate filter bank as,

ln
[
p(rzl |Ĝz

l σ̂
z
lm[k, q],Hz

i,l)
]

≈
M∑

m=1

ln
[∑

xm

ψ(rzlm|xzlm)P (xzlm|Hz
i,l)
]

(6)

for parallel access sensor channels [15] where ψ(·|·) is the conditional distribution of individual recovered sensor
decision with respect to the transmitted one. In case of multiple access sensor channel, the log-likelihood ratio
(LLR) [10] of rzl can be approximated as,

Λz
l ≜ ln

[
p(rzl |Ĝz

l σ̂
z
lm[k, q],Hz

1,l)

p(rzl |Ĝz
l σ̂

z
lm[k, q],Hz

0,l)

]
(7)

where ˆσz
lm[k, q] =

∑
q

∑
k f̂

z
lm[k]Rϕ(kT0 − qT0 +∆), Rϕ is the auto-correlation function of ϕ00((Zq + k)T0), P (·)

and P (·|·) are the individual and conditional probability mass functions respectively and p(·) and p(·|·) are the individual
and conditional probability density functions respectively, f̂zlm[k] is the set of modified filter coefficients and ∆ is the
random variable that represents the timing discrepancy between sensor transmissions and reception at the DFC in
absence of any synchronization between them. Since ∆ varies slowly over a group of symbols, a constant timing error
is visible. Equation (7) can then be expressed as,

Λz
l ≈

M∑
m=1

ln

[
ψ(rzlm|xzlm = 1)P z

D,lm + ψ(rzlm|xzlm = −1)(1− P z
D,lm)

ψ(rzlm|xzlm = 1)P z
F,lm + ψ(rzlm|xzlm = −1)(1− P z

F,lm)

]
(8)

where P z
D,lm and P z

F,lm are the probabilities of detection and false alarm of the mth sensor on the lth layer, with the
mth sensor belonging to the zth group of sensors.
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Using linear filter bank processing, we can therefore formulate a set of sub-optimum rules such that,

rzl = (Az
l )

†Ŷz
l (9)

where Az
l can be realized using either Matched Filter (MF) or a zero-forcing (ZF) detector and (·)† denotes the conjugate

transpose. In essence,

rzl,MF ≜ (Ĝz
l σ̂

z
lm[k, q])†Ŷz

l

rzl,ZF ≜ (Ĝz
l σ̂

z
lm[k, q])†

(
(Dz

l )
−1
)†
Ŷz

l (10)

where Dz
l = 1

N (Ĝz
l σ̂

z
lm[k, q])†(Ĝz

l σ̂
z
lm[k, q]) is a diagonal matrix for N >> M .

3.2 Performance Measures

If we assume that P (Ŷz
l |Ĝz

l σ̂
z
lm[k, q],Hz

i,l) is Gaussian mixture distributed, then we can express rzl |Ĝz
l σ̂

z
lm[k, q],Hz

i,l

as Gaussian mixture distributed such that, rzl |Ĝz
l σ̂

z
lm[k, q],xz

l ∼ N
(
E{rzl |Ĝz

l σ̂
z
lm[k, q],xz

l },V{rzl |Ĝz
l σ̂

z
lm[k, q],xz

l }
)

where N (E{·},V{·}) represents normal distribution with mean E{·} and covariance V{·}. Therefore,

rzl,MF|Ĝz
l σ̂

z
lm[k, q],xz

l ∼ N
(
NDz

l

√
ρlx

z
l ,Σ

2
e||NDz

l ||
)

rzl,ZF|Ĝz
l σ̂

z
lm[k, q],xz

l ∼ N
(
N
√
ρlx

z
l ,Σ

2
e||N(Dz

l )
−1||

)
(11)

where xz
l = [xzl1, x

z
l2, . . . , x

z
lM ] is the transmit vector of M sensor observations multiplexed on the lth level of the

wavelet packet binary tree. Now since, p(rzl |Ĝz
l σ̂

z
lm[k, q],xz

l ) ≈
∏M

m=1 ψ(r
z
lm|xzlm), we can express (11) in terms of

individual sensor observations assuming they are independent of each other as,

ψ(rzlm,MF |xzlm) ≜ N
(
Ndzlm

√
ρlx

z
lm,Σ

2
eNd

z
lm

)
ψ(rzlm,ZF |xzlm) ≜ N

(
N
√
ρlx

z
lm, NΣ2

e/d
z
lm

)
(12)

where dzlm is the mth element of Dz
l . From (12), it will be possible to estimate the transmit observations which are

BPSK modulated.

The probability of error in estimating the transmitted sensor observations can be calculated by finding the probability of
error in the final obtained decision on whether a target or phenomenon is present (P z

F1,l) or absent (P z
F0,l) at the lth

level for the zth sensor group. Therefore,

P z
F0,l = lim

N→∞
Q

(
rzl −

√
NDz

l ρlx
z
l /Σe√

1/2(M(1− P z
F,l) + Σ2

e)

)
(13)

where Q(·) is used to denote the complementary cumulative distribution function (CCDF) and P z
F,l is the probability of

wrongly detecting a ‘0’ or absence of a phenomenon or a target.

4 Performance Analysis

Before simulating the performance of our designed WPT aided industrial WSN, we need to decide on the design criteria
of three components; noise model for ezl , the filter coefficients fzlm[q] and the scaling functions for the wavelets ϕlz,m.

4.0.1 Noise Model

The combination of Gaussian and impulsive noise follows the pdf, p(e) = (1−℘)N (0,Σ2
g)+℘N (0,

√
κΣ2

I/A), where
℘ denotes the probability of having an impulsive noise with zero mean and variance

√
κΣ2

I/A, while the probability
of having a Gaussian distributed background noise is (1 − ℘) with zero mean and variance Σ2

g. We also define a
factor Γ = Σ2

g/Σ
2
I = 0.25 implying that the impulsive noise is 25 times stronger than the background Gaussian noise.

The variance of the impulse noise is given by
√
κΣ2

I/A where κ is the Poisson distributed sequence whose pdf is
characterized by the impulse index A. For our case, we choose A = 0.1. For Bernoulli-Gaussian distributed noise, the
combined noise pdf can be modified to p(e) = (1 − ℘)N (0,Σ2

g) + ℘B(ϱ, ςϱ(1 − ϱ)) where B represents Bernoulli
distribution with mean ϱ, variance ϱ(1− ϱ) and ς is the frequency of occurrence of the impulse noise. For our case, we
have ϱ = 0.3.
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Figure 2: Comparative ROC (PD0 v/s PF0 ) of WPDM and DF aided industrial sensing network with different wavelet
scaling functions and fusion rules in presence of Middleton Class A impulse noise with parameters Z = 4,M =
8, N = 64, ℘ = 0.3 at a fixed SNR of 10dB.

4.0.2 Filter Coefficients

For our synthetic system, we choose an FIR filter of length Q = 14 and K = 2. The filter bandwidth B is chosen to be
equal toB =

√
2 such thatK0 = 2K−1−⌈2 log2B⌉ ≥ 1 whereK0 is the number of continuous derivatives of the auto-

correlation functions, Rϕ(·). Using Nyquist sampling rate, the sampling frequency fs, can be calculated as B = fs/2.
Using these information, we calculated the filter coefficients, h[q] = sinc(q − D) and g[q] = (−1)qh[2k + 1 − q]
where D is the total delay of the FIR filters given by D = (Q− 1)/4B, h[q] and g[q] are the filter coefficients for the
two branches of the binary tree structure at each level of the tree (refer to Fig. 1). The filter coefficients h[q] and g[q] for
q = 0, 1, . . . , 13 satisfy the orthonormality and regularity constraints. The equivalent filter coefficients fzlm[q] can then
be built from hzlm[q] and gzlm[q], from which the filter sequence fzl [q] can be built for M sensors belonging to the zth
group of sensors.

4.0.3 Scaling Functions

Three different scaling functions are constructed using standard wavelets from [13]. Performance of our designed
transmission system is simulated using the three scaling functions separately, comparing them to find out the set of
wavelet scaling functions that offers the best fusion performance under different conditions. The wavelet scaling
functions selected are,

Haar : ϕ00(x) = 1 0 ≤ x < 1

Shannon : ϕ00(x) = sinc(x)

Piecewise linear spline : ϕ00(x) = 1− |x| (14)

where ϕ00(x) are the root scaling functions which are fed back to (1) to generate the family of scaling functions to
obtain,

Haar : Φz
l =

Q∑
q=1

fzl [q]; Shannon : Φz
l =

Q∑
q=1

fzl [q] sinc(qT0)

Piecewise linear spline : Φz
l =

Q∑
q=1

fzl [q](1− |qT0|) (15)
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Figure 3: Comparative ROC (PD0
v/s PF0

) of WPDM and DF aided industrial sensing network with different wavelet
scaling functions and fusion rules in presence of Middleton Class A impulse noise with parameters Z = 4,M =
8, N = 64, ℘ = 0.5 at a fixed SNR of 10dB.

Using the scaling functions from (15), we simulate the performance of a WPT aided industrial WSN. Each of theZ sensor
groups are randomly deployed and uniformly distributed in a circular annulus around the DFC with radii φmax = 1000 m
and φmin = 100 m. Within each sensor cluster, M sensors are randomly deployed within a rectangular area (size
of 50m × 100m) following a half-normal distribution [12]. The channel coefficients are log-normal shadowed and
Rayleigh faded such that, hzn,lm ∼ NC(0, diag(Bz

lm)) where λzlm = υlm
(
φmin
φlm

)η
, Bz

lm =
(
βz
lm(0), . . . , βz

lm(qT0)
)t

,
10 log10(υlm) ∼ N

(
µλdB, σ

2
λdB

)
, η is the pathloss exponent, φlm is the distance of the mth sensor from the DFC at

the lth level of the binary wavelet packet tree, ρl = 1/
√
N and {P z

D,l, P
z
F,l} = {0.5, 0.05}.

We generate two sets of figures, (Fig. 2, Fig. 3, Fig. 4) demonstrating receiver operating characteristics (ROC) and
(Fig. 5, Fig. 6, Fig. 7) depicting the probability of false detection against signal-to-noise ratio (SNR) in dB. Both the
set of figures are generated for the configurations, Z = 4,M = 8, N = 64, thereby representing a virtual large-scale
distributed MIMO set-up. In this case, we are considering 4 groups of sensors, each group containing 8 sensors, while
the DFC is equipped with 64 antennas. Therefore, the number of levels of the binary tree, L = log2 Z = log2 4 = 2.
Also the T0 = 10−3 for the interval between BPSK modulated symbols that are transmitted as the sensor observations;
hence Tl = {21T0, 22T0} = {2 × 10−3, 4 × 10−3}. Also the pathloss exponent for the MAC channel is 2, with
(µλ, σλ) = (4, 2) dB representing indoor smart industrial environment [16].

All the figures represent the MAC scenario suffering from different combinations of Gaussian and impulsive noise by
varying ℘ = (0.3, 0.5, 0.7). The performance of the system with Z = 4,M = 8, N = 64 where the sensor observations
are sent over the MAC without being encoded into wavelet packets with maximal ratio combining (MRC) for fusing the
observations at the DFC, is plotted as the benchmark in Fig. 2, Fig. 3, Fig. 4. The benchmark curves are labelled as
‘w/o WPDM+DF’. For ROCs in Fig. 2, Fig. 3 and Fig. 4, three sets of scaling functions are compared, Haar, Shannon
and Piecewise linear spline when two different fusion rules are used, MF and ZF. In all cases, ZF offers better fusion
performance as compared to MF. The SNR is fixed at 10 dB. Fig. 2, ℘ = 0.3 depicts a condition where the impulse noise
is low with higher background Gaussian noise. In this case, all the three wavelet functions perform very close to each
other and in such a condition, the Haar scaling function can be preferred over the others owing to its low computational
complexity. In Fig. 3, ℘ = 0.5, presents a condition with equal amount of Gaussian and impulse noise. Piecewise
linear spline function offers the best performance. The reason can be attributed to the fact that spline wavelets are
formed by linear combination of B-splines [13] and inherit the properties of the basis functions that form the wavelets.
Therefore, they are suitable for isolating noise from the original signal depending on the application scenario. In Fig. 4,
impulse noise is higher than the Gaussian noise (℘ = 0.7). In this case, the Shannon wavelet performs best, as with
complex-valued wavelets based on sinc, it is highly successful in denoising heterogeneous sensor observation signals.
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Figure 4: Comparative ROC (PD0
v/s PF0

) of WPDM and DF aided industrial sensing network with different wavelet
scaling functions and fusion rules in presence of Middleton Class A impulse noise with parameters Z = 4,M =
8, N = 64, ℘ = 0.7 at a fixed SNR of 10dB.

Figure 5: Comparative probability
of erroneous/false detection as a
function of SNR (dB) for ZF-based
fusion applied to a WPDM-aided
(Z = 4,M = 8, N = 64) in-
dustrial sensor network with differ-
ent wavelet scaling functions when
the impulse noise (℘ = 0.3) is ei-
ther Middleton Class A or Bernoulli-
Gaussian distributed.

Figure 6: Comparative probability
of erroneous/false detection as a
function of SNR (dB) for ZF-based
fusion applied to a WPDM-aided
(Z = 4,M = 8, N = 64) in-
dustrial sensor network with differ-
ent wavelet scaling functions when
the impulse noise (℘ = 0.5) is ei-
ther Middleton Class A or Bernoulli-
Gaussian distributed.

Figure 7: Comparative probability
of erroneous/false detection as a
function of SNR (dB) for ZF-based
fusion applied to a WPDM-aided
(Z = 4,M = 8, N = 64) in-
dustrial sensor network with differ-
ent wavelet scaling functions when
the impulse noise (℘ = 0.7) is ei-
ther Middleton Class A or Bernoulli-
Gaussian distributed.

For the plots of probability of erroneous/false detection, we compare performances of three wavelet scaling functions
with the case without WPDM. For the DFC side, we just use ZF-based decision fusion. WPDM is capable of denoising
the sensor signals and offers improvement in performance by more than 10 times in the worst-case high impulse noise
scenario (℘ = 0.7, Fig. 7) for a particular value of SNR. Transmission of sensor observations aided by WPDM offers
a large improvement in performance in a noisy environment. This is because the transmitted waveforms overlap in
time, thereby dispersing the impulse noise energy over several symbols at each binary tree terminal. A moderate noise
burst that is capable of resulting in erroneous detection is distributed over several waveforms without causing any false
detection.
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5 Conclusion

In order to design a robust large-scale sensing network for the emerging smart Industry/Industry 4.0 environments, we
conceive the novel design of combining WPDM of sensor decisions at the transmit side with DF of heterogeneous
sensor decisions on the receive side. Evaluating performance of our proposed system in presence of Gaussian and
impulsive noise, Rayleigh block fading and indoor shadowing, we demonstrated that WPDM-aided industrial WSN
outperforms conventional large-scale multi-antenna WSN arrangements substantially, in presence of impulsive noise
particularly. However, in this paper we assume that each sensor group, z, consists of an equal number of sensors, M . In
future, we will relax this assumption to include different number of sensors belonging to each sensor group. We also
plan to conduct a detailed study of the wavelet scaling functions and how to optimize their design depending on the
environment at hand.
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